# Getting started with ReadXplorer

This guide is intended for beginners using ReadXplorer for the first time. It will give a short introduction about the main features of the software and how they can be used. Please be aware that this guide is not intended to replace the complete manual.

# Content

| 1.  | What is ReadXplorer?                                               | 2  |
|-----|--------------------------------------------------------------------|----|
| 2.  | When to use ReadXplorer?                                           | 2  |
| 3.  | What input data is needed?                                         | 2  |
| 4.  | Which installer should I choose?                                   | 3  |
| 5.  | The first run                                                      | 5  |
| 6.  | The ReadXplorer VirtualBox Image                                   | 23 |
| 7.  | How can I use my own data with ReadXplorer?                        | 28 |
| 8.  | How can I increase the RAM limit?                                  | 30 |
| 9.  | I am running out of space, can I delete some of the mapping files? | 31 |
| 10. | No read data is shown!                                             | 31 |

# 1. What is ReadXplorer?

ReadXplorer is a viewer and automatic analysis platform for Next-Generation Sequencing data. It can be used to display a reference genome sequence with genomic features (annotations) alongside with different tracks that represent read data that was mapped against the reference. In contrast to most other viewers, ReadXplorer also offers a wide range of analysis functions that can be applied to the visualized data.

## 2. When to use ReadXplorer?

The Software can be used with every data-set created by mapping read data against a reference sequence. This can be for example a resequencing experiment or an RNA sequencing run.

## 3. What input data is needed?

The software has to be provided with both a reference sequence and the corresponding read mapping data.

The reference sequence can be provided in Genbank, EMBL or Fasta format. If the Fasta format is used corresponding genomic features (annotations) can be added in GTF/GFF2 or GFF3 format. It is advisable to import genomic features because most analysis functions only work properly when they are present. Nevertheless, ReadXplorer will also accept reference sequences without any annotation.

The mapped reads must be provided in sam/bam format. These files must have been created by mapping the read data against the exact same reference as the one imported into ReadXplorer. This is extremely important: during import the mapping files will be assigned to a reference. If the reference noted down in the sam/bam file does not match the reference sequence it is assigned to no reads will be visible! You are free to use the mapping tool you prefer (e.g. Bowtie, bwa, Tophat) as long as the output is in standard conform sam/bam format<sup>1</sup>. Mapping data imported is called a *track* within the software. ReadXplorer is primarily designed for Illumina short-read data (single- or paired-end) but is not limited to it. As long as the read data can be mapped against a reference and the output is in sam/bam format ReadXplorer can handle the data. Of course not all analysis functions offered by ReadXplorer are sensible to use with every kind of input data. However, the software is not designed to patronize its user unless it is inevitable and hence all analysis functions can be used with any read mapping data-set.

<sup>&</sup>lt;sup>1</sup> https://samtools.github.io/hts-specs/SAMv1.pdf

## 4. Which installer should I choose?

The ReadXplorer homepage provides various installers suitable for different setup scenarios:

## Zip-x86/64-AllSystems

This is actually no installer but simply a zip file containing the ReadXplorer software which can easily be used on all operating systems. It can be unzipped and ReadXplorer can be started by executing one of the binaries in the "bin" directory. There are different binaries for Windows and Linux in this directory. You must install an appropriate version of Java on your own before you can start the program.

## Exe-Windows-i386-incl Java

This is a standalone installer for Windows x86. It requires at least Windows 7. The installer comes with its own Java version and hence no Java needs to be pre-installed on your system. Java will only be installed for ReadXplorer. This means that if you already have a Java installation it will not be altered. This installer comes with the 32bit version of Java. It will run on 32bit Windows systems but you can only use a limited amount of RAM (heap-size):

The maximum theoretical heap limit for the 32-bit JVM is 4G. Due to various additional constraints such as available swap, kernel address space usage, memory fragmentation, and VM overhead, in practice the limit can be much lower. On most modern 32-bit Windows systems the maximum heap size will range from 1.4G to 1.6G. On 32-bit Solaris kernels the address space is limited to 2G. On 64-bit operating systems running the 32-bit VM, the max heap size can be higher, approaching 4G on many Solaris systems.<sup>2</sup>

### Exe-Windows-x64-incl Java

This is a standalone installer for Windows x64. It requires at least Windows 7. The installer comes with its own Java version and hence no Java needs to be pre-installed on your system. Java will only be installed for ReadXplorer. This means that if you already have a Java installation it will not be altered. This installer comes with the 64bit version of Java and hence it can only be installed on a 64bit Windows. **This is the recommended way of installing ReadXplorer on a Windows computer.** 

## Linux-i386-incl Java

This is a standalone installer for Linux. It should work on all major Linux distribution although there are so many different distributions available that we cannot guarantee that. We test the Linux installers on Fedora 23. The installer comes with its own Java version and hence no Java needs to be pre-installed on your system. Java will only be installed for ReadXplorer. This means that if you already have a Java installation it will not be altered. This installer comes with the 32bit version of Java. It will run on 32bit Linux systems but you can only use a limited amount of RAM (heap-size):

The maximum theoretical heap limit for the 32-bit JVM is 4G. Due to various additional constraints such as available swap, kernel address space usage, memory fragmentation, and VM overhead, in practice the limit can be much lower. On most modern 32-bit Windows systems the maximum heap size will range from 1.4G to 1.6G. On 32-bit Solaris kernels the address space is limited to 2G. On 64-bit operating

<sup>&</sup>lt;sup>2</sup> http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#gc\_heap\_32bit

systems running the 32-bit VM, the max heap size can be higher, approaching 4G on many Solaris systems.  $\!\!\!^2$ 

The installer is compressed. Once downloaded open a terminal and navigate to the download folder. Decompress the installer:

gunzip readxplorer 2.2-linux-i386.sh.gz

Afterwards you can launch the extracted sh file:

> sh ./readxplorer 2.2-linux-i386.sh

#### Linux-x64-incl Java

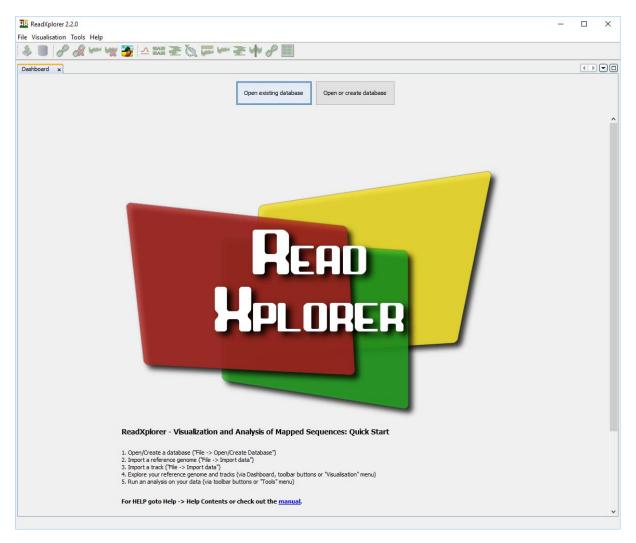
This is a standalone installer for Linux. It should work on all major Linux distribution although there are so many different distributions available that we cannot guarantee that. We test the Linux installers on Fedora 23. The installer comes with its own Java version and hence no Java needs to be pre-installed on your system. Java will only be installed for ReadXplorer. This means that if you already have a Java installation it will not be altered. This installer comes with the 64bit version of Java and will only run on 64bit Linux systems. **This is the recommended way of installing ReadXplorer on a Linux computer.** 

The installer is compressed. Once downloaded open a terminal and navigate to the download folder. Decompress the installer:

gunzip readxplorer\_2.2-linux-x64.sh.gz

Afterwards you can launch the extracted sh file:

> sh ./readxplorer 2.2-linux-x64.sh


#### DMG-Mac-incl Java

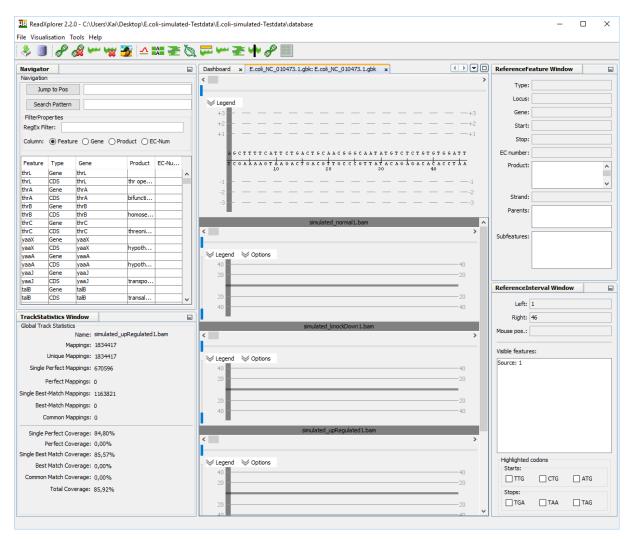
This is a disk image file for OS X. Like most Mac programs it does not have a real installer. The DMG is simply opened and then the application is installed by "drag and dropping" it to the "Application" folder. Java is included in the ReadXplorer application and hence no Java needs to be pre-installed, an existing Java Version will not be altered. Additionally, GNU R (needed for the differential expression analysis) is included in this installer. A GNU R instance is automatically launched when you start ReadXplorer and automatically stopped when you close ReadXplorer. We utilize RServe listening on port 6311 to make GNU R accessible from within Java. Please make sure that no other RServe instance is running when you launch ReadXplorer as this might interfere with the bundled GNU R. If you never heard of RServe, don't worry, you will most probably be safe to launch ReadXplorer on OS X computer.

# 5. The first run

We recommend that you start with the test data-set provided on our homepage<sup>3</sup>. This data-set contains simulated RNA-Seq data from *E.coli*. Once downloaded you have to unzip it first.

When you start ReadXplorer for the first time it will look like this:




 $<sup>\</sup>label{eq:states} {}^3 \, ftp://ftp.cebitec.uni-bielefeld.de/pub/readxplorer\_repo/E.coli-simulated-Testdata.zip$ 

Select "Open existing database", navigate to the folder where you unzipped the test-data set and open the database file (called "database" in this case). The view will now show you the different references and associated tracks in the database:

| Nodes                                        | Close this and open an     |                                        |                 | •••              |
|----------------------------------------------|----------------------------|----------------------------------------|-----------------|------------------|
| Dashboard x                                  |                            |                                        |                 |                  |
|                                              | Close this and open an     |                                        |                 |                  |
|                                              | Close this and open an     |                                        |                 |                  |
|                                              |                            | other database Open or create database |                 |                  |
| 1- d                                         |                            |                                        |                 |                  |
| lodes                                        | Description                | Import Date                            | Mark for action |                  |
| E.coli_NC_010473.1.gbk                       | E.coli_NC_010473.1.gbk     | 06.05.2016                             |                 |                  |
| Track #1                                     | simulated_normal1.bam      | 06.05.2016                             | _               |                  |
| Track #2                                     | simulated_normal2.bam      | 06.05.2016                             |                 |                  |
| Track #3                                     | simulated_normal3.bam      | 06.05.2016                             |                 |                  |
| Track #4                                     | simulated_normal4.bam      | 06.05.2016                             |                 |                  |
| Track #5                                     | simulated_knockDown1.bam   | 06.05.2016                             |                 |                  |
| mack #6                                      | simulated_knockDown2.bam   | 06.05.2016                             |                 |                  |
| Track #7                                     | simulated_knockDown3.bam   | 06.05.2016                             |                 |                  |
| VTrack #8                                    | simulated_knockDown4.bam   | 06.05.2016                             |                 |                  |
| Track #9                                     | simulated_upRegulated1.bam | 06.05.2016                             |                 |                  |
| Track #10                                    | simulated_upRegulated2.bam | 06.05.2016                             |                 |                  |
| Track #11                                    | simulated_upRegulated3.bam | 06.05.2016                             |                 |                  |
| Track #12                                    | simulated_upRegulated4.bam | 06.05.2016                             |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
|                                              |                            |                                        |                 |                  |
| Export statistics of all tracks from the DB: |                            |                                        |                 | Select all nodes |

A database can hold multiple references and each reference can have multiple tracks associated to it. In this case, the database contains one reference and twelve associated tracks. Four tracks belong together; they are simulated replicates of different conditions one might find during an RNA-Seq experiment. All tracks with "normal" in their name represent RNA-Seq data generated under standard conditions (e.g. *E. coli* grown on normal media, at room temperature). In contrast the tracks with "knockDown" or "upRegulated" in their name contain data one might find when generating RNA-Seq data from non-standard conditions (e.g. different media used, heat stress etc.). In these tracks some genes are down or up regulated in comparison to the normal data-set. You can mark the tracks and open them using the "open selected items in new tab" button. We will mark and open one track of each condition.

#### The following tab will open:



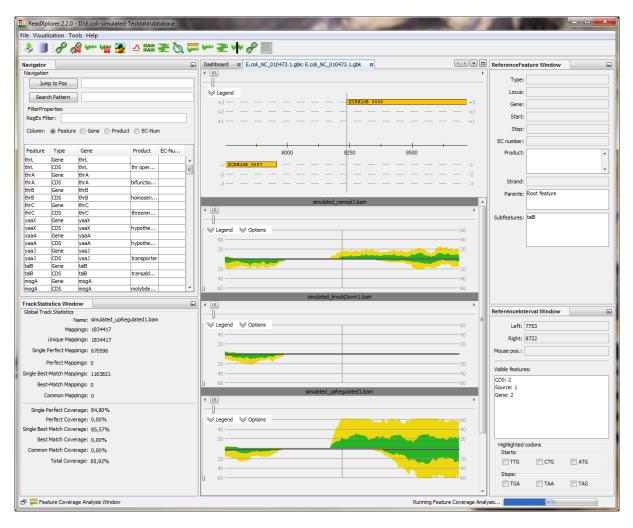
This is ReadXplorer's main viewing window. The different elements are described in the manual. Aside from the visualization ReadXplorer offers various analysis tools. As a first example we will use the "Feature Coverage Analysis" to look for uncovered coding sequences (CDS) in the data-set. All analysis functions are configured by a wizard. You can access all analysis functions from the "Tools" menu.

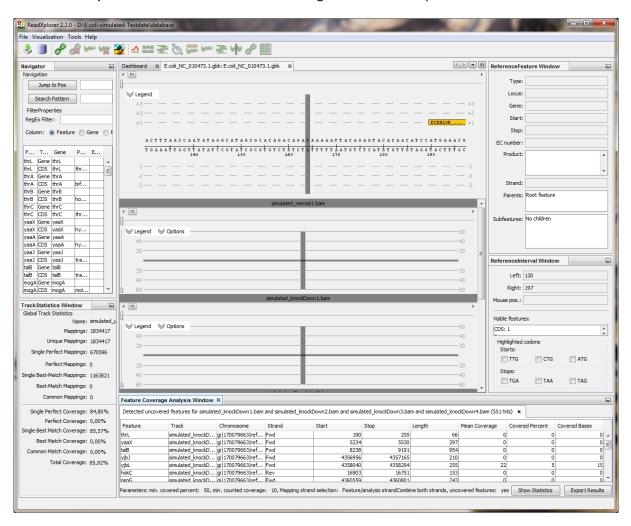
The first wizard panel asks which tracks should be included in the analysis. We select all "knockDown" tracks and additionally check the "Combine selected tracks" checkbox. When this box is checked, ReadXplorer will combine the read information from the selected tracks and treat them as if they were contained in one single track.

| ite | ps                                                      | Track Selection                                 |          |
|-----|---------------------------------------------------------|-------------------------------------------------|----------|
|     | Track Selection                                         | Nodes                                           | Select   |
|     | Feature Coverage Analysis<br>Parameters                 | simulated_normal1.bam                           |          |
|     | Read Classification Selection<br>Feature Type Selection | simulated_normal2.bam                           |          |
|     | Press 'Finish' to start                                 | simulated_normal3.bam                           |          |
|     |                                                         | 🚧 simulated_normal4.bam                         |          |
|     |                                                         | 🛩 simulated_knockDown1.bam                      | <b>V</b> |
|     |                                                         | 🛩 simulated_knockDown2.bam                      |          |
|     |                                                         | 🛩 simulated_knockDown3.bam                      | <b>V</b> |
|     |                                                         | 🚧 simulated_knockDown4.bam                      | <b>V</b> |
|     |                                                         | 🛩 simulated_upRegulated1.bam                    |          |
|     |                                                         | 👐 simulated_upRegulated2.bam                    |          |
|     |                                                         | 👐 simulated_upRegulated3.bam                    |          |
|     |                                                         | 🛩 simulated_upRegulated4.bam                    |          |
|     |                                                         |                                                 |          |
|     |                                                         | Combine selected tracks Select all Deselect all |          |

In the next panel the parameters for the analysis are set. As we want only uncovered CDS we check "Detect uncovered instead of covered features", additionally we decrease the "Min percent covered" value to "50".

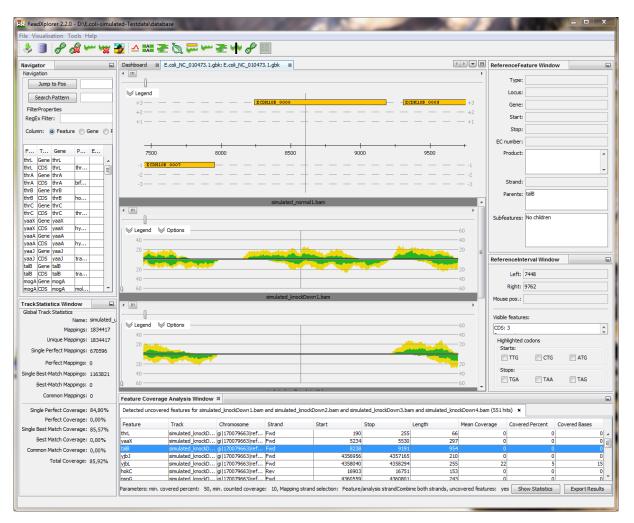
| Steps                                                                                                                                                 | Feature Coverage Analysis Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Track Selection     Feature Coverage     Analysis Parameters     Read Classification Selection     Feature Type Selection     Press 'Finish' to start | The first parameter defines how many percent of a<br>feature have to be covered with at least a coverage<br>larger or equal to the second parameter value to be<br>detected as "covered feature".<br>The checkbox decides whether only the mappings on<br>the strand of a feature are counted, or all mappings<br>within the range of the feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       | Min percent covered         10       Min coverage counting for the percentage         Image: Image of the percentage o |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

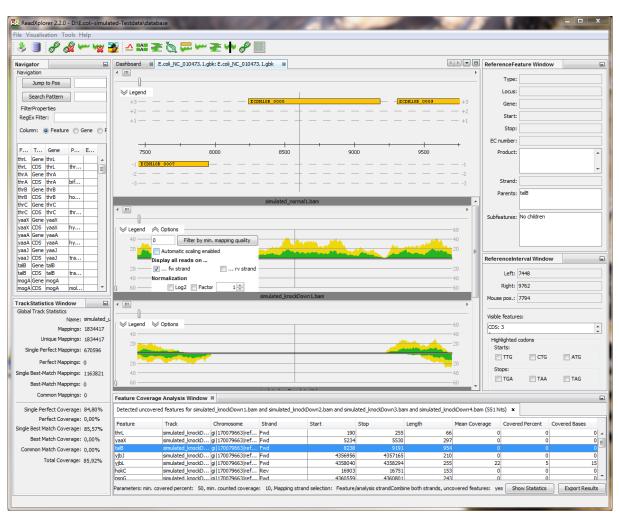

In the next panel we can select which read classes should go into the analysis. Please refer to the manual for a detailed explanation about the different read classes. We also select "Combine both strands". This option is useful for data-sets that are not strand specific, as in such data-sets the reads can map to the forward or reverse strand arbitrarily regardless of their biological origin.


| 🔛 Feature Coverage Analysis Parar                                                                         | neter Wizard                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steps                                                                                                     | Read Classification Selection                                                                                                                                                                                                                                                                                                                    |
| 1. Track Selection                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |
| Feature Coverage Analysis     Parameters     Read Classification     Selection     Feature Type Selection | <ol> <li>Select the mapping classes to include in the analysis (See Help -&gt; Classification for details).<br/>Further decide if only uniquely mapped reads should be included, or all mapped reads.<br/>Note that "Perfect", "Best" and "Common" mapped reads are never unique, thus cannot be selected<br/>together with "unique".</li> </ol> |
| 5. Press 'Finish' to start                                                                                |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           | ✓ Single Perfect Mappings     □ Only uniquely mapped reads                                                                                                                                                                                                                                                                                       |
|                                                                                                           | Perfect Mappings     O Minimum mapping quality     Single Best Match Mappings                                                                                                                                                                                                                                                                    |
|                                                                                                           | Best Match Mappings     Best Match Mappings                                                                                                                                                                                                                                                                                                      |
|                                                                                                           | Common Match Mappings                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | <ol><li>Select if mappings from the feature strand, from the opposite strand or combined from both<br/>strands are used in the analysis.</li></ol>                                                                                                                                                                                               |
|                                                                                                           | Mapping strand selection:                                                                                                                                                                                                                                                                                                                        |
|                                                                                                           | Feature strand (Default)                                                                                                                                                                                                                                                                                                                         |
|                                                                                                           | Opposite strand                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           | Combine both strands                                                                                                                                                                                                                                                                                                                             |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           | <back next=""> Finish Cancel Help</back>                                                                                                                                                                                                                                                                                                         |

In the next step the annotation type the analysis should be applied to must be selected. As we intend to look at CDS we only select the "CDS" feature type. We the finished button is clicked the analysis will start.

| iteps                                                                                                                                                                                         | Feature Type Selection                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <ul> <li>Track Selection</li> <li>Feature Coverage Analysis<br/>Parameters</li> <li>Read Classification Selection</li> <li>Feature Type Selection</li> <li>Press 'Finish' to start</li> </ul> | Feature types that should be included in the analysis:<br>Gene CDS Exon unknown mRNA misc RNA rRNA Repeat unit |
|                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                               |                                                                                                                |


While the analysis is running you can continue using ReadXplorer normally. The status of the analysis is indicated by a progress bar in the lower right corner. You can also start additional analysis tasks and ReadXplorer will process them in parallel.






Once the analysis is finished a new window showing the results will open.

If you select an entry from the results table the viewer component will automatically jump to the start position of the associated annotation.





As the data-set is not strand specific you can adjust the view to show all reads on the fw strand.

This is just one simple example of an integrated analysis function. For the next example we will use the more complex "Differential Gene Expression Analysis", which relies on external tools that are not a native part of ReadXplorer. They need the statistical programming language GNU R to run and you need to set up the connection between ReadXplorer and GNU R once before you can start using the analysis. The setup options for different operating systems are described in the manual in detail. In general you have to visit the GNU R options panel within ReadXplorer at least once. The panel is located under "Tools"  $\rightarrow$  "Options". On Windows we highly recommend that you just select "Download and Install Gnu R". This will automatically install everything that is needed to run the "Differential Gene Expression Analysis" on a windows machine. If you already have GNU R installed: Don't worry, your existing installation will not be altered. For Linux operating systems and OS X you will have to install GNU R and the needed packages on your own as described in the manual. When you have done that go back to the GNU R options panel and set up the connection parameters that match your installation. If you are using a local R installation most of the time it should be sufficient to just change the radio button to "Manual". Once the setup is complete you can start the "Differential Gene Expression Analysis" located in the tools menu. Once again a configuration wizard will collect the necessary information before the analysis is started. In the first panel you have to select the tool you want to use. For this tutorial we select "DESeq2". Please refer to the manual for a short introduction of all the tools offered. Additionally, it is advisable to also read the publication of the tool you want to use.

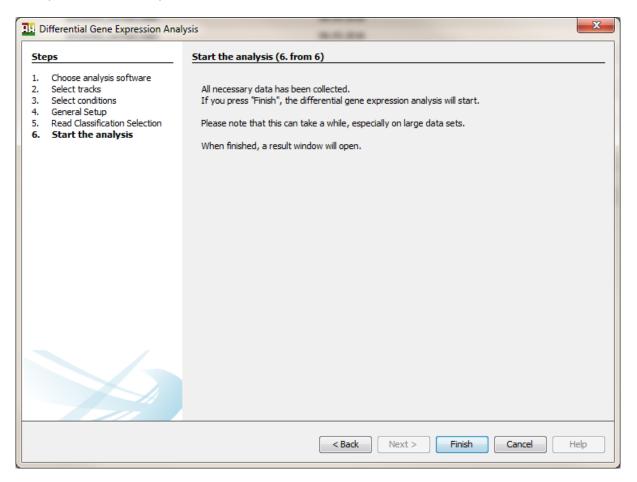
| Differential Gene Expression Ana | lysis                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------|
| Steps                            | Choose analysis software (1. from 7)                                                           |
| 1. Choose analysis software<br>2 | Please choose the analysis tool you want to use for the differential gene expression analysis. |
|                                  |                                                                                                |
|                                  | DESeq2                                                                                         |
|                                  |                                                                                                |
|                                  |                                                                                                |
|                                  | < Back Next > Finish Cancel Help                                                               |

On the next panel select the tracks that should be included in the analysis. This time we select all "normal" and all "knockDown" tracks because we want to compare these to conditions.

| Differential Gene Expression Ana                                                                                                                                                         | lysis                                                                                                                                 | ×    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Steps                                                                                                                                                                                    | Select tracks (2. from 6)                                                                                                             |      |
| <ol> <li>Choose analysis software</li> <li>Select tracks</li> <li>Select conditions</li> <li>General Setup</li> <li>Read Classification Selection</li> <li>Start the analysis</li> </ol> | Please select a reference sequence: E.coli_NC_010473.1.gbk                                                                            |      |
|                                                                                                                                                                                          | Please select the tracks you want to use for the analysis:<br>simulated_normal1.bam<br>simulated_normal2.bam<br>simulated_normal3.bam |      |
|                                                                                                                                                                                          | simulated_normal4.bam<br>simulated_knockDown1.bam<br>simulated_knockDown2.bam<br>simulated_knockDown3.bam<br>simulated_knockDown4.bam |      |
|                                                                                                                                                                                          | simulated_upRegulated1.bam<br>simulated_upRegulated2.bam<br>simulated_upRegulated3.bam<br>simulated_upRegulated4.bam                  |      |
|                                                                                                                                                                                          | < Back Next > Finish Cancel                                                                                                           | Help |

You must assign each selected track to a condition. Obviously, it only makes sense to assign all "normal" tracks to one condition and all "knockDown" tracks to the other.

| Differential Gene Expression Anal                                                                                                                                                        | ysis                          |          | ×                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|
| Steps                                                                                                                                                                                    | Select conditions (3. from 6) |          |                                                                                                                                |
| <ol> <li>Choose analysis software</li> <li>Select tracks</li> <li>Select conditions</li> <li>General Setup</li> <li>Read Classification Selection</li> <li>Start the analysis</li> </ol> | Tracks:                       | -><br><- | Condition one:<br>simulated_normal1.bam<br>simulated_normal2.bam<br>simulated_normal3.bam<br>simulated_normal4.bam             |
|                                                                                                                                                                                          |                               | -><br><- | Condition two:<br>simulated_knockDown1.bam<br>simulated_knockDown2.bam<br>simulated_knockDown3.bam<br>simulated_knockDown4.bam |
|                                                                                                                                                                                          | < Back                        | Next >   | Finish Cancel Help                                                                                                             |


In the next panel the annotations that should be used for the analysis run must be selected. This time we choose "Gene".

| III Differential Gene Expression Ana                                                                                                                                                     | lysis                                                                                                                                                                                     | 23           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Steps                                                                                                                                                                                    | General Setup (4. from 6)                                                                                                                                                                 |              |
| <ol> <li>Choose analysis software</li> <li>Select tracks</li> <li>Select conditions</li> <li>General Setup</li> <li>Read Classification Selection</li> <li>Start the analysis</li> </ol> | Annotation types that should be used for the analysis:<br>Gene<br>CDS<br>Exon<br>unknown<br>mRNA<br>misc RNA<br>rRNA<br>Repeat unit<br>Source<br>tRNA<br>miRNA<br>miRNA<br>non-coding RNA |              |
|                                                                                                                                                                                          | Start offset:<br>0                                                                                                                                                                        | Stop offset: |
|                                                                                                                                                                                          | Save used parameters and results in an R data file for later processing C:\Users\Kai\DiffExpResult.rdata                                                                                  |              |
|                                                                                                                                                                                          | < Back Next > Finish Cancel                                                                                                                                                               | Help         |

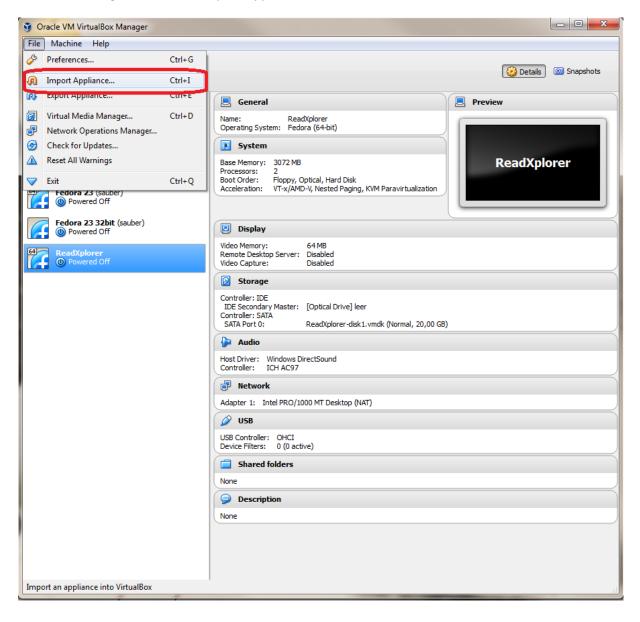
In the "Read classification" panel we change the radio button to "Combine both strands".

| 🛄 Differential Gene Expression Analy                                                                                                                                                         | 5 23                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steps                                                                                                                                                                                        | Read Classification Selection (5. from 6)                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Choose analysis software</li> <li>Select tracks</li> <li>Select conditions</li> <li>General Setup</li> <li>Read Classification<br/>Selection</li> <li>Start the analysis</li> </ol> | <ol> <li>Select the mapping classes to include in the analysis (See Help -&gt; Classification for details).<br/>Further decide if only uniquely mapped reads should be included, or all mapped reads.<br/>Note that "Perfect", "Best" and "Common" mapped reads are never unique, thus cannot be selected<br/>together with "unique".</li> </ol>    |
|                                                                                                                                                                                              | Image: Single Perfect Mappings       Only uniquely mapped reads         Image: Perfect Mappings       Image: Minimum mapping quality         Image: Single Best Match Mappings       Image: Minimum mapping quality         Image: Best Match Mappings       Image: Match Mappings         Image: Common Match Mappings       Image: Match Mappings |
|                                                                                                                                                                                              | <ol><li>Select if mappings from the feature strand, from the opposite strand or combined from both<br/>strands are used in the analysis.</li></ol>                                                                                                                                                                                                  |
|                                                                                                                                                                                              | Mapping strand selection:                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                              | <ul> <li>Feature strand (Default)</li> </ul>                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                              | Opposite strand                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                              | Ombine both strands                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                              | <back next=""> Finish Cancel Help</back>                                                                                                                                                                                                                                                                                                            |

Finally we start the analysis with a click on "Finished".



ReadXplorer will now count the reads for all genes of the reference and all selected tracks and convert them to a format DESeq2 can handle. The progress is indicated once again on the lower right corner.


Once DESeq2 is finished a new interactive panel will open showing the results. If you click on an entry the viewer will automatically bring you to the corresponding position. This offers an easy way to visually inspect the results generated by the analysis tool.

| Visualisation Tool | ) 🛩 🦋 搔 🛆 🛤 🚠 (                        | s = 🛏 🖛 🕪              |                       |                       |                         |                               |
|--------------------|----------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------------------------------|
|                    | 2 Differential Gene Expression Results | *                      |                       |                       |                         | < >                           |
|                    |                                        |                        |                       |                       |                         |                               |
| esults: Results    |                                        |                        |                       |                       | Save Table     Creat    | e Graphics Show Processing Lo |
| Feature            | baseMean                               | log2FoldChange         | IfcSE                 | stat                  | pvalue                  | padj                          |
| gt                 | 269.8388275096872                      | -0.4286179742851086    | 0.010874693109968902  | -39.414259322149675   | 0.0                     | 0.0                           |
| ybjT               | 351.0244848766148                      | -0.5246952431519101    | 0.011923080583598896  | -44.006684302181796   | 0.0                     | 0.0                           |
| ds                 | 343.5454107452366                      | -0.5347683826023167    | 0.011833746093358398  | -45.19011802209036    | 0.0                     | 0.0                           |
| menE               | 337.65596028304697                     | -0.5023998053887261    | 0.011766181936219939  | -42.698626292883034   | 0.0                     | 0.0                           |
| acrE               | 285.1932119403944                      | -0.43781650799505306   | 0.011117117724219428  | -39.38219589428641    | 0.0                     | 0.0                           |
| alB                | 231.1130567944619                      | -0.3709839520035442    | 0.010260622674849368  | -36.15608562557247    | 2.9852174260745584E-286 | 1.9438740806122165E-283       |
| nmuM               | 247.32521393804026                     | -0.36029130110538843   | 0.010552857878244256  | -34.14158565028759    | 1.7826477895416767E-255 | 9.9497213053419E-253          |
| nadE               | 204.50286736465154                     | -0.3315833085091132    | 0.009794714589887277  | -33.85328949262719    | 3.2464283060378567E-251 | 1.5854744239612382E-248       |
| hуpВ               | 245.80709884486396                     | -0.33060158759814234   | 0.010486837905301393  | -31.525383588795044   | 3.9003137183212076E-218 | 1.6931695219423285E-215       |
| htB                | 159.03020262430275                     | -0.25916313310368677   | 0.008810890600837097  | -29.413954257820933   | 3.6415232607025115E-190 | 1.4227431379564712E-187       |
| турС               | 22.21936621321233                      | -0.012711664363252342  | 0.003242278111010571  | -3.9205965460163137   | 8.83300387986014E-5     | 0.03137322378055779           |
| yajC               | 10.487186689080973                     | -0.009051105710899648  | 0.002467576366489708  | -3.668014426550636    | 2.4444139478910345E-4   | 0.07958604412008559           |
| thrA               | 1137.8582402769407                     | -0.011276172144255749  | 0.015518301675772804  | -0.7266369980331112   | 0.4674483572511284      | 0.9998959597251514            |
| thrB               | 485.0768786362919                      | 0.0045023131032757326  | 0.013423708302440033  | 0.33540009972187385   | 0.7373232927426848      | 0.9998959597251514            |
| thrC               | 625.446733876847                       | -0.006711617050096     | 0.014276052194276622  | -0.4701311650280137   | 0.6382613095142656      | 0.9998959597251514            |
| yaaA               | 388.39194818281754                     | -0.0028343021387853204 | 0.012597908688976586  | -0.22498195603413046  | 0.8219933114422818      | 0.9998959597251514            |
| yaaJ               | 676.9719685780067                      | -0.004488335946399489  | 0.014503640292124535  | -0.30946271804856135  | 0.7569695678797345      | 0.9998959597251514            |
| mogA               | 311.1618485118614                      | -0.001408644735966874  | 0.011710778435203954  | -0.12028617429327541  | 0.9042564559049743      | 0.9998959597251514            |
| yaaH               | 302.5525669807616                      | -8.093130370916368E-4  | 0.011594630772160818  | -0.06980067351819692  | 0.9443523110972127      | 0.9998959597251514            |
| yaaW               | 632.5553166009339                      | -0.0034770745243608943 | 0.014300940396304706  | -0.24313607553104366  | 0.8078999853209714      | 0.9998959597251514            |
| htgA               | 536.2395087257569                      | -0.005569687505068538  | 0.013775622743994898  | -0.40431475284821433  | 0.6859812782244199      | 0.9998959597251514            |
| yaaI               | 231.68325977475627                     | 0.00249465907840419    | 0.010438567450146659  | 0.23898481188327625   | 0.8111173599153143      | 0.9998959597251514            |
| dnaK               | 886.9415326792064                      | 0.002706431911022021   | 0.015150584500894727  | 0.17863547844389707   | 0.858223934771951       | 0.9998959597251514            |
| dnaJ               | 542.473091395346                       | -6.384611178570688E-4  | 0.0138118926185344    | -0.04622546203409572  | 0.9631305483941452      | 0.9998959597251514            |
| insL-1             | 526.0060695503408                      | -0.002014225761982614  | 0.013670451587572583  | -0.14734156725398076  | 0.8828624245691993      | 0.9998959597251514            |
| nhaA               | 557.4459367348792                      | -0.0017134512733602936 | 0.013911571460208516  | -0.12316734153731695  | 0.9019745862982138      | 0.9998959597251514            |
| nhaR               | 440.5414524962767                      | -0.0013951761302746612 | 0.013076928436071012  | -0.10668989565059091  | 0.9150349989537935      | 0.9998959597251514            |
| insB-1             | 273.35202090586023                     | 0.006227551141688105   | 0.011084111362069991  | 0.5618448731035748    | 0.5742217158129372      | 0.9998959597251514            |
| insA-1             | 82.96275663685469                      | 0.005969066354940884   | 0.006532269388778962  | 0.9137814134234054    | 0.36083171474113734     | 0.9998959597251514            |
| yaaY               | 14.345823829875982                     | 0.002780307076917288   | 0.002893434331056109  | 0.9609020834084286    | 0.3366014031542568      | 0.9998959597251514            |
| ribF               | 462.37317523974224                     | 0.0016788668065725939  | 0.013258527883678106  | 0.12662543091524972   | 0.8992368679965708      | 0.9998959597251514            |
| leS                | 1316.1299511182294                     | 0.0017229991262338942  | 0.015625062765232043  | 0.11027150112112247   | 0.9121940582145641      | 0.9998959597251514            |
| spA                | 276.9759550003379                      | -9.613565090057574E-4  | 0.01122664242609399   | -0.0856317029187003   | 0.9317591957301279      | 0.9998959597251514            |
| fkpB               | 258.1421355022008                      | -0.007458096157672676  | 0.010921918110115149  | -0.6828558942193027   | 0.49469790639356587     | 0.9998959597251514            |
| ispH               | 486.8351005294112                      | -0.008467334059750451  | 0.013429316702518153  | -0.6305111605687821   | 0.5283602031321755      | 0.9998959597251514            |
| rihC               | 448.1490978419384                      | 0.0020822074349745026  | 0.01313947505023211   | 0.15846960605459806   | 0.8740867688671781      | 0.9998959597251514            |
| dapB               | 407.109672438558                       | -0.006588049020246557  | 0.012780497726793932  | -0.5154767178147459   | 0.6062199348787116      | 0.9998959597251514            |
| tarA               | 558.9400641346361                      | 0.0010827043764364852  | 0.013915700109236253  | 0.07780452064484078   | 0.9379835503981662      | 0.9998959597251514            |
| carB               | 1472.591321085199                      | -0.004689698178923967  | 0.015648547676835278  | -0.2996890366935572   | 0.7644143619147331      | 0.9998959597251514            |
| caiF               | 212.23010941803443                     | -0.008627042512345076  | 0.010086077243940497  | -0.8553417055702227   | 0.39236200547348965     | 0.9998959597251514            |
| caiE               | 322.0139791314017                      | 0.0018709056092172803  | 0.011847079503223813  | 0.15792125044051336   | 0.8745188527513316      | 0.9998959597251514            |
| caiD               | 407.9733503966958                      | 0.0044432044463110975  | 0.01278968741912909   | 0.34740524148116014   | 0.728286896146092       | 0.9998959597251514            |
| saiC               | 739.1006884600769                      | 5.243295403164528E-5   | 0.014740896815092419  | 0.0035569717832881083 | 0.997161953115422       | 0.9998959597251514            |
| aiB                | 579.9043244224209                      | -0.0034674601806924965 | 0.014036376034441024  | -0.24703386202994257  | 0.8048820179192184      | 0.9998959597251514            |
| caiA               | 556.6874205892763                      | 0.00842545757517534    | 0.013898050826203321  | 0.6062330380379687    | 0.5443600170162903      | 0.9998959597251514            |
| taiT               | 717.8967021396229                      | -0.0061105626153607215 | 0.014662755019826371  | -0.4167404152288074   | 0.6768682894781408      | 0.9998959597251514            |
| fixA               | 393.2552998843558                      | 3.601575161047226E-4   | 0.012641125637892204  | 0.028490937153977665  | 0.9772705962000457      | 0.9998959597251514            |
| fixB               | 474.10249997813696                     | -5.29325193458439E-4   | 0.013336838905488327  | -0.03968895457233221  | 0.9683411077141711      | 0.9998959597251514            |
| fixC               | 609.4730077185945                      | -0.002613784622610124  | 0.014180976478082046  | -0.1843162652903317   | 0.8537653546661941      | 0.9998959597251514            |
| fixX               | 16.467722400230695                     | 0.0012063872534812533  | 0.0030305897662521973 | 0.3980701271136217    | 0.6905784937904815      | 0.9998959597251514            |
| vaalu              | 632,677962785594                       | -0.0016209095641974672 | 0.014309491286328684  | -0.11327513548619911  | 0.9098124293528388      | 0.9998959597251514            |

# 6. The ReadXplorer VirtualBox Image

Virtualization offers the ability to emulate a complete computer on top of your already running operating system. This "virtual computer" is independent of your operating system and as long as the virtualization software is available for your already running operating system you can execute the "virtual computer". This concept of virtualization makes it possible for us to prepare a "virtual computer" with all the necessary software installed to run ReadXplorer. You only need to install the version of the virtualization software matching your operating system and import the image of the "virtual computer" that we offer.

As virtualization software we choose VirtualBox<sup>4</sup>. It is available for most operating systems free of charge. Go to the download page<sup>5</sup> and download and install the version appropriate for you. Once the installation is finished go to our homepage and download the "ReadXplorer VirtualBox image". Be aware that the download is quite large (~ 3.7 GB). When the download is finished, open VirtualBox and go to "File" -> "Import Appliance...".

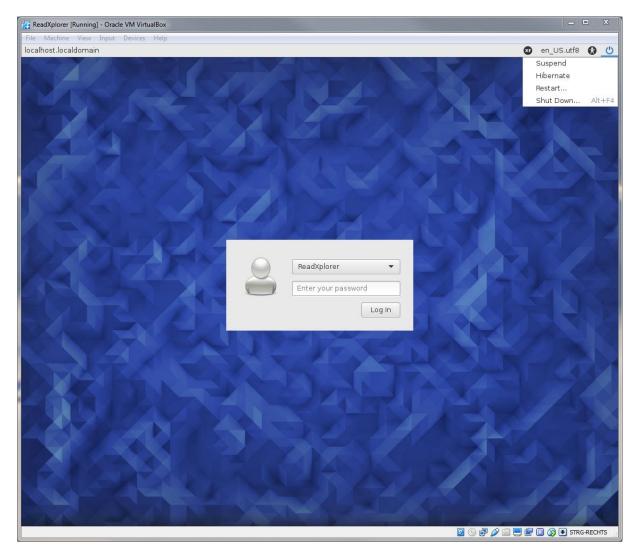


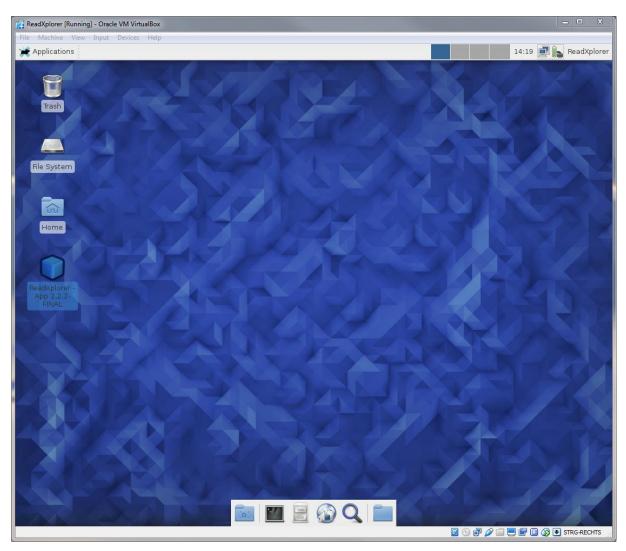
<sup>4</sup> https://www.virtualbox.org/

<sup>5</sup> https://www.virtualbox.org/wiki/Downloads

Select the location of the downloaded image file and continue by selecting "Next":

| San Server (FT-18)                                                                                                                       | 8       | ×   |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Import Virtual Appliance                                                                                                                 |         |     |
| Appliance to import                                                                                                                      |         |     |
| VirtualBox currently supports importing appliances saved in the Open Virtualization (OVF). To continue, select the file to import below. | on Forr | nat |
| D:\ReadXplorer.ova                                                                                                                       |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
|                                                                                                                                          |         |     |
| Expert Mode Next                                                                                                                         | Can     | cel |


Adjust the "CPU" and "RAM" settings if necessary. The settings below are the standard settings chosen for a Laptop with a Quad-core CPU and 8 GB RAM. The value for RAM should be at least 2 GB smaller than the total amount of RAM in your computer. After adjusting the setting start the import process by selecting "Import".


| 3 | Import Virtual Appliance              | Connect Table Connection                                                                                                   | <u>?</u> | x  |
|---|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|----|
|   |                                       | ned in the appliance and the suggested set<br>In change many of the properties shown by<br>Is using the check boxes below. |          |    |
|   | Description                           | Configuration                                                                                                              |          | -  |
|   | Virtual System 1                      |                                                                                                                            |          | =  |
|   | 🎲 Name                                | ReadXplorer_1                                                                                                              |          | =  |
|   | 🥥 Vendor-URL                          | www.readxplorer.org                                                                                                        |          |    |
|   | 🥥 Version                             | 2.2.2                                                                                                                      |          |    |
|   | 🗮 Guest OS Type                       | 🜠 Fedora (64-bit)                                                                                                          |          |    |
|   | 🔲 СРИ                                 | 2                                                                                                                          |          |    |
|   | RAM                                   | 3072 MB                                                                                                                    |          | -  |
| [ | Reinitialize the MAC address of all r | network cards                                                                                                              |          |    |
|   |                                       | Restore Defaults Import                                                                                                    | Canc     | el |

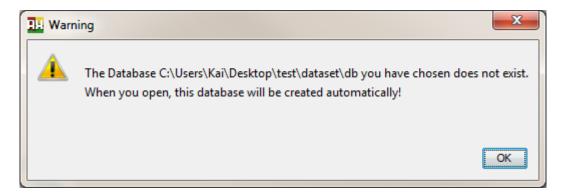
When the import is finished a new virtual machine called "ReadXplorer" will be visible. Select the virtual machine with one left klick and start it by selection "Start".

| Oracle VM VirtualBox Manager         |                                                                                                                                                    |               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| File Machine Help                    |                                                                                                                                                    |               |
| New Settings Disca d Start           | 🚱 Details                                                                                                                                          | ) O Snapshots |
| Windows 7 64bit (sauber)             | General Preview                                                                                                                                    |               |
| Windows 7 32bit (sauber)             | Name: ReadXplorer<br>Operating System: Fedora (64-bit)           System                                                                            |               |
| Windows 10 (sauber)                  | Base Memory: 3072 MB<br>Processors: 2<br>Boot Order: Floppy, Optical, Hard Disk<br>Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization | lorer         |
| 64 Fedora 23 (sauber)<br>Powered Off |                                                                                                                                                    |               |
| Fedora 23 32bit (sauber) Overed Off  | Display                                                                                                                                            |               |
| ReadXplorer                          | Video Memory: 64 MB<br>Remote Desktop Server: Disabled<br>Video Capture: Disabled                                                                  |               |
|                                      | Storage                                                                                                                                            |               |
|                                      | Controller: IDE<br>IDE Secondary Master: [Optical Drive] leer<br>Controller: SATA<br>SATA Port 0: ReadXplorer-disk1.vmdk (Normal, 20,00 GB)        |               |
|                                      | 🕞 Audio                                                                                                                                            |               |
|                                      | Host Driver: Windows DirectSound<br>Controller: ICH AC97                                                                                           |               |
|                                      | P Network                                                                                                                                          |               |
|                                      | Adapter 1: Intel PRO/1000 MT Desktop (NAT)                                                                                                         |               |
|                                      | 🤌 USB                                                                                                                                              |               |
|                                      | USB Controller: OHCI<br>Device Filters: 0 (0 active)                                                                                               |               |
|                                      | Shared folders                                                                                                                                     |               |
|                                      | None                                                                                                                                               |               |
|                                      | Description                                                                                                                                        |               |
|                                      | None                                                                                                                                               |               |
|                                      |                                                                                                                                                    |               |
|                                      |                                                                                                                                                    |               |
|                                      |                                                                                                                                                    |               |
|                                      |                                                                                                                                                    | н.            |
|                                      |                                                                                                                                                    |               |

The virtual machine will now boot a Fedora Linux in version 23. After booting a login screen will appear. The default user is called "readxplorer". There is no password set for this user so you can login by simply selecting "Log In".






You can launch ReadXplorer directly via the link located on the desktop.

The virtual machine comes with a pre-installed GNU R installation. The *E.coli* test data-set is located in the home directory of the "readxplorer" user. This means that everything is already set-up and you can directly start using ReadXplorer and explore its functionality. If you need root access for some reason the password is simply "rx".

## 7. How can I use my own data with ReadXplorer?

ReadXplorer uses a database to maintain all important information it needs to visualize the mapping data. In order to use your own data you must import it first into a ReadXplorer database. The data you need is described in the section "What input data is needed?".

To create a new database within ReadXplorer go to "File" -> "Open/Create database" and choose the location and the name of your new DB. It usually makes sense to place the reference, the mapping files and the database in the same folder. ReadXplorer will tell you that the database does not exist and automatically creates a new one.



The newly created database is completely empty. To import your data go to "File" -> "Import Data". At first you must import your reference. While in the "Reference" tab select "Add" and choose your reference file in any supported file format.

| Reference Dia | alog                                                                                                                                                                                                                               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filetype:     | EMBL/GenBank file 🔹                                                                                                                                                                                                                |
| File:         | Users\Kai\Desktop\test\dataset\E.coli_NC_010473.1.gbk Open                                                                                                                                                                         |
| Name:         | E.coli_NC_010473.1.gbk                                                                                                                                                                                                             |
| Description:  | E.coli_NC_010473.1.gbk                                                                                                                                                                                                             |
| Notice:       | Note, that name of each reference sequence (e.g. each chromosome)<br>in the reference file has to have exactly the same name as used during<br>mapping of corresponding BAM files. Otherwise, the track will not show<br>any data! |
|               | OK Cancel                                                                                                                                                                                                                          |

Once you have done that switch to the "Tracks" or "Read pair Tracks" tab (depending if you want to import single end or paired end data) and select "Add". Navigate to your mapping files; you can select multiple files at once. Check if the right "Reference genome" is selected.

| - | H Track Dialog     | <b>X</b>                                                                                                                                                    |
|---|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Reference genome:  | new: E.coli_NC_010473.1.gbk 2016-05-11 15:16:51.587 👻                                                                                                       |
|   | Mapping type:      | SAM/BAM Parser 🔹                                                                                                                                            |
|   | Mapping file(s):   | 12 tracks to import Open                                                                                                                                    |
|   | Description:       | Note: each track gets its file name                                                                                                                         |
|   |                    | Was already imported in another ReadXplorer DB                                                                                                              |
|   | Import track list: | Mapping file list:<br>simulated_knockDown1.bam<br>simulated_knockDown2.bam<br>simulated_knockDown3.bam<br>simulated_knockDown4.bam<br>simulated_normal1.bam |
|   |                    | OK Cancel                                                                                                                                                   |

Once you have entered all data you want to import you can start the import process by clicking the "Finish" Button.

ReadXplorer will import the reference first. A Fasta file containing the sequence will be created and indexed. Once the reference is imported ReadXplorer will start to process the mapping files one after the other. When the input is in sam format it will be converted to bam. ReadXplorer classifies all the reads in the file and writes the result to a new bam file which can be identified by "\_extended" at the end of the file name previous to the ".bam" file ending. A bam index file is also created for each bam file. Once the import is finished you can start using your database.

## 8. How can I increase the RAM limit?

As ReadXplorer is a Java application a RAM (heap space) limit must be specified before starting the program. This is done in the settings file "readxplorer.conf" that is located in the "etc" directory within the program directory. In this file you will find the parameter "-J-Xmx2G", limiting the maximum amount of RAM Java can allocate to 2 gigabyte (GB). You can increase this limit by changing the "2" accordingly. You can also specify megabytes (MB) as follows: "-J-Xmx2500m". The default limit of 2 GB should be sufficient for most use cases. However, if you import a lot of reads and ReadXplorer becomes unresponsive for a really long time or prints an "Out of memory"-error you should increase the limit.

## 9. I am running out of space, can I delete some of the mapping files?

ReadXplorer will keep the original sam/bam files untouched and only work on its own "extended" copies of these files. The ReadXplorer bam files all have the word "extended" in their name (e.g. simulated\_upRegulated4\_extended.bam) and are accompanied by a matching bam index file (e.g. simulated\_upRegulated4\_extended.bam.bai). Note that only mapped reads are kept in the extended mapping files. Unmapped reads are not stored to save some disk space. For the mapped reads, all original data is present in the extended bam files plus some flags for the read mapping classification carried out during the import into ReadXplorer. So if you do not need unmapped reads, you can safely delete your original sam/bam files after successfully importing them into ReadXplorer without losing any needed information. If you still want to delete the original files, but keep the unmapped reads, you can filter them into a separate file using samtools<sup>6</sup>.

## 10. No read data is shown!

This is most likely a naming problem. In a sam/bam file it is noted down for each single read to which reference it belongs. If these entry does not match the name of the reference the track was assigned to during import, no data will be shown. All references used within the mapping file can be viewed with samtools<sup>3</sup> by inspecting the so called "sequence dictionary". We are facing this problem quite often and hence there are some checks implemented during import that should warn you in most cases if you are trying to work with non-matching entries. A common source for this error is usually the usage of a Fasta and a GenBank file with non-matching reference names. The GenBank file is imported into ReadXplorer but as most mapping tools need the reference in Fasta format the nonmatching Fasta file is used for this task. We have seen a lot of cases were, even if the underlying sequence is exactly the same, the reference name in GenBank and Fasta file differ. The safest and recommended way is to use the combination of Fasta and GFF3. Using this file type combination you can be sure that you are working with the same reference sequence at all times. If you must use GenBank check if the corresponding Fasta file is really exactly the same and if the names of the reference sequence in both files are also the same. Keep in mind that not all tools handle Fasta headers in a consistent way (it is e.g. a bad idea to have whitespaces in the Fasta header as some tools might truncate the header at the first whitespace while others don't). If you want to be 100 % sure that GenBank and Fasta match there is a simple trick tough: import the GenBank file as a reference into ReadXplorer prior to mapping your read data. ReadXplorer will create a Fasta file with correct Fasta header during the import process. It is located in the same folder as the original GenBank file. If you use a copy of this file for the mapping process you should not have any problem with reference naming when importing the mapping data into ReadXplorer.

<sup>&</sup>lt;sup>6</sup> http://samtools.sourceforge.net/