1. Introduction

Codeswitching is a feature of bilingual speech occasioned by language contact. In its earliest formulation by Jakobson, Fant and Halle (1952), codeswitching was used to refer to “the alternation not only of languages, but also of dialects, styles, prosodic registers, paralinguistic cues, etc” (Alvarez-Cáccamo 1998: 31-32) in the speech of one individual.

Codeswitching has been studied from several perspectives.

b) The sociolinguistic perspective (Wei 1998: 76) (e.g. Gumperz (1982); Auer (1984); Fasold (1984); Wei (1994); Heller (1995).

c) The grammatical or structural perspective (e.g. Timm (1977); Pfaff (1979); Poplack (1980); Muysken (1995); (Myers-Scotton (1997).

The paper focuses on grammatical constraints on codeswitching as they apply to Igbo-English data. The remainder of the paper is organized as follows: Section 2 is a general discussion of codeswitching as a phenomenon associated with language contact. Section 3 surveys the major grammatical constraints on codeswitching proposed in the literature and examines naturally occurring Igbo-English codeswitching data in the light of the constraints. Section 4 offers a proposal for an analysis of codeswitching that recognizes general principles as well as parameters that define variation among data sets. The paper ends with a conclusion in Section 5.

2. Understanding Codeswitching

Codeswitching is often classified into intrasentential and intersentential. Intrasentential codeswitching is the use of elements of more than one language within one sentence (1), while intersentential codeswitching involves a shift from one language to another between sentences (3).

(1) A ga m edepuża ofu akwụkwọ publish-ie ya, nweekwa skeletal one. January, February m na-abata, m publish-ie another one. The more m na-a-publish, m jiri nwayo na-e-build up my thesis.
Towards a Grammatical Theory of Codeswitching: The Case of Igbo-English Bilinguals
Ihuoma I. Akinremi, University of Jos.
Society for Pidgin and Creole Linguistics
Accra, 2nd – 6th August, 2011

‘I will write and publish one paper and have a skeletal one. In January or February when I return, I will publish another one. The more I publish, I gradually build up my thesis’

(3) Nke anwa m dere, echè m na onye guru ya aghọtarọ ihe m dere. So the professor nọ there aṣi m mbà, naihè a m dere dị mmà m na onye guru ya adịro qualified igụ ya. [They took it back to the committee], enye ya another professor. O guchaa ya [pass-ja the thing]. [That was how I started]. I ma na nke anyị dị iche.

‘The one I wrote (earlier), I think the person that read it did not understand it. So the professor who was there told me that what I wrote was good but the person who read it was not qualified to read it. They took it back to the committee and gave it to another professor, who read it and approved it. That was how I started. You know that our own (process) is different’

In its early study, codeswitching was thought to be a haphazard and deviant speech behavior e.g. Weinreich’s (1953). Since Weinreich, however, codeswitching has come to be understood as skilled linguistic performance that exhibits syntactic regularity and is subject to structural and grammatical constraints. In its present state of study, the question is not whether there are any structural constraints on codeswitching but what the best way to characterize them is, and whether they can be made to follow from independently motivated, more general principles (Di Sciullo, Muysken and Singh, 1986: 2; Belazi, Rubin and Toribio, 1994: 222).

In addition, a better understanding has been achieved about the motivations for codeswitching: personal motivations, community discourse norms and the social or psychological characteristics of different groups in the community.

3. Igbo-English codeswitching and proposed constraints

Two important issues have featured in grammatical studies of codeswitching (CS): “when researchers study the grammatical structure of CS, they have such research questions as these: Are there constraints on where in a sentence a speaker can switch languages? Do the two languages have different roles in the sentence or clause?” Myers-Scotton (2006: 801). Attempts to answer these questions have resulted in the postulation of grammatical constraints on codeswitching.

a. Construction-specific constraints: Such constraints are violated in Igbo-English codeswitching, e.g.:

Switches do not occur between pronominal subjects and finite verbs (Timm 1975; Gumperz, 1976) or between verbs and object pronouns (Timm, 1975; Lipski, 1977; Pfaff 1979)
Switches between an auxiliary and a main verb or a main verb and its infinitive complement are impossible (Timm, 1975; Lipski, 1977).

(16) Abịa m obodo a na 1986. Oge ahụ adị m small, mana (CL-come-ASP I town this in 1986. Time that CL-be I small, but

\[\text{abiara m, anị anya-e-live in peace, ebe niile anata uto.} \]
\[\text{CL-come-ASP I we V-PROG-V-live in peace, place all V-PROG-V-be-sweet) } \]

‘I came to this town in 1986. At that time I was small, but I came and we lived in peace, in a comfortable atmosphere.’

(19) The next thing ọ resolve-ọ ịhapụ i-register.
\[\text{(the next thing he resolve-PAST INF-leave INF-register) } \]

‘The next thing was that he resolved not to register’

b. Constraints based on general principles

Examples are the Equivalence Constraint and the Free Morpheme constraint of Poplack (1980). Both constraints are violated in Igbo-English codeswitching.

(23) Proposal m a-pass-i-rọ.
\[\text{(proposal my V-pass-V-NEG) } \]

‘My proposal did not pass (i.e. was not approved).’

(25) Ha anaghị e-represent anyi ọfụma.

“They don’t represent us well.”

(26) I mean-i-ri ya?

‘Do you mean it?’

Against a nonce borrowing account:

(36) Ndị adhoc staff e-train-i-ri ka ha man-ọ that computer something, o dosirọ ha anya.
\[\text{(The adhoc staff trained to man the computers is not conversant with their operation’ } \]

(37) Ụfọdụ nọ na secondary school ji akwụkwọ na ha finish-i-ri secondary school

‘Some people are (still) in secondary school have papers (indicating) that they have finished secondary school’

c. Constraints based on principles of monolingual grammar

Two constraints in this category are considered, and both are violated in Igbo-English codeswitching:
The Government constraint (DiSciullo, Muysken and Singh, 1986)

(44) Ha na-achị for their own interest; ọ bụrọ for the interest of ndị ha na-achị.
(‘They are ruling for their own interest; it is not for the interest of their subjects’)

(46) This morning ka m discover-a na MTN anagh a-browse.
(‘It is this morning that I discovered that MTN is not browsing’)

The Functional Head Constraint (Belazi, Rubin and Toribio (1994)

(51) Ha sị na ana-a-run presidential system of government.
(they say that IMP.PROG-V-run presidential system of government)
(‘They say that a presidential system of government is being run’)

(52) Enwere ịke ha emechago plan ka the computer ghara i-work.

It-have power they V-do-ENCL-PERF plan that the computer fail INF-work)
‘It is possible that they have planned for the computer to fail to work’

d. Constraints based on differential roles of the participating languages (the Matrix Language Frame model of Myers-Scotton, 1993, 2002). The constraints imposed on codeswitching by the hypotheses of the MLF model do not extend to all the cases of codeswitching by Igbo-English bilinguals.

(53) Nke anwa m dere, eche m na onye gụrụ ya aghọta rọ ihe m dere. So the professor nọ there asị m mba, na ihe a m dere dị mma ma na onye gụrụ ya adịrọ qualified iğụ ya. They took it back to the committee, enye ya another professor. O gụchaa ya pass-ia the thing. That was how I started. I ma na nke anyị dị iche.

‘The one I wrote (earlier), I think the person that read it did not understand it. So the professor who was there told me that what I wrote was good but the person who read it was not qualified to read it. They took it back to the committee and gave it to another professor, who read it and approved it. That was how I started. You know that our own (process) is different’

While the system morphemes in (54) below are all supplied by the matrix language (Igbo), the same cannot be said of (56), which contains an embedded language island.

(54) O disappoint-ị-rị ha.
(s/he disappoint-V-ASP them)
(‘S/he disappointed them’)

(56) O reduce-ru [the price.]
(he reduce-PAST the price)
(‘He reduced the price’
The very fact that system morphemes may occur in islands which are built up with the grammar of the embedded language constitutes a violation of the System Morpheme Principle, which requires all system morphemes to come from the matrix language, and weakens the definition of the matrix language on the basis of such a requirement.

MacSwan (2005b: 8-9) also cites examples of mixed constituents in which ‘late outsider’ (i.e. syntactically relevant) system morphemes are contributed by both languages. An Igbo-English example is the following:

(58) Ọ bụ ha nwa na-eme ya export to be anyi.
(it be they PROG-do it export to place our)
‘It is they that export it to our place’

Note that ‘export to’ in (58) is not an embedded language island, yet it contains the system morpheme ‘to’ form the embedded language (English) in a CP framed in Igbo. Such violations of the System Morpheme Principle are suggestive of the fact that the definition of the matrix language on the basis of its contribution to syntactic structure alone is not adequate.

4. A principles-and-parameters-type account of codeswitching

The set of principles of Universal Grammar (UG) are assumed to be invariant across languages and to be “uniformly attained but underdetermined by evidence” (Chomsky 1981: 6), while parameters, which specify the set of permissible options that govern the range of variation between languages “are fixed in one of the permitted ways” (Chomsky 1981: 7). Applied to a grammatical account of intra-sentential codeswitching, the following scenario would emerge:

a. One of the invariant principles of codeswitching is that codeswitching is structured and constrained by grammatical rules.

b. In intrasentential codeswitching, sentences are built up with items drawn from two lexicons. What is parameterized is the nature of the interaction between the lexicons.

c. Sociolinguistic factors often play a part in determining codeswitching patterns: variables such as social class, proficiency, age, education and community attitudes have been linked to the occurrence of different switch strategies. Proposed constraints need not be absolute (Bentahila and Davies, 1983, 1998), but would accommodate the variation brought about by such factors in the form of parameters of the grammar.

d. Language typology has also been documented as one of the factors that contribute to the patterning of codeswitching (Bokamba 1988; Muysken, 1995, 2000). This, again, underscores the need for he parameterization of grammatical constraints on codeswitching.
e. The assumption that only general principles of monolingual grammar are needed to explain codeswitching (e.g. MacSwan, 1999) seems to belong to the class of parameters. Grosjean claims that “the coexistence of two languages in the bilingual has produced a unique and specific speaker-hearer”, who “can never be an ‘ideal speaker-hearer’ in the same way that the monolingual supposedly can” (1989: 3, 5). It is our opinion that some of the possibilities of the human linguistic capacity can only become evident through the study of bilingual (and possibly trilingual) codeswitching, and only if the bilingual is studied “as such and not always in comparison to the monolingual” Grosjean (1989: 14).

5. Conclusion

The predictions of the grammatical constraints examined in the paper were not borne out in the Igbo-English data. The findings support the argument that no grammatical constraints can apply to the full range of data sets attested in the literature (Muysken, 2000; Gardner-Chloros and Edwards, 2004). The paper suggests that a grammatical account of codeswitching should be organized in such a way that it recognizes the invariant principles or grammatical regularities which characterize all data sets, as well as parameters which specify the set of permissible options that govern the range of variation between data sets.