Workshop on Financing, Regulation and Performance of the European Rail sector

Pricing and investment in transport infrastructures

Ginés de Rus and M. Pilar Socorro
University of Las Palmas de Gran Canaria and FEDEA (Spain)

Giessen, 11-12 May 2017
Introduction

• **Prices** affect demand and, thus, must be taken into account when evaluating transport infrastructure investments.

• Certain charging schemes **may favor certain transport modes** and influence the transport network configuration, leading to log-term equilibria that may not be optimal under other charging schemes.

• In this paper, we consider two charging schemes commonly used in real world: charging according to **short-run marginal cost or** charging to cover **long-run marginal costs**.

• Sometimes, different charging schemes are used in different transport modes, which affects intermodal competition and the comparison between different transport investment alternatives.

• In this paper we highlight **the importance of the charging scheme when deciding optimal transport infrastructures.**
The model

- Consider an economy composed of an **oligopolistic transport sector** and a competitive (*numeraire*) sector summarizing the rest of the economy.

- The transport sector contains two transport modes: **air transport** (two airlines producing q_1 and q_2) and **rail transport** (one rail operator producing q_t).

- The regulator must decide **the kind of transport infrastructure** to be constructed in order to connect two regions A and B.
The model

Alternative 1:
Region A $\xrightarrow{\text{}}$ Region B

Alternative 2:
Region A $\xrightarrow{\text{}}$ Region B

Alternative 3:
Region A $\xrightarrow{\text{}}$ Region B
The model

• In route AB, there exist \textit{N identical consumers} with preferences on the transport sector and the \textit{numeraire} good given by:

\[V(q_1, q_2, q_t, m) = U(q_1, q_2, q_t) + m \]

Given these preferences there are \textbf{no income effects on the transport sector} and we can perform \textbf{partial equilibrium analysis}.
The model

- In the transport sector, we assume that the representative consumer has the following preferences:

\[U(q_1, q_2, q_t) = u_a q_1 + u_a q_2 + u_t q_t - \frac{1}{2} (q_1^2 + q_2^2 + q_t^2 + 2\gamma q_1 q_2 + 2\delta q_1 q_t + 2\delta q_2 q_t), \]

where:

- \(u_a \) and \(u_t \) measure consumer preferences for each transport mode,
- \(\gamma \in [0,1) \) represents the degree of product differentiation between airlines,
- \(\delta \in [0,1) \) represents the degree of product differentiation between air and rail transport.
The model

Let us denote by:

\(\mu_a \): Access price for airports.
\(\mu_t \): Access price for the rail infrastructure.

\(c_a \) and \(c_t \): Marginal operating costs for airlines and the rail operator.
\(C_a \) and \(C_t \): Marginal operating and maintenance cost of transport infrastructures.

\(r \): opportunity cost of public funds.
\(K_a \) and \(K_t \): construction cost of transport infrastructures.
The model

The timing of the game is:

1. The regulator decides **the charging scheme** for the use of transport infrastructures. Given the charging scheme, the regulator decides the kind of **transport infrastructure to be constructed** in order to connect regions A and B.
2. Given the charging scheme and the transport infrastructures that have been constructed, transport operators decide the **ticket price** to be charged to final consumers.
3. Given ticket prices, **consumers demand trips** in those transport modes for which transport infrastructures were constructed.

The game is solved by **backward induction**.
Stage 3: representative consumer demand

Given the charging scheme, the transport infrastructures that have been constructed and the ticket price, the representative consumer demands the number of trips that maximizes his utility:

$$\max_{q_1, q_2, q_t} U(q_1, q_2, q_t) - (p_1 + t_a)q_1 - (p_2 + t_a)q_2 - (p_t + t_t)q_t,$$

where p_i is the ticket price; t_a and t_t denote all costs associated with the specific transport mode except the ticket price.

SOLUTION: Linear demand functions (for each possible alternative).
Stage 2: Optimal ticket prices

- Given the charging scheme and the transport infrastructures that have been constructed, and anticipating the representative consumer demand, \textbf{transport operators decide the ticket price} to be charged to final consumers in order to maximize their profits:

\[
Max \quad \pi_i = (p_i - c_a - \mu_a) q_i
\]

\[
Max \quad \pi_t = (p_t - c_t - \mu_t) q_t
\]

\textbf{SOLUTION: Optimal ticket prices} (for each possible alternative)
Stage 1: optimal transport infrastructures

Given the charging scheme, and anticipating operators’ and consumers’ behavior, the regulator must decide the kind of transport infrastructures to be constructed in order to connect regions A and B:

Alternative 0: To construct no transport infrastructure today and wait till the demand increases.

Alternative 1: To construct just the air transport infrastructure.

Alternative 2: To construct just the rail infrastructure.

Alternative 3: To construct both the air and rail infrastructures.
Charging schemes

We suppose two charging schemes commonly used in real world:

Charging according to short-run marginal cost:

\[\mu_a = C_a \]
\[\mu_t = C_t. \]

Charging to cover long-run marginal costs:

\[\mu_a = C_a + A \]
\[\mu_t = C_t + T. \]
Optimal transport infrastructures

In order to decide the optimal transport infrastructures, the regulator should compare the social welfare associated with each alternative.

Social Welfare is defined as: consumers surplus + transport operators profits + transport infrastructure owner profits − opportunity cost of public funds.

\[
SW_{t+a} = N[U(q_1, q_2, q_t) - (p_1 + t_a)q_1 - (p_2 + t_a)q_2 - (p_t + t_t)q_t + \pi_1 + \pi_2 + \pi_t + (\mu_a - C_a)(q_1 + q_2) + (\mu_t - C_t)q_t] - rK_a - rK_t.
\]

When comparing alternatives we do not consider the environmental impact.
Optimal transport infrastructures

![Diagram of transport infrastructures with alternatives labeled 0, 1, 2, and 3, and SW0, SW1, SWo lines.](image-url)
Optimal transport infrastructures
Optimal transport infrastructures

The choice of the optimal transport infrastructure depends on:

- The number of consumers, N.

- Construction costs and opportunity cost of public funds.

- The slope of the social welfare function associated with each alternative, which depends on:
 - consumers preferences, marginal operating and maintenance costs, and the charging scheme.

The charging scheme is the only one under the regulator’s control.
Optimal transport infrastructures
Empirical illustration: the Spanish case

• Application to a 600 km. length route (for example, Madrid-Barcelona route).

• Two transport modes: air transport and high speed rail.

• Real value to the parameters according to real data.

• This example does not substitute cost-benefit analysis. It just illustrates how the model provides intuitions about optimal transport infrastructure investment.
Empirical illustration: The Spanish case

Table 1. Minimum number of trips depending on the charging scheme

<table>
<thead>
<tr>
<th>Charging according to SHORT-RUN marginal costs</th>
<th>Alternative 1: Only air</th>
<th>Alternative 2: Only HSR</th>
<th>Alternative 3: air + HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of trips:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air: 1,558,407</td>
<td></td>
<td></td>
<td>Minimum number of trips:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air: 16,964,926</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HSR: 14,949,419</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total: 31,914,345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charging scheme to cover LONG-RUN marginal costs</th>
<th>Alternative 1: Only air</th>
<th>Alternative 2: Only HSR</th>
<th>Alternative 3: air + HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of trips:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air: 1,538,500</td>
<td></td>
<td></td>
<td>Minimum number of trips:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air: 34,854,9149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HSR: 12,182,311</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total: 47,036,460</td>
</tr>
</tbody>
</table>
Conclusions

• **Pricing and investment** decisions are not independent.

• **Before deciding whether or not to construct** a transport infrastructure we need to know the charging scheme.

• This is not what some countries do (Spain).

• In **Spain**, according to the level of demand, to construct **just the air transport infrastructure** would have been the optimal decision (**even with a short-run marginal cost charging scheme!!!**).

• **Once the infrastructure has been constructed, it should be used** (if at least variable costs are covered) but we should not continue constructing new routes. We should wait till the demand is sufficiently high.
Conclusions

• **Other issues** to be taken into account:

- Once you have connected two regions with airports you only need one more airport to connect a third region (half of the previous investment). By rail, the cost of connecting the third region is almost the same...

- The cost of constructing airports varies with demand but the cost of constructing the rail infrastructure is less flexible.

- Airports are multiproduct: domestic and international flights...

All these issues should be taken into account when deciding **the optimal transport infrastructures to be constructed** in order to connect two regions.