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1 Introduction and motivation

In the 60’s, quarks were introduced as building blocks of the strong interaction [1] and
provided a tool to explain the numerous particles in the observed hadron spectrum. In
this picture, hadrons, a synonym for strongly interacting particles, are viewed as bound-
states of valence quarks. The different valence quark content is used to characterize the
bound states and the following classification was found to explain the observed spectrum
very well: particles that consist of a quark (¢) and an antiquark (g) are called mesons
and their quark content is denoted as (¢q); particles that are built up by three quarks
are called baryons and their quark content reads (qqq).

With the quarks as new fundamental particles, also two new quantum numbers were
introduced. They were called color and flavor. There are three different ’colors’ and the
underlying group structure is therefore SU(3). Because no single quark was observed
and only colorless hadrons were experimentally found, the concept of confinement was
introduced. Put in simple words, this concept states that all observable particles are
colorless. Up to now, no violation of this conjecture was found experimentally.

The flavor quantum number can take six different values, called u(p), d(own), s(trange),
c(harm), b(ottom) and t(op). Different from the color quantum number, the flavor sym-
metry is explicitly broken and quarks with different flavors have different masses. The u
quark (m,, ~ 3 MeV), d quark (mg ~ 5 MeV) and s quark (ms ~ 100 MeV) are much
lighter than the other three quarks which have masses well above 1 GeV. This gave rise
to use SU(3) as flavor group structure to describe the lower-mass hadron spectrum. A
combination of a quark and antiquark in a SU(3) flavor representation produces a no-
net multiplet structure, which can be inferred from the tensor product decomposition:

(3® 3) = (8@ 1). Thus, the nonet structure is a fundamental consequence of the (qq)
picture.

The different nonets of the (¢q) picture are classified by the total angular momentum
J, the parity (P) and the charge-conjugation symmetry (C). As usual, the notation
reads J7(©), For example, the 1-() (¢g)-nonet is depicted in Fig. 1.1. By looking at the
quark-content, the state with the lowest mass is expected to be the iso-triplet p°, pT, p~,

and K* and ¢ are expected to be heavier because of their strange-quark content. Indeed,
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Figure 1.1: The 1-(-) meson nonet. The vertical axis denotes the hypercharge Y = 2Q — 213,
I3 the isospin and @ the electrical charge.

this is the case and the p mesons are the lightest ones in this nonet (m, ~ 775 MeV)
and the K*s and the ¢ are much heavier (mg- ~ 890 MeV, mg ~ 1019 MeV).
However, not all observed hadrons are compatible with the ¢g picture. A prominent ex-
ample is the 07T state. Before going into detail why a (gq) description of this state does
not explain the observed particles, some remarks on the experimental status on the 07
nonet are given.

The lowest-lying states with the quantum numbers 0T are very broad, making it diffi-
cult to measure the properties and differentiate between a bound state and a scattering
state. For a long time, the status of the 0T states as particles was debated, and with
the words of Jaffe, “[they were| exiled to the gulag of particle physics® [2]. Only in the
last decade they were reintroduced as particles due to new experiments such as KLOE
in the e~e™ — 7%7% channel [3] or BES in the J/¥ — wr~ 7" [4] channel (see [5]
and the references therein for a more thorough compilation). Also recently, different da-
ta analysis approaches, utilizing the Roy-equation and derivations of it, deduce a pole
mass of m, ~ 450 MeV for the lightest 0 particle, called o or fo(600) [6]. In light of
this experimental evidence, the existence of 07 as bound states can be seen as proven,
but the interpretation as (¢g) has conceptional problems. In the following, a collection
of arguments is provided that point out the main difficulties of the (¢g) picture. The

corresponding nonet is depicted on the left side in Fig. 1.2:
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Figure 1.2: Left: The 07(t) nonet in a (¢q) picture. Right: The tetraquark flavor nonet with
quantum numbers 0F(+) [7]. The flavor content is denoted in brackets. A thorough and detailed

review of the flavor and color content of tetraquarks can be found in [8].

1. The mass of the o (m, ~ 450), the iso-scalar of the nonet, is lower than the
mass of the w (my, =~ 800 MeV), the iso-scalar of the 17~ nonet. From a non-
relativistic point of view, the ordering should be the reversed. In the non-relativistic
quark model, charge and parity are connected with the spin (S) and the orbital
momentum (L) of the two-body state: P = (—1)¥*! and C = (—1)X*%. This
corresponds to S =1, L = 1 in the 0" case, and to S = 1, L = 0 in the 1™~ case.
As in atomic physics, states with higher angular momentum should have higher
masses. This hierarchy seems clearly violated for the (gg) picture. Additionally,
results from lattice calculations [9] indicate that the ag states in the (¢g) scalar
nonet reside well above 1 GeV, underlining that the lowest-lying (07") nonet is

not a two-body state.

2. The fy(980) decays mainly to 77 and K K, the dominating decay channel of a((980)
is nm and K K [10]. Both decays are difficult to explain by the quark content of a
(¢q) nonet, considering that ag and fo do not possess strange quarks. For simplicity,
the scalar nonet is assumed to be a state that exhibits ideal mixing. This means
that fp(980) and fy(600) can be described by their strangeness and results in
f0(980) containing no strange quarks. Even if abandoning the ideal mixing, which
would explain the decay channel of f3(980) into KK, the oddity of the ag decay
channels remain. Similarly, the dominating decay of fy(600) into 77 is not reflected

by its quark content.




3. The 07T states are much broader than the (qq) states of other nonets in the same
mass-region, for example the 0~ . This seems odd, because the decay of mesons
via quark-antiquark annihilation diagrams is governed by the Okubo-Zweig-lizuka
rule (OZI) [11, 12, 13]. Because of the similar quark content, similar decay channels

and similar widths are expected, which is apparently not the case.

4. The overall mass spectrum of the 07" nonet does not reflect the quark content.
As exhibited in the 0~ nonet, the lowest-lying states should be the iso-triplet and

the highest lying state the iso-scalar. This is clearly reversed for the 07" nonet in

a (qq) picture.

As remedy for this unexpected behavior of the 0™ nonet, Jaffe [7] proposed in the 70’s a
different model, namely the tetraquark model with (¢qGq) quark content. The advantages
of the tetraquark model as explanation for the scalar nonet are striking.

The decomposition of the tetraquark tensor product (3®3®3®3) contains, besides other
structures, a flavor nonet. So the tetraquark picture is in principle suitable to describe
the scalar sector. The tetraquark nonet is depicted in Fig. 1.2. All the difficulties with
the (qq) picture disappear and the observed oddities are naturally explained by the flavor
structure of the (gqgq) nonet:

1. It can be shown that in the 07" case, the orbital angular momentum of a tetraquark
is zero [8]. This is conform with the expectation that S-wave states should be the

lightest states.

2. . The decay channels can directly be linked with the flavor content of the te-
traquark. The decay of ag and fy into KK and 5 is caused by the strange quark
content. Also, the dominant decay channel fp(600) — 77 is explained by the ab-

sence of strange quarks.

3. The broadness of the 07" states can be explained by a decay into two mesons.
Because these decay diagrams do not contain gluon lines, the channels are ’OZI-
super-allowed’ [7]. On the other hand, the decay channels of (¢q) states contain

gluon lines and therefore are expected to be more narrow.

4. The mass spectrum deduced from the tetraquark nonet is inverted upon compa-
rison with the spectra of the (¢q) nonet. The iso-scalar particle, the fy(600), is
expected to have a lower mass than the iso-vector particles ag, because the iso-
scalar does not contain any strange quark. This is exactly the structure that is

found experimentally.

Apart from these phenomenological arguments, based on the group structure of the te-

traquark flavor nonet, there exist lattice calculations that back up the tetraquark picture




for the lowest 0" nonet [14, 15, 16].

In this thesis, the tetraquark is approached from a different perspective. A combined co-
variant and non-perturbative Dyson-Schwinger/Bethe-Salpeter approach in and beyond
the rainbow-ladder truncation has been proven to describe various hadron observables
quite well, see [17, 18] for reviews of the field. Especially the properties of the light me-
sons as the 7, p [19], but also the nucleon and the A resonance [20, 21] are well described
by this approach.

In the case of baryons, it proved viable to reduce the three-body to a two-body problem
by replacement of two quarks with an effective diquark [22]. This successful application
of the diquark-quark picture for the nucleon suggests to apply a similar approach to the
tetraquark case. In order to reduce the four-body problem, the division into two sets of
effective degrees of freedom seems natural. One combines (¢g) to two effective mesons
(pions), the other one employs a (Gg) and (gq) arrangement. As seen in chapter 4, this
corresponds to a coupled meson-meson/antidiquark-diquark picture. This approach is
subsequently used to calculate the mass of the fy(600).

The structure of the thesis is as follows: In chapter 2 a brief overview of the building
blocks of Quantum chromodynamics (QCD) is given as well as Dyson-Schwinger equati-
ons (DSE), which are an important tool to describe QCD in an inherent non-perturbative
way. Chapter 3 describes the solution of the quark DSE and the homogeneous Bethe-
Salpeter equation (BSE) for pseudo-scalar mesons and scalar diquarks.

In chapter 4 the tetraquark BSE is introduced and subsequently reduced to a two-body
equation employing a meson-meson/antidiquark-diquark picture. Numerical details are

given in chapter 5 and the results are presented and discussed in chapter 6.




2 Quantum chromodynamics and
Dyson—Schwinger equations

QCD describes the dynamics of quark fields ¥(z,), ¥(z,) and gluon fields A} (z,), the
up to now fundamental particles of the strong interaction sector of the standard model.

The corresponding action reads
_ - 1
SqeplAS, U, U] = / d*zLocp = / d*x {m(w +m) V4 S FE (2.0.1)
where the covariant derivative is
D= YuD¥ = 7, (0" + igAHT?), (2.0.2)

and the field-strength tensor reads

Fol = M A, — 9" Ay — ig[A™", A™H]. (2.0.3)

As usual, Greek letters denote Lorentz indices and Latin letters the color index. To
simplify the notation the indices and explicit functional dependencies are omitted whe-
rever the nature of the quantity is obvious and can be deduced from the context. The

underlying continuous symmetry operation of QCD reads

U(z) = U(z)¥(x) := exp (—ige(z)*T?). (2.0.4)

The bare coupling is denoted by g, €(z) stands for the local displacement and T for
the generators of the gauge group. Due to the lack of a suitable 'real’” world analogy
everything connected with the symmetry group of the strong interaction is specified by
the adjective ’color’.

In the standard model the color group is SU(3) and the generators form an algebra
satisfying the commutator relation [T%, T = i gbUC(S)TC. The quantities f%° are the
unique structure constants of SU(3) and have the following values:




1

Y

f123 -1 f147 f165 f246 f257 f345 f576
3
158 _ 4678 _ \g (2.0.5)
One possible fundamental representation of the eight generators are the so-called Gell-

Mann matrices \* = 27* [23]. In order to ensure local gauge invariance of the Lagrangian,

the involved operators have to obey the transformation rules

D, — UDU', F, > UF,U', A, —UAU +24,U0,U". (2.0.6)
g

The term ’local’ refers to the xz-dependence of the group operator U(z).

Because of the the non-commutativity of the group generators, which manifests itself
in the commutator term in Eq. (2.0.3), QCD is called non-Abelian. That innocent-
looking term encodes cubic and quartic self interactions of the gauge field which causes
the coupling strength to increase with lower energies. As a consequence perturbation
theory becomes non-applicable for phenomena, prevalent in the low-energy regime such
as confinement and the formation of bound states.

Having the Lagrangian at hand, the generating functional of the theory in Euclidean

space time can be defined as

Z[J)Tlvﬁa g, 6-] = /D[Aa v, @705 6] exXp (/ da* (_SQCD[A7 v, \ij] - Sg+f[A7 ) E] + SSC)>

=exp(—WI[J,...]). (2.0.7)

The integration measure D is to be understood as an integration over all field configu-

rations:

x [[dA). .. (2.0.8)

The additional contribution to the action, Sy ¢, contains the Faddeev-Popov ghost (first

and second term) and the gauge fixing term [24]

1
SgrslA ¢, 1= 0" Dy + gf U AC O P + 2—§8"A28”A3. (2.0.9)




Ssc represents the artificial external source terms of the corresponding field and is used

in the calculation of the Green functions
Sse = A Jy + 70 + Un + e + co. (2.0.10)

In this framework the choice of ¢ defines the gauge. Setting (£ = 1) is called Feynman
gauge and another common choice, (£ = 0), is referred to as Landau gauge. This is also
the choice for this work. All in all, the physical content should be independent of the
value of €.

The ghost fields ¢,¢ and the corresponding sources are Grassmann valued functions.
Upon performing the derivation of the (perturbative) inverse gluon propagator, it turns
out that the eigenvalue spectrum contains a zero rendering the inversion impossible
without further constraints. Different than in Abelian theories a simple exclusion of the
longitudinal component (Gupta-Bleuler formalism) is not viable due to the covariant
derivative containing the gauge field itself. One way to exclude the unphysical states
consistently are the above mentioned Faddeev-Popov ghost fields. This artificially fields
arise if the dependence of the gauge condition GG, on the gauge fields is correctly treated.
Doing this surmounts in an additional factor to the generating functional Z, written in
the first line [25]:

/ Dlw, ] exp (1 / da:4w(x)aw(x)a> 5 (G (%)) det (g) (2.0.11)

2¢
G = 9HAL — " (2.0.12)
det 0GT _ (5P abe gc 2.0.13
€ W T ( m +gf u)' ( <Y )

As before € is the gauge group transformation. The function w is an auxiliary quantity.
Rewriting the determinant as a Gaussian integral over Grassmann fields ¢, ¢ and perfor-
ming the integral over w yields the Faddeev-Popov and the gauge fixing terms in Eq.
(2.0.9).

To obtain physical observables the time ordered vacuum expectation values (VEV) of
the relevant products of fields have to be calculated. With the generating functional at
hand, this can be achieved by taking functional derivatives with respect to the sources
and afterwards setting these sources to zero similar to the calculation of expectation va-
lues in statistical physics. To simplify the notation, the product of n timeordered fields
is written as Gy [¢] (Green function) with ¢ encoding the appropriate number and type

of the fields and T the timeordering operataor. All sources are expressed by J, and S




contains all terms of the action defined above. The corresponding VEV of the Green

function reads:

/ Di¢]exp(=S[g])Gnl¢] "
OIT(f1- - dn)l) == (01Gn[¢]]0) = o = Z[J]. (2.0.14)
! [ Dexp(—S[g]) oI

To obtain the connected Green functions Gy, instead of Z[.J] the (Schwinger) functional
WJ] = —In Z[J] is used. This functional can be related to the quantum effective action

I'[®;] via a Legendre transformation

W[J] =T[®,] + / dzJ(x)® 5 (x) (2.0.15)
b, = 71! / DG Go[6] exp <—5[¢] + / d4J¢> _ %W{J]. (2.0.16)

It is important to note that @ ; is not the field previously called ¢ but the field averaged
with the altered action due to the Legendre transform in presence of a source. With
the quantum action at hand, the 2-point Green function, the inverse propagator, can
be calculated by differentiating the quantum action with respect to the averaged fields

instead of differentiating the generating functional W[.J] with respect to the sources [26]:

[ &°T[@] -
- (5@5@ q>q>0> . (2.0.17)

Qg is the (VEV) of the field without external sources. Higher order one particle irre-

L PWL]
5J6J

ducible (1PI) vertices can be calculated by subsequently taking functional derivatives
of the quantum effective action. The Dyson-Schwinger equations (DSE) [27, 28] can be
derived by stating that the generating functional Z[J] should be invariant to transla-
tion operation on the involved fields ¢. Following the derivation in [29] that applies a
superfield formalism that essentially hides the involved fields behind ®;, a variation of
the functional Z[J] yields:

0= 6(;iZ[J] = /D[cé} <—§Z+Ji> exp <_S+/¢jjj> B

55 5T(]
8¢ i

exp(W[J]). (2.0.18)

$=6/6J;




Upon further manipulations the generating DSE can be deduced:

T[®] 89
50, 09

' . (2.0.19)
Ho=wi+075/50;

A;]j denotes the, due to the super field formalism possible mixed, propagator in presence
of a source. Sequentially differentiating the left side gives the various vertex functions
and propagators of the theory. An automated Mathematica based program to calculate
DSE for arbitrary actions can also be found in [29].

The resulting DSEs for the propagators and various vertices have the beauty to describe
the whole picture including all perturbative and non perturbative contributions. A caveat
is the fact that the DSEs are all dependent on each other thus forming an infinite
non linear system of equations. This renders an exact solution of the Green functions
numerically impossible. To resolve some of the non perturbative properties, for example
the dynamical chiral symmetry breaking (D, SB) of the quark, and still being able to
solve the DSE in a tractable time, a suitable truncation of the system of equations has

to be applied.

2.1 Quark DSE

By differentiating Eq. (2.0.19) with respect to a quark field, the quark propagator can

be extracted which reads in a diagrammatic notation:

-1 -1

—O0— - —+ 20

p q p. (211

The blobs indicate that the involved quantities are dressed containing the full set of all
possible quantum effects. The wiggly lines represent the gluon, the straight line a quark
and the blue blob the full quark-gluon vertex which all themselves satisfy their own DSE.
The involved functions (in Euclidean space) depend on the renormalization scale p. The

gluon propagator in Landau gauge (£ = 0) reads

) (G2, , kPR kMK
DM (k, ) = 6% ((kQ“) (5“ - ) +§k4> . (2.1.2)

10



G (K2, i) is the renormalization point dependent dressing function and the J-function acts
in color space. The part in brackets can be regarded as the transverse projector T+ (k)
effectively Kkilling the k* longitudinal part of the quark gluon vertex. The left vertex is
bare by default:

(Fbare)ZbC =gZipi" T;b- (213)

Z1r denotes the multiplicative vertex renormalization constant and 77, the color genera-
tors. The second quark-vertex is dressed and consists of twelve elements. The number and
structure of these elements is derived by the tensor product {v#, k*, I*} @ {1, ¥, ,[F, ]}
with [# = p# — k#. The dressed vertex in rainbow-ladder truncation on the right side of
the DSE reads

DA, by abe = 9" Fu (K2, 1) TS, (2.1.4)

In this truncation only the dressing function f;, corresponding to the y*1 structure,
is retained. A discussion of the quark-gluon vertex in rainbow-ladder truncation, using
all twelve different tensor structures, can be found in [30]. The bare (inverse) quark

propagator outside the loop integral reads
Share (s 11) = 0 Zo (1, A) (i + mo(A)) (2.1.5)

and the dressed one

_ s Zr@? ) (ip + M(p?)

p2 + MZ(p2) = (]lUsc(p2v H) - i]éffvc(pa ,Uz))(sab. (216)

S(p, pt)

M (p?) is the momentum-dependent quark-mass function and Z¢(p?, i) the quark dres-
sing function. The functions os. and o, on the far right side are called the scalar and
vector dressing functions, respectively. The bare mass mg(A) depends on the regulariza-

tion cutoff A and can also be written as

mo(A) = muZm(A, 1). (2.1.7)

The cutoff and renormalization scale dependent Z,, is the so-called mass renormalization

constant. Using a result from perturbative QCD [25]

(e /abep)) "
g = (111(#2/1\22017)) ’ 219

11



m,, can be calculated from m,, the experimental measured current quark mass at an
energy scale which is typical in the order of 2 GeV. The numerical values for the scale
parameter Agcp, the anomalous dimension 7, and the mass m,, are given in the next
section. For a sufficiently high enough renormalization point u, the values for M (p) and
m,, are identical [31] which is the case for u© = 19 GeV, the value chosen throughout
this work. The equality M (u) = m,, provides a tool to deduce the value for mg(A) in a
self-consistent way.

Applying a Slavnov-Taylor identity (STI) Zip = Z»/Z3 [32] with Z3 as the ghost re-
normalization constant, and subsequently collecting the gluon dressing and the vertex

dressing into one quantity yields:

2

a(k®,p) == Gk, ) f1 (K>, ). (2.1.9)

Ao Zs

The dressing function together with the bare gluon propagator forms the effective gluon

of the model. The corresponding quark DSE reads

Zf(p2) (Zp + M(pQ)) = Zz(ip + mo)

Zs(q*)(—ig + M(q%) , a(k?)T"(k)
2+ M2(g%) v L2 :

47
+Ccol(2ﬂ_)4222/d4qryu
(2.1.10)

with the relation := p — ¢.The dependence on the renormalization/regularization para-
meters is suppressed. Carrying out the implicit color trace inside the loop integral yields

a factor of c.o = %.

2.2 Effective gluon

In this work, the effective interaction a(k?) that combines the gluon and quark-gluon

vertex dressings is modeled by the Maris-Tandy interaction [33, 19]

TYm (1 — exp(—kQ/A%))
) 2
In \/62 -1+ <1 + kJQ/AQCD)

Agcp = 0.234 GeV and Ag = 1 GeV are scale parameters. 7, = % is the anomalous

CcT

(2.2.1)

2\ 2
(ﬁ()) exp(— K2/ (?A3) +

dimension of the quark propagator for N¢or) = 3 and Nyqayour) = 4. The parameters

12



¢ and w are chosen throughout this work as ¢ = 0.37 and w = 0.4. The mass at the
renormalization point p = 19 GeV is set to m, = 0.0037 GeV for both u and d quarks
assuming that isospin is a good symmetry of QCD. This set of parameters reproduces
the decay constant of the pion fr = 131 MeV at a pion mass m,i = 138 MeV [33].

The two parts of the effective interaction correspond to two structural considerations:
The second part encodes the correct behavior of the quark-gluon coupling of perturbative
QCD in the UV-regime and the first part ensures a sufficient enhancement in the near-
infrared which leads to dynamical chiral symmetry breaking for the quark.

In order to collect all relevant parameters in one spot, the values for the ultraviolet (UV)
and infrared (IR) cutoff used in the DSE and BSE are also given: A?,, = 106 GeV and
A%, =107 GeV.

2.3 Solving the quark DSE

With an ansatz for a(p?) at hand, the DSE can be solved in a self-consistent manner.
The unknown functions and values in this equation are the dressing functions M (p?) and
Z f(pQ), the renormalization constant Zs and the cutoff dependent mass mg. Starting
with Eq. (2.1.10) the scalar part of the quark can be projected out via tracing in the
Dirac space yielding the mass function M (p?). The vector part can be extracted by
multiplication with p and subsequently taking the trace in the Dirac space.

The mass mg and Zs can be directly extracted from the evaluation of the DSE at the
renormalization point p with the renormalization condition Z(u?) = 1 and M (u?) =

m,,. The resulting system of equations has the form:

(k2 2 2) ¢%sin?(0
M) = ZuF () mo + 23255 [ dads (¢ fir é\qi()q &fﬁqf)z 204 ioi(@”

= Zo7(p*)mo + Z3 Int (2.3.1)

1 , 4 e
Zs(p?) - ZQ+22W/dqd0a(k )Z¢(q7) q° sin”(0) x
3 cos(0) (pa” + ap*) — 4p%0” cos*(6) — 20°¢”
(@2 + M2(¢%)) (p + ¢% — 2 pq cos(f))?
= Zy + Z3Intp (2.3.2)
M (u?) — Z3 Int
o= 222 — (2.3.3)
V1 +dIntp(p) — 1
“o ' 2.3.4
2 2Int g (1) (2.3.4)

13



The fundamental obstacle to overcome in solving this integral equation is the dependence
of the integral on the unknown functions M and Zy. To solve this self-consistent problem,
a suitable representation of the functions that allows to evaluate them at arbitrary points
inside the integral is necessary ensuring that any integration method can be used.

A tractable way to represent a function is an expansion in Chebyshev polynomials of
the 1. kind. They have the property to have the smallest maximum of all interpolating
polynomials of a given order (MinMax polynomials). This makes them less sensitive to
Runge’s phenomenon, an effect that describes the behavior of high order interpolation
polynomials on an equidistant grid to exhibit erratic oscillations with high amplitudes.
The Chebyshev polynomials are thus not defined on an equidistant grid but on the
Chebyshev nodes

xj = cos(m(j — 0.5)/N). (2.3.5)

The parameter N gives the order of the maximal Chebyshev polynomial used in the
expansion. An algorithm (Clenshaw-Curtis) featuring a fast way to calculate the appro-
ximated function at an arbitrary value can be found in [34].

With this expansion at hand the procedure to solve the coupled equation is straight-
forward: Starting with an initial guess for Zs, mg and the functions M (p?) and Z;(p?)
at the Chebyshev nodes, the right-hand side of Eq. (2.3.1) and (2.3.2) is calculated using
a standard Gauss-Legendre method. This in turn gives a new guess for the sought-after
functions and is repeated until 3, |M (p?)| < € and > |Z(p?)| < € for some € at the
order of 1076, The renormalization constant Z» and the bare mass mg are also calculated
at every iteration step.

As this technique will be used in the following investigations, a few remarks on the de-
tails are pending. Instead of integrating over p directly, a transformation to a logarithmic
grid is advisable. This takes into account the wide range of the interval [0, Ayy| that p
lies in.

The drawback of a logarithmic grid is the introduction of an infrared cutoff because
the interval [0, Ayy] is transformed to [—oo,log(Ayy)]. In practice though, this is not a
problem because the Gauss-Legendre algorithm does not evaluate the end points. Thus,
an exclusion of p = 0 introduces only a minor error, especially taking into account the
smallness of the infrared cutoff.

Instead of the function M (p?) itself, the exponent was expanded in a Chebyshev poly-
nomial which effectively results in taking the logarithm of the first line in Eq. (2.3.1).
The reason behind this step is the idea that the exponent of a function that spans se-

veral magnitudes, which is the case for M (p?), is smoother than the function itself. An
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approximation of the only slightly varying exponent is more accurate and improves the
approximant overall.

A caveat to this procedure is the sign problem. For as long as one can assure that the
sign of the function does not change in the integration interval, an approximation of the
exponent is applicable. In the present case, the quark dressing functions of the Maris-
Tandy model are well known [17] and the procedure is legitimate. Another technical
detail regarding the integration process is the division of the integration interval into
smaller parts and using a Gauss-Legendre integration on each section separately. The
division points were chosen to be the Chebyshev nodes. To be able to do this, an eva-
luation at arbitrary integration values is the key feature and underlines the advantage of
the Chebyshev expansion. Keeping in mind that at every integration point on the p-axis
another integration over the angular variable @ is included, the calculation time was re-
duced to less than a minute by a parallel evaluation of the integral using the framework
of OpenMP for C++ [35]. The gain in computation time is not of great importance
for quark DSE, which is fast to solve anyway, but turned out to be invaluable in the

calculation of the tetraquark BSE.

1_. /
] 2
] Z.(p)
) 2
M (p)
0,14
0,01 4
1E-3 T T T T T T T T T T 'T 7T TT °1
1E-8 1E-6 1E-4 0,01 1 1E2 1E4 1E6

p’ [GeV’]
Figure 2.1: Self-consistent solution of the quark DSE. The renormalization constant was calcu-
lated to Zy = 0.982301 and my = 0.00251906 GeV.

The general feature of D, SB in the quark propagator can be seen in fig. 2.1. The mass
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function M (p?) acquires a substantial enhancement in the infrared region, with the
onset of a rapid decay around 0.3 GeV, thus setting the scale of (non-perturbative)
QCD. A similar behavior at the same momentum regime can be seen in the quark

dressing function Z; (p?). For higher momenta, the dressing function Z [ (p?) approaches

Zo, whereas the mass function exhibits a logarithmically decaying tail.

Figure 2.2: Left: The absolute value of the quark propagator’s vector dressing function o,
with complex conjugated poles in the complex plane. Right: The argument of the vector dressing
function. The cut structure, visible by the discontinuity in the argument, can be traced back to

the logarithmic function in the effective coupling, Eq. (2.2.1).

2.4 Solving the quark DSE for complex momenta

The DSE solution obtained so far determines the dressing functions only for real and
positive momenta inside the integration boundaries. In the meson and tetraquark BSEs

though, the momenta are of the form

P* = (q+1P)* = ¢+ n*P* + 202 /qVP, 2z = (2.4.1)

Whenever P? < 0 holds, the momenta are shifted towards the negative real axis and
into the complex plane.

The variable 7 specifies the momentum sharing parameter. Throughout this work, the
sharing parameter is chosen to be n = % This reflects the equal mass symmetry of the
quarks and mesons/diquarks in the meson and tetraquark BSE. Since the approach is

fully covariant, the observables are independent of the momentum sharing parameter
[36].
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The singularity structure of the quark propagator in rainbow-ladder truncation turns out
to be given by complex-conjugated poles. This feature of the quark DSE is preserved
in more general studies [30, 37] and puts a constraint on the kinematical region that is
usable in the meson and tetraquark BSEs. In the case of the meson BSE, the integration
interval lies in the interior of the parabola (p:l:i%M )2. Upon comparison of the interior of
the parabola with the pole positions of the quark and meson propagators, the constraints

on the bound-state mass of the meson (Mz) and the tetraquark (My) are

M2 S 2mq, M4 S 2m7r. (2.4.2)

Figure 2.3: Left: The absolute value of the quark propagator’s scalar dressing function og.
with complex conjugated poles in the complex plane. Right: The argument of the scalar dressing
function. The cut structure, visible by the discontinuity in the argument, can be traced back to
the logarithmic function in the effective coupling, Eq. (2.2.1).

The relation for the tetraquarks follows from the constraint of the meson propagator and
the meson mass. Without a procedure to take the explicit residues into account, this re-
stricts the bound mass in the meson BSE to values 1 GeV which is well above the masses
for the lowest pion and diquark states [38]. In the case of the diquark-diquark/meson-
meson BSE, the restriction is harsher and puts the value for VP2 below 2m, =~ 280
MeV.

Sophisticated methods to solve the quark propagator in the complex plane exist [39, 40,
21]. The basic principle is a change in the momentum routing of the quark DSE. For
instance, the quark loop momentum ¢ in Eq. (2.1.1) can be shifted and the problem can
be solved on a contour in the complex plane featuring the form of a parabola defined

by Eq. (2.4.1). Applying Cauchy’s theorem, the dressing function can be evaluated for
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arbitrary points inside the contour.

However, the specific infrared behavior of the effective coupling in Eq. (2.2.1) that con-
tains functions that allow a complex continuation, permits a simple solution method.
Here the solution of the DSE on the positive real line is put into the quark DSE again,
and one more iteration in Eq. (2.3.4) is performed with the external momentum set to
the complex value. With the momentum routing in Fig. (2.1.1), only the gluon, known
from Eq. (2.1.2) and Eq. (2.2.1), is evaluated for complex values. The singularities in
the coupling induced by the logarithmic part in Eq. (2.2.1) are concealed by the large
oscillating contributions of the exponential function [38].

Solving the quark DSE for complex momenta is numerically not demanding. Neverthe-
less a simultaneous DSE solution during the integration of the meson and tetraquark
BSE is out of question because it still involves the solution of two-dimensional integrals.
To speed up the evaluation, the real and imaginary parts of the quark dressing functions
were precomputed on a logarithmic grid in the complex plane and a spline interpolation
was used to subsequently obtain the values. Similar to the strategy used in the solution
of the quark DSE, the exponents instead of the functions were stored.

The scalar and vector dressing function are plotted in Figs. 2.3 and 2.2, respectively.
The complex-conjugated poles emerge for Re(p?) < 0. The arguments of the dressing
functions exhibit a discontinuity which is equivalent to branch cuts in the dressing func-
tions. This cuts could be artifacts of the logarithmic function in the effective gluon in
Eq. (2.2.1). These structures are well outside the integration domain of the meson BSE

and thus have no influence on the solution.
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3 Mesons and diquarks

Because the tetraquark BSE in the meson-meson/antidiquark-diquark picture contains
explicitly offshell meson and diquark amplitudes, a proper description of these amplitudes
is necessary. In this chapter a calculation of the onshell meson and diquark amplitudes

is presented and an appropriate continuation into the offshell region is provided.

3.1 Two-body equation

The homogeneous Bethe-Salpeter equation (BSE) [41] describes the bound state of two
particles. In the quark-antiquark case the bound state corresponds to the (pseudo-scalar)
meson and in the quark-quark case to the (scalar) diquark. The starting point is the

general equation for the 4-point Green function G = Gy + GoK @aq

e 1e 012

where G denotes two dressed propagators and K a suitable scattering kernel. On the

mass pole Mp, the Green function separates into two contributions:

= }{ + regular parts

P2 — M3 . (3.1.2)

The resulting poles on both sides can be equated, yielding the homogeneous BSE for the
two-body bound state amplitude ¥

A detailed derivation of the BSE in ladder truncation can be found in [42]. Chiral
symmetry implies that the kernel in Eq. (3.1.3) has to obey the axial vector Ward-
Takahashi identity (AV-WTTI) [43]:
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sS(—p) + E(ps )y / K(p, ¢, P)(155(—q_) + S(a:)75), (3.1.4)

A

Here, the crossed circles represent 5 matrices, P is the total momentum of the bound
state amplitude, and the relation for the momenta reads p. = p+nP and p_ = —p +
(L=n)P.

The AV-WTI constrains the explicit form of the kernel upon knowledge of the fully
dressed quark propagator. In a formalism starting from an action that consists of higher
correlators than just the fields (Cornwall-Jackiw-Tomboulis action) [44], a procedure is
available to derive a BSE and thus a kernel that respects the AV-WTTI [45, 30]. In the case
of the Maris-Tandy effective interaction, the kernel can be derived by cutting the quark
self-energy loop at one of the bare vertices, resulting in an (effective) gluon-exchange
kernel in the pseudo-scalar meson BSE. This setup of truncated quark DSE and BSE
with the same effective gluon coupling has been extensively used in the description of
light mesons, see [46] for an overview; and progress was also made for baryons [47, 38].
The kernel of the BSE then reads

dra((p —a)*) (NN (X v
K(p,q,P) = ZQW <2> <2> (i) T (iv"), (3.1.6)

with A’ being the Gell-Mann matrices of the SU(3) color group. The final missing ingre-
dient to completely solve the meson BSE is a proper normalization of the BSE amplitude.
Since the BSE is solved by reformulation as an eigenvalue problem, see chapter 5.1, the
eigenvector, identified with the amplitude, is by construction unique only up to a nor-

malization constant. Starting from eq. (3.1.1) the equation can be reformulated as

GGy - K|G =G. (3.1.7)

Upon separation into pole contributions and regular terms, see Eq. (3.1.2), the residues
on both sides can be equated. Subsequently exploiting the independence of the scattering

kernel K on the momentum P, the normalization condition reads [48]
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4
dP?

A
[TT/q (g, K)S(q +nP)I(q, K)S(—qu(l—n)P))KQ:MZ] =1

(3.1.8)

P2=—M2,

Because the amplitudes contain normalized color and flavor matrices, the trace has to
be taken in Dirac space only. Due to symmetrization reasons (two quarks instead of a
quark-antiquark pair), the norm integral picks up a factor % when in the case of diquarks.
Furthermore, the indices of the amplitudes and propagators must be brought into the
right order before taking the trace. In the case of the diquark norm integral, one of the
quarks has the opposite direction in comparison to the meson case, see Eq. (4.2.9). This
surmounts in the replacement of the corresponding propagator S(—q_) — ST (q_), see

also Eq. (4.3.2). An equivalent way to normalize the BSE amplitude is given in [49]:

|

(‘W‘(Pz))yl Lorro (3.1.9)

dpP?

P2=—M?2

Here, the ’... 7 stand for the trace on the left-hand side in Eq. (3.1.8) and A corresponds
to the eigenvalue obtained from the BSE for a P? in the neighborhood of bound-state
mass. This prescription has the advantage of being independent of the kernel, regardless

of its dependence on the momentum P.

3.2 Structure of the bound-state amplitudes

In principle, the pseudo-scalar meson BSE is fully determined upon knowledge of the
dressed quark propagator, the (ladder) kernel and a normalization prescription. What
remains is the specification of the structure of the amplitudes. A two-body bound state
amplitude of (pseudo)-scalar nature has no uncontracted Lorentz index and depends on
two momenta (g, P) and thus exhibits a decomposition into the following four Dirac

basis elements 7; [50]:

e {1, P.¢,[P. 4]}, i€{1,2,3,4}. (3.2.1)

The solution strategy for the BSE uses a projection onto this four amplitudes. Thus an
orthogonal basis is highly favorable and can be constructed by using ¢ . instead of ¢.

The subscript stands for the transverse projection of ¢ with respect to P. Additional
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to an orthogonalization, a normalization of the basis is also carried out for convenience.

This yields the following set of basis elements:

. P2 (4 PPy P4
o F) e {ﬂ’ VP 21— ) (ﬂ pzﬁz) . )\/17\/(7} (322)

The dressing functions of the basis elements are denoted as E(q?, P?,z2), F(q?, P2, z),
G(q?, P?,2), H(¢? P2, z) or sometimes as fi(q?, P?,z). The index i and the characters
{E,F,G,H} denote the dressing functions in the same order as the basis elements in
Eq. (3.2.2). The angular variable z is defined by

q-P
Zi= . 3.2.3
T (323)
In general, the set above could be multiplied by a ~5 matrix, effectively doubling the
number of basis elements. In order to reduce the number of basis elements, the quantum
numbers of the pseudo-scalar mesons, namely parity and charge conjugation, have to be
taken into account.

A meson amplitude T'(gq, P) transforms under parity transformation as follows:

I'(q,P) = —v'T (g, P)y". (3.2.4)

The minus corresponds to negative parity and the tilded momenta have their spacial
coordinates reflected. By inspection it can be seen that the basis elements have a parity
of +1. A remedy of this behavior is an attachment of an 5 matrix in front of the
basis elements, see Eq. (3.3.1), thus reducing the number of Dirac basis elements to four
(again).

The charge conjugated meson and diquark amplitudes are defined as in [38]

[(q,P) :=CrT(—q,—P)C?. (3.2.5)

The operators C = 7492 and CT = —C denote the charge conjugation matrices. With

this definition, invariance under charge conjugation is equivalent to

Tr(g, P) = Tulg, —P). (3.2.6)

Using the charge conjugation transformation properties of the v matrices [25], it is easily

shown that the basis elements in Eq. (3.2.2) are positive under charge conjugation. This

22



implies that the dressing functions have to be even in powers of z.

A certain type of ladder truncated BSE shows an O(4) symmetry which gives rise to
the expansion of the lowest lying angular momentum state in Chebyshev polynomials of
the second kind [51]. This property renders the Chebyshev polynomials a suitable basis
for an expansion of the BSE amplitude’s angular part, too. Usually a few Chebyshev
polynomials are sufficient to obtain a good description of pseudo-scalar mesons. The
benefit of the expansion method is a reduction of the numerical effort because only a
discretization in ¢ is necessary instead of a discretization in ¢ and z. In [33] a comparison
between the expansion and the discretization method is carried out and verifies the rapid
conversion of the Chebyshev expansion.

The expansion in even Chebyshev polynomials is also applicable for the diquark. That
can be seen from the Pauli principle: the interchange of both quarks is equivalent to a

transposition of the diquark amplitude and a reflection of the relative momentum vector:

FD(va) = 7F%(*q’ P) (327)

This relation can be met when using ~57;(¢q, P)C as Dirac structure of the diquark

amplitude I'p and implicitly assuming that the dressing functions are even in z:

—I7(—q,P) = —=C"(v57(—q, P))"CCT = —457;(q, P)CT = v57;(q, P)C =
T'n(g, P) = —TH(—q, P) (3.2.8)

Additionally, it is assumed that the combined flavor and color part is symmetric under
quark exchange.
Taking the efficiency in the meson case as a guideline, the expansion in Chebyshev

polynomials is also employed for the tetraquark BSE amplitude.

3.3 Meson amplitudes

Following the notation of [38], the meson amplitudes can be written as

4
: 0aB
Car(p, Plap 1= 3 3 £la* P Ti(z) {ivmla, P Yoo @ 5 @75, (3.3.1)
=1 k
The color-singlet matrix is chosen so that % = 1 holds. The flavor matrices r
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correspond to the isospin-triplet states 7+, 7, 70 and are given by

1 1 1
rt = 5(01 +ioe), 1 = 5(01 —ioy), 10 = 5037 (3.3.2)
respectively, where the o; denote the Pauli matrices. The flavor/isospin matrices are
orthogonal and normalized Tr[r¢r/] = d.; as well. The function 7}(z) denotes the Che-

byshev polynomial of the second kind.

B,b, B B,b, B
P — P
e = Tar( Psa . Tar(a Plag = o Mg} <
a,a, A a,a,A .
(3.3.3)

In the pictorial representation, Greek letters denote Lorentz indices, capital Latin letters
color and small ones flavor indices. The bluish colored semicircles are used to distinguish
the meson amplitudes from the orange-colored diquark amplitudes. The corresponding

meson BSE reads

Db Plas = [ K(@, PlasopS@)snl (0. PlusS(~a-)ur (3.3.4)
—P- 8B ~,C -4 Ve, C
P
g q -...( ...... e
oA 6D w.d, D
P+ q+

Figure 3.1: Meson BSE, see Eq. (3.3.4).

The correct momentum routing is shown in 3.1. Upon tracing the color matrices, the
left-hand side yields 1 due to normalization of the amplitude and the right-hand side
gives a color factor % after taking into account the Gell-Mann matrices in the kernel.
The flavor matrices give a trace of 1 on both sides. The flavor structure does not play a

role at all because the rainbow-ladder kernel is flavor independent.
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3.4 Diquark amplitudes

In section 4 it will be demonstrated that the reduction of the tetraquark bound-state
equation to a two-body system requires not only mesons but also internal diquark de-
grees of freedom. In analogy to the description of baryons in the quark-diquark model
[22, 38], the qq scattering matrix can be approximated by a sum of diquarks: This is
a consequence of the rainbow-ladder truncation: despite being coloredobjects, diquark
poles appear as an artifact of the truncation in the qq scattering matrix and vanish
beyond rainbow-ladder [52]. Nevertheless, the importance of diquarks as internal bin-
ding structures in tetraquarks may persist even in a more general setup. For the present
purpose a restriction to the scalar diquark only is employed.

The quantum numbers of the lowest-lying scalar diquark are J¥ = 0% with the color
structure of an antisymmetric color anti-triplet. The structure that fulfills this symmetry
is the fully antisymmetric tensor espp, where A, B denote the colors of the quarks and
E the color of the amplitude. Because of the Pauli principle, the flavor /isospin structure
has to be antisymmetric, see Eq. (3.2.8) . This is achieved by the antisymmetric isospin
singlet matrix s? = %iag.

The replacement of the antiquark with a quark is expressed by insertion of a C matrix.

The amplitude can then be written as

4
. €ABE
To(p, Plag = > _ > F(a* P)T(2){in57k(q, P)Clas @ A ® 89 (3.4.1)
I=1 k
As in the meson case, the isospin and color matrices are chosen to be normalized upon
tracing. The corresponding rainbow-ladder BSE looks almost the same as in the meson

case, except for the change of the antiquark to a quark, see Fig. 3.2.

L(p, P)ap = /K(q,p, P)as 55 (a4 )5 (0 P) ST (4 )i (3.4.2)

The equations look even more alike when multiplying the BSE with C” from the right
and using CT ST (q)C = S(—q) on the right-hand side and CCT = 1 on the left-hand side.
The only difference between the pseudo-scalar meson BSE and the scalar diquark BSE
is the different color trace that leads to an extra prefactor of % on the right-hand side of
the diquark BSE.

The conventions for the diquark and anti-diquark amplitudes read
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P — e.E = q _D €.E
a,a, A I

oA 6D Jod, D

P+ q+

Figure 3.2: Diquark BSE, see Eq. (3.4.3).

B,b,B B,b,B
P — P
e, F =l q :PD((],P),Ba 7 FD(Q,P)a,BZ q — e, B
o, a, A a,a, A
5,b,B 8,b,B
P = P
¢, Bl © =Tp(~4¢,P)ga, Tn(~0.Plag = .
a,a,A O[7CL,A .

(3.4.3)

The second row corresponds to the antidiquark. The relation to the previously defined
diquark amplitudes can be derived as follows.

Starting from the upper right amplitude, the lower right can be derived by changing
both quarks to antiquarks which is done by insertion of C(T) matrices to the left and
right side of I'p:

Tap(g: Plag = (CTp(g,—P)CT)ap = (3.4.4)
(€75 (g, ~P)C) g "2 Tp(~q, )5, = Tp(—4, P)ag. (3.4.5)

T'ap(q, —P) is the antidiquark amplitude and P is negative because the external mo-
mentum points to the right. When carrying out the charge conjugation, the following

relations hold:
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B AB

< §4B
Tar(g, P)ga = {75 T (g, P)}ﬁaﬁnﬂ (3.4.6)
_ — eBact
FD(Qa P),Boz = {CT75 r (%P)},Baﬁsga .

The arrowed amplitudes denote that all signs except for the 1 amplitude are switched to

(3.4.7)

minus. The Greek letters on the left-hand side collect the Dirac, flavor and color indices
shown on the right-hand side. Because an expansion in even Chebyshev polynomials is

applied, the dressing functions stay the same under sign change of the momenta (g, P).

3.5 Structure of offshell diquark and meson amplitudes

The kernel of the tetraquark BSE contains diquark and meson amplitudes which were
calculated from their homogeneous BSE. Unfortunately, the incoming/outgoing momen-
ta of these amplitudes are needed away from the mass-shell whereon the BSE of the
meson/diquark was solved. Instead of solving an inhomogeneous BSE for the meson [43]
that in principle can resolve properties of the amplitude for arbitrary momenta [53], a
different route is taken [54, 20, 38| that utilizes the already calculated onshell solution.
The basic idea behind this approach is the assumption that meson and diquark ampli-
tude are dominated by the ivys-part, while other contributions are suppressed for high
momenta P?. This corresponds to a point-like diquark and meson in the UV region
of P? and is achieved by attachment of a suppressing function g(z) to the subleading
amplitudes. To amend a possible kinematically singular behavior for P? = 0, another
function h(z) is multiplied to all instances of P or ¢ - P guaranteeing a v/P behavior
around the mass-shell.

With the definition of the kinematical variable

P2
T = , 3.5.1
Mo (3.5.1)
the functions read
g(0) = (@ +2)7", (3.5.2)
T

h = — . .D.

(x) 7 P (3.5.3)
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Both functions evaluated on the mass-shell give h(1) = g(1) = 1 and therefore are not
changing the onshell properties. One assumes the dressing functions being unaltered in
the offshell region.

The problem of |z| = |G- P| > 1 for offshell P2, rendering the Chebyshev expansion in
a strict way not applicable, can be traced back to P? < 0 shifting 2z into the complex
plane and outside of the convergence region [—1, 1] of the Chebyshev polynomials. Due
to restrictions in the singularity structure of the kernel, with mainly the meson propaga-
tor being the culprit, the tetraquark BSE is solved for positive momenta P? only. This
confines z to the interval [—1, 1] and legitimates a Chebyshev expansion.

In general the problem of complex z can be amended by discarding all Chebyshev momen-
ta but the Oth order. Another approach is to apply the Chebyshev expansion regardless
of the convergence radius if z is only “slightly“ out of bounds. With these approximati-
ons, the diquark and meson amplitudes are determined in the whole kinematical region
used to solve the tetraquark BSE. Due to the smallness of the higher Chebyshev mo-
ments, and the increase in calculation time, all Chebyshev moments but the Oth order

were discarded.

3.6 Diquark and meson propagators

Besides the calculation of the offshell meson and diquark amplitudes appearing in the
tetraquark DSE, the consistent offshell description of the last section can be used to
improve the naive ansatz for the meson and diquark propagators appearing in the te-

traquark BSE. The naive (bare) meson and diquark propagator reads

1
DM D= 5 "5 -
NV .

(3.6.1)

To improve the propagator the procedure found in [38] is employed. The starting point

is Dyson’s equation for the (two-body) T-matrix that reads:

TG, = KAa, (1 n T(2>G0> . (3.6.2)

T®@ denotes the two-body T-matrix, Gy = 5SS is the product of two (dressed) quark
propagators, and K2 represents the rainbow-ladder kernel which was already used in
the meson BSE.

To approximate the T-matrix, it is assumed that the main contribution stems from the

parts that contain the poles of the bound state. In this pole approximation, the T-matrix
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is written as T'= I' DT, where the I represents the offshell meson or diquark amplitudes
and the bared quantities denote charge conjugated amplitudes. The D corresponds to

the diquark or meson propagator. After employing the definitions
1 =

1 =

the (inverse) diquark and meson propagator can be extracted from Dyson’s equation

and has the following form:

2

D~ Y(P?) = M? <7; - n) . (3.6.5)

To circumvent an explicit calculation of the two-loop diagram k, an ansatz also found in
[38] is used to model the propagator. The function 7 is basically the same as the norm
integral used in the calculation of the meson BSE, but the external momentum is set to
an offshell value. Using the offshell description for the amplitudes, this function is easily

calculable. The final inverse meson and diquark propagator is then given by

DY P?) = M? (—n(z) + a + BF(x)). (3.6.6)

The functions «, 5 and F(x) approximate the two-loop contribution "—; and follow the

ansatz used in [38]:

F(z) = i (1 + (xf2)3> , (3.6.7)
a:=n(-1), (3.6.8)
Bi=1+ %n(a:)’_l. (3.6.9)

A feature of this description are non-vanishing propagators for P2 — co. This behavior
follows from the Dyson equation for the T-matrix in Eq. (3.6.2), where the kernel diagram
dominates, whereas the remainder vanishes due to the vanishing quark propagator. That
guarantees the T-matrix in the pole dominance approximation (T' =T DT) to stay non-

zero for P2 — co.
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Dirac amplitudes T. moments ‘ my [GeV] ‘ mp [GeV] ‘

1 1 0.119 0.718
2 1 0.138 0.801
3 3 0.142 0.816
4 3 0.138 0.799
4 4 0.137 0.800

Table 3.1: Results for the mass of the meson (m,) and diquark (mp). The experimental value

for m, is 138.036 MeV (averaged over the isospin triplet) [10].

3.7 Results for the meson and diquark BSEs

With all ingredients at hand to calculate the meson and diquark amplitudes, the solutions
for the onshell momenta are presented. Because the meson and diquark dressing functions
are assumed to be the same for offshell and onshell momenta, the knowledge of the onshell
dressing functions is sufficient to calculate the offshell amplitudes.

In Fig. 3.3 the results for the onshell pion and diquark amplitudes in the two leading
Chebyshev polynomials are shown. As expected, the amplitudes H and G are essentially
zero for p?> = 0 because both contain a p-dependent part. The dominant amplitude,
by almost one order of magnitude, is the one proportional to 1, followed by the one
proportional to P for both diquark and pion. Later on, this is used as motivation to
solve the tetraquark BSE via restriction to the two dominant amplitudes (E,F) and Oth
order Chebyshev.

An interesting feature of the meson and diquark amplitude is a similar scaling behavi-
or as the one of the quark mass function: the Oth Chebyshev moment of the E and F
amplitudes saturate in the infrared and plummet around Agcp. This behavior is also
apparent in the remaining amplitudes and Chebyshev moments. In the case of the pion,
it can be shown analytically that in the chiral limes, the dressing function E(q?,0) is
proportional to the quark mass function M (q¢?) [43]. The sensitivity of the meson and
diquark mass to the inclusion of the (G, H) amplitudes and higher Chebyshev momenta
is rather small, as can be seen in Tab. 6.1.

To evaluate the amplitudes for arbitrary momenta in the tetraquark BSE, a spline in-
terpolation is used. Because especially the E amplitude with the distinct drop around
Agcp shows oscillations when applying a spline interpolation directly to the amplitude,

the exponent of the amplitudes are interpolated.
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Figure 3.3: Normalized amplitudes of the pseudo-scalar meson (upper row) and scalar diquark
(lower row). The left panels show the Oth Chebyshev moments and the right panels the 2nd
moments. All odd Chebyshev moments are zero by charge conjugation symmetry. Higher order
Chebyshev contributions are even smaller than the 2nd and are not displayed. In the calculation

moments up to 6th order were included.
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4 Tetraquarks

4.1 Four-body equations

The object that describes a four-quark state is the 8-point Green function. If a tetraquark
exists, it would appear as a bound-state pole in that Green function. In order to derive a
typical Bethe-Salpeter equation for the tetraquark, one starts from the Dyson equation

for G which reads symbolically:

G =G+ GoKWa. (4.1.1)

K@ represents a suitable four-body scattering kernel and Gy is the product of four (dres-
sed) quark propagators. The multiplications in Eq. (4.1.1) represent four-dimensional
integrations over the appropriate number of momenta.

A decomposition of K® can be seen in Fig. 4.1 [55] where the gray blobs and a implicitly
assumed permutation through all the quark lines represent 2PI diagrams. The red blobs
indicate three particle irreducible (3PI) and four particle irreducible (4PI) diagrams and

are neglected in the following.

KW= — - + - - +4.7+

(] 0]

Figure 4.1: four-body Green function (8-point function)

Only considering two-body interactions, one could naively set
4) _ (2)
KW =>"K; (4.1.2)
i?j
where i, j label the respective quark lines and the superscript indicates that only 2PI

contributions are considered. Upon expanding Eq. (4.1.1) it can be immediately that

this approach would lead to overcounting because the products of the form Ki5K34 and
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K34K15 are equal, assuming that the kernel commute. To circumvent this, a term of the

form

4 2 2
KS) = -KPKL (4.1.3)

has to be added, with the indices i, j, k,l € {1,2,3,4}. These indices are mutually diffe-

rent. This yields a scattering kernel of the form

0 = R+ 12 -
KGR - Ky K
K Ky - KK
1= Klogq + Kizpy + Klyos- (4.1.4)

Starting with Eq. (4.1.1) and dividing G into a sum of a regular part and singular part,
a homogeneous Bethe-Salpeter equation for the bound-state amplitude ¥ can be derived
[56]:

U =KWYGy0. (4.1.5)

With the same ingredients as used in the meson BSE (namely, the dressed quark propa-
gator from its DSE with the Maris-Tandy effective gluon), this equation is in principle
solvable, but technically and numerically demanding. Such a treatment is beyond the
scope of this work, hence a different route is taken.

To reduce the problem to a more tractable one, the connection between the kernel and
the T-matrix is exploited, cf. Ref. [55]:

Tar =K, + Ta, Go Ky, = (4.1.6)
7;2G0 :KZLQG() + 7;2G0KL/12G0 = (4.1.7)
Tas =K., + Tay K,,; (4.1.8)

as €{(12)(34), (13)(24), (14)(23)}.

Ta, denotes the T-matrix of the four-body system with all interactions switched off except
between the pair az. For example in 7(19)(34) there are connected diagrams between (12)
and (34) individually but none between both pairs. To compactify the notation, the

multi-index as was introduced. If not stated otherwise, any primed operator, amplitude
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etc. with an index € {1,2,3} corresponds to the appropriate multi-index given in the
definition of as above. The accent tilde denotes quantities that were folded with G from
the right. In a first step and analogous to the 3-body case, Eq. (4.1.5) is reformulated in

terms of the so-called Faddeev amplitudes, where the replacement

KV = ¥ (4.1.9)
is employed. Afterwards, ¥ is multiplied in a functional sense to the left-hand side and

right-hand side of Eq. (4.1.8). With the definition of the Faddeev amplitudes given above,

the following relation between amplitudes and 7,, can be established:

U =T (Y 4+0y), i#j#k (4.1.10)

Except for the omission of the genuine 4- and 3-body parts, this equation is still identical
to Eq. (4.1.9) with only the kernel replaced by the (unknown) T-matrix.

In principle the, T-matrix can be calculated by solving a complicated set of operator
equations [55]. Because the solutions of these operator equations are out of scope of this
work, the following two ansétze are used, justified by the assumption that 7, should be
dominated by the two-body T-matrices. In analogy to the form of the kernel (4.1.4), the

T-matrix in setup (1) is chosen to have the same structural form

2 2
Ty = ~TOTS) + T2, + Ty (4.1.11)

Setup (2), on the other hand, omits the single T-matrices but keeps the sign for the

T-matrix product:

Taw i= —TOT. (4.1.12)

The consequences of a different sign is discussed in the results chapter.

The second setup was chosen from the more naive point of view that the tetraquark is
built up by a diquark-(anti)diquark or meson pair, and so the tetraquark T-matrix should
be dominated by the product of the two-body T-matrices. In analogy to the nucleon
Faddeev equation and its reduction to a quark-diquark picture [38], it is assumed that

the two-body T-matrix, containing a bound state, is dominated by the pole contribution:

17 (p, P) = Tj(p, P)D(P*)Ty;(p, P). (4.1.13)

I" encodes the respective meson or diquark amplitude and D the corresponding propa-

gator. Quantities with a bar indicate charge conjugated amplitudes. To finally arrive
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Figure 4.2: Tetraquark BSE in the meson-meson/antidiquark-diquark picture.

at a two-body equation, an ansatz is applied that relies on the assumption that the
internal momenta dependence of W, can be separated into a product. Following the
meson-meson/antidiquark-diquark picture, the separated parts are identified with two
meson or a diquark and antidiquark offshell amplitude. This separability ansatz plugged
into the Faddeev amplitude yields

Ve, o= T (a1, Q1) D) (QT (i (42, Q2) Dijyy (Q2) Doy (g, P)™. (4.1.14)

The index ag denotes the three Faddeev amplitudes and (a,b) contain all flavor and
color indices. For ay = (12)(34), I" stands for diquark-antidiquark amplitudes and D
for the diquark propagator; in the case of ag € {(13)(24), (14)(23)} the involved objects
are of mesonic nature. The separated internal momenta are (q1,¢q2) and correspond to
the relative momenta of the (anti)diquarks and mesons. The momenta (@1, Q2) can take
arbitrary values and are the reason why an offshell description for the meosn and diquark
amplitudes is necessary.

® itself is a flavor and color singlet and has the structure of scalar with quantum number
JP = 0F. A detailed description of the flavor, color and momentum structure can be
found in chapter 4.3.

Using the offshell ansatz for the meson and diquark amplitudes introduced in chapter
3.5 and the dressed quark propagator from its DSE in rainbow-ladder truncation, the
tetraquark BSE in Fig. 4.2 is fully determined up to a normalization constant. The

normalization of the onshell tetraquarks can be derived in analogy to Eq. (3.1.8) and
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(3.1.9). A diagrammatic derivation of the equation in Fig. 4.2 is given in the following

section.
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4.2 Diagrammatic derivation

To derive the tetraquark BSE, the Faddeev amplitudes and the two-body T-matrices are
depicted in a graphical form. This procedure improves the readability of the involved
equations and simplifies the derivation.

Starting with Eq. (4.1.10) and Eq. (4.1.11), the following graphical representations are
used for the tetraquark amplitudes and the two-body T-matrices:

(4.2.1)

Ay

(4.2.2)

The color of the blobs indicates the type of T-matrix. The orange ones stand for a
(anti)quark-(anti)quark correlation and the blue ones for a quark-antiquark correlation.
Light blue semi-circles represent a diquark-antidiquark tetraquark and green ones the
meson-meson amplitudes. To indicate which quarks are interacting which each other,
the quark lines in the T-matrix are aligned in the same order as in the tetraquark
amplitude. The wiggly lines in Eq. (4.2.2) do not represent a simple gluon exchange,
as could be inferred on a first glance, but incorporate the full interaction between the
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