Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

Research group Prof. Dr. Jürgen Janek

Physical chemistry of solids – solid state ionics and electrochemistry
Current notice

New PhD projects available in the field of Solid State Batteries. In case of interest please contact directly Prof. Janek.

Welcome to our homepage!

RG Janek stats summer 2014

The research of our group is directed towards the physicochemical basis of solid state processes, that are important for modern energy and interface technologies.

 

 

Recent Publications

Origins of Dendrite Formation in Sodium-Oxygen Batteries and Possible Counter-Measures
L. Medenbach, C. Bender, R. Haas, B. Mogwitz, C. Pompe, P. Adelhelm, D. Schröder, J. Janek, Energy Technol. (2017); find paper here

 

Chemical diffusion of copper in lead telluride
C. Schneider, P. Schichtel, B. Mogwitz, M. Rohnke, J. Janek, Solid State Ionics 303 (2017) 119-125; find paper here

 

How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation
D. Schöder, C. Bender, R. Pinedo, W. Bartuli, M. Schwab, Z. Tomovic, J. Janek, Energy Technol. 8 (2017) 1242-1249; find paper here

 

In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup
M. R. Busche, D. A. Weber, Y. Schneider, C. Dietrich, S. Wenzel, T. Leichtweiss, D. Schröder, W. Zhang, H. Weigand, D. Walter, S. J. Sedlmaier, D. Houtarde, L. F. Nazar, and J. Janek, Chem. Mater. 28 (2016) 6152-6165; find paper here

 

Visualizing Current-Dependent Morphology and Distribution of Discharge Products in Sodium-Oxygen Battery Cathodes
D. Schröder, C. L. Bender, M. Osenberg, A. Hilger, I. Manke, and J. Janek, Sci. Rep. 6 (2016) 24288; find paper here

Picture of the month - November 2017

Here you can find alternating insights into our research group. Enlarged versions of all published pictures can be found here.

In order to explore fundamental effects of lithium ion batteries it is typically important to prepare model systems in order to study individual effects on a given system. The preparation and analysis of thin and planar films of electrode materials for example can allow insights into the interface interaction between these materials and the electrolyte. The preparation of these films is influenced by a multitude of different parameters. In the given example the influence of the substrate material on the film morphology and texture is depicted.The thin films shown were prepared by spin coating of LiNi0.5Mn1.5O4 on silicon wafers and yttria doped zirconia (YSZ/Pt). In this method a stoichiometric solution of the corresponding metal salts is dripped onto a spinning substrate and the resulting film is crystalized in an oven. The thickness of the film can be controlled by depositing multiple layers. The samples on silicon (a) and a cross section c)) show very poor adhesion and are strained which causes cracks and deformations to form. On YSZ/Pt however (b) and cross section d)) an identically prepared film appears stable and individually deposited layers are visible in the cross section. Therefore, the preparation conditions have to be controlled specifically for every substrate material. (Picture submitted by Patrick Schichtel.)

In order to explore fundamental effects of lithium ion batteries it is typically important to prepare model systems in order to study individual effects on a given system. The preparation and analysis of thin and planar films of electrode materials for example can allow insights into the interface interaction between these materials and the electrolyte. The preparation of these films is influenced by a multitude of different parameters. In the given example the influence of the substrate material on the film morphology and texture is depicted.

The thin films shown were prepared by spin coating of LiNi0.5Mn1.5O4 on silicon wafers and yttria doped zirconia (YSZ/Pt). In this method a stoichiometric solution of the corresponding metal salts is dripped onto a spinning substrate and the resulting film is crystalized in an oven. The thickness of the film can be controlled by depositing multiple layers. The samples on silicon (a) and a cross section c)) show very poor adhesion and are strained which causes cracks and deformations to form. On YSZ/Pt however (b) and cross section d)) an identically prepared film appears stable and individually deposited layers are visible in the cross section. Therefore, the preparation conditions have to be controlled specifically for every substrate material. (Picture submitted by Patrick Schichtel.)

The WG Janek is involved into the following networks
Logo BASF

BASF Forschungsnetzwerk "Elektrochemie und Batterien"

Logo Hessisches Graduientenprogramm Elektromobilität

Hessisches Graduiertenprogramm Elektromobilität


DFG SPP 1415


DFG-Schwerpunktprogramm 1415
"Kristalline Nichtgleichgewichtsphasen"
(Koordinatoren: Prof.W. Bensch/U Kiel, Prof. J. Breu/U Bayreuth)
DFG SPP 1415


DFG-Schwerpunktprogramm 1708
„Materialsynthese nahe Raumtemperatur“
(Koordinator: Prof. Dr. M. Ruck/TU Dresden)
"Festelektrolyte als Enabler für Lithium-Zellen In Automobilen Anwendungen"

 

BMBF-Projekt FELIZIA

"Festelektrolyte als Enabler für Lithium-Zellen In Automobilen Anwendungen"

BMBF

 

BMBF-Projekt "BenchBatt"

"Benchmarking und Evaluation der Leistungsfähigkeit und Kosten von Hochenergie- und Hochvolt-Lithium-Ionen-Batterien im Vergleich zu Post-Lithium-Ionen-Technologien"

BMBF-Projekt Zisabi


BMBF-Projekt Zisabi

"Zink-Sauerstoff-Batterien mit Ionenaustausch-Membran als Post-Lithiumionen-Technologie"

LOGO BMEL

 

BMEL Project FOREST

New Lignin-based electrolytes for redox-flow batteries - Future Organic Electrolyte for Energy Storage

BMBF-Projekt MeLuBatt

 

BMBF-Projekt MeLuBatt

 

"Frischer Wind für Metall/Luftsauerstoff-Batterien:
Was man von Lithium-Ionen-Batterien lernen kann"

Logo Store-E

LOEWE-Schwerpunkt STORE-E


German Israeli Battery School



German Israeli Battery School

Nanonetzwerk Hessen


Nanonetzwerk Hessen