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Abstract
mRNA transcription profiles are an alternative to DNA markers for pre-
dicting hybrid performance. Our objective was to investigate their predic-
tion accuracy in an unbalanced maize data set. We focused on the
effectiveness of preselecting a core set of genes for transcription profiling
and on the comparison of prediction models. A total of 254 hybrids were
evaluated for grain yield and grain dry matter content. The mRNA tran-
scripts of a core set of 2k genes and the genotype of 1k AFLP markers
were assessed in the parental lines. Predictions based on transcriptome-
based distances determined from the 2k core set of genes resulted in pre-
diction accuracies below 0.5 and could not reach the high accuracies
observed with a 46k micro-array in earlier studies. Predictions based on
ridge regression resulted in prediction accuracies greater 0.6. Only mar-
ginal differences were observed in the prediction accuracies of mRNA
transcripts compared with AFLPs. We conclude that mRNA transcription
profiles are suitable for hybrid prediction with ridge-regression models in
unbalanced designs, even if limited resources allow only transcription
profiling of a core set of genes.
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Choosing a suitable training set is crucial for successful predic-
tion of hybrid performance in breeding programmes (Zhao et al.
2015). For prediction models using mRNA transcription profiles,
important questions on how to most efficiently use the data gen-
erated in earlier breeding cycles are as follows: Which genotypes
can be used as the training set? How many and which genes
should be profiled? What prediction models have the greatest
prediction accuracy?
When genomic selection was introduced for the prediction of

plant hybrids, it was already recognized that marker data cannot
capture all polygenic effects that might contribute to the traits of
interest (Piepho 2009). In the same study, it was suggested that
gene expression and metabolomic data might be used in ridge-
regression models instead of marker data. Promising results of
hybrid prediction have been reported for gene expression profiles
(Andorf et al. 2010, Maenhout et al. 2010, Steinfath et al. 2010,
Zenke-Philippi et al. 2016), transcriptome-based distances (Frisch
et al. 2010, Fu et al. 2012) and metabolomic data (Riedelsheimer
et al. 2012, Dan et al. 2016, Xu et al. 2016). Transcriptome-based
distances for hybrid prediction were successful when using a 46k
micro-array for expression profiling (Frisch et al. 2010). Resource
use could be minimized if a small core set of genes related to the
traits to be predicted could be used instead of profiling the

expression of large sets of genes. The prerequisite is that such a
core set is transferable between different experiments in a hybrid
breeding programme. The effectiveness of using the transcription
profiles of a core set of genes determined in an earlier breeding
cycle of a breeding programme for prediction of new hybrids has
to our knowledge not yet been investigated.
Experimental and simulation studies on genomic prediction of

complex traits with marker data showed that ridge-regression
approaches are computationally efficient and yield robust esti-
mates of breeding values with high prediction accuracy (Piepho
2009, Heslot et al. 2012, Riedelsheimer et al. 2012, Technow
et al. 2012, Massman et al. 2013). It has therefore been sug-
gested that ridge-regression models could be used for routine
prediction of hybrid performance in breeding programmes (Zhao
et al. 2015). A combination of ridge-regression models with
mRNA transcription profiles for hybrid prediction has been stud-
ied recently (Zenke-Philippi et al. 2016). However, the predic-
tion accuracies in this study were estimated by cross-validation
with data from one single factorial. A validation with a broader
database, consisting of several experiments from one breeding
programme, is still lacking.
Our main goal was to investigate how data, generated in ear-

lier cycles of a breeding programme, can be used for transcrip-
tome-based prediction of hybrid performance for grain yield
(GY) and grain dry matter content (GDMC) of untested new
maize hybrids. We used a data set consisting of 34 dent and 14
flint lines. Four complete factorial crosses of these lines were
created in four different years. Taken together, they form an
unbalanced incomplete factorial of 254 hybrids. For the parental
lines, genotypes for 1k AFLP markers and mRNA transcription
profiles for 2k genes were collected.
Our objectives were to (i) investigate whether the transcription

profiles of a core set of genes preselected in one factorial can be
used in other factorials of the same breeding programme for
hybrid prediction with transcriptome-based distances, (ii) explore
the prediction accuracy of ridge regression with mRNA tran-
scription profiles in an unbalanced incomplete factorial by cross-
validation and (iii) compare the prediction accuracies of mRNA
transcription profiles and AFLPs for prediction of hybrid perfor-
mance of one factorial using data from other factorials of the
same breeding programme as the training set.

Materials and Methods
Field data: The field data were presented in detail by Schrag et al.
(2006). In total, 48 maize elite inbred lines developed in the breeding
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programme of the University of Hohenheim were used as parental lines
for the factorial crosses under evaluation. The inbreds comprised 34 dent
lines with Iodent or Iowa Stiff Stalk Synthetic background, and 14
flint lines with European flint or flint/Lancaster background. Four
dent 9 flint factorial mating experiments (14 9 7, 11 9 4, 14 9 6,
11 9 4), further referred to as exps. 1–4, were produced, providing a
total of 270 hybrids. Thereby, eight dent lines and six flint lines were
included in more than one factorial. Each factorial was evaluated in a 1-
year experiment (2002, 1999, 2003, 2001) with field trials at four to six
locations in Germany under diverse agroecological conditions. The trials
were evaluated in two-row plots using adjacent alpha designs with two
to three replications. The hybrid performance of the crosses was recorded
for GY in Mg/ha adjusted to 155 g/kg grain moisture and for GDMC in
percentage. When combined, the four experiments can be regarded as an
unbalanced incomplete factorial (Fig. 1).

Statistical analysis of the field data: The statistical analysis of the field
data was presented in detail by Schrag et al. (2009). A mixed linear
model was employed, in which main effects for years, locations and
check varieties were treated as fixed. This allowed to account for
performance differences between experiments. Genotypic effects, all
interactions and block effects for trials, replications within trials and
incomplete blocks within replications were treated as random. The
residual error variance was assumed to be specific for each trial. All
other block variances were assumed to be homogeneous. Mixed linear
model analyses were performed with ASReml (Gilmour et al. 2002).

AFLP marker data: The inbred lines were assayed for AFLP markers
with 20 primer combinations as described in detail by Schrag et al.
(2006). After removing markers with more than 10% missing values and
a gene diversity smaller than 0.2, the number of 970 high-quality
markers remained for the analysis.

Gene expression data: For our ‘2k core set’ of differentially expressed
genes, we used a custom 2k micro-array (GEO Platform accession

number: GPL22267) with 2232 oligonucleotide sequences (50–70 nt) of
the maize oligonucleotide array project (University of Arizona, USA;
http://www.maizearray.org). The oligonucleotides were synthesized by
Ocimum Biosolutions (Ijsselstein, the Netherlands) and printed on poly-
L-lysine-coated glass slides with a Microgrid II printer (BioRobotics,
Boston, MA, USA). The selection of oligonucleotides for the 2k core set
was based on 46k array expression data from Exp. 1 (GEO Platform
accession number: GPL6438). The main fraction of oligonucleotides
(1639) represents genes that showed differential expression between the
parental genotypes of Exp. 1 and consistent association with hybrid
performance for GY in cross-validation runs to estimate prediction
accuracies for this trait (Frisch et al. 2010). In addition, the array
contains partially overlapping fractions of genes that correlated with
hybrid performance for GY (378), hybrid performance for GDMC (200)
or mid-parent heterosis for GY (345), and 205 representatives of the six
most overrepresented biological processes among genes correlated with
hybrid performance for GY in Exp. 1 (Thiemann et al. 2010).

To obtain the plant material for the gene expression analysis, the par-
ental inbred lines of the hybrids were grown for 7 days under controlled
conditions. We did not use plants from the field experiment. For the par-
ental lines of exps. 2, 3 and 4, four seedlings were grown, and for the
parental lines of Exp. 1, five seedlings were grown, to obtain biological
replicates. The temperature under which the seedlings were grown was
25°C for 16 h per day and 21°C for 8 h at night; the air humidity was
70%. The plants were grown with randomized plate position. The whole
7-day-old seedlings were sampled and frozen in liquid nitrogen. As we
aimed for the identification of genotype-dependent expression differ-
ences, the biological replicates were pooled and homogenized prior to
RNA extraction. Total RNA was isolated with mirVana miRNA isolation
kit (Ambion, Thermo Scientific, Waltham, Massachusetts, USA). Two
control lines, one from the dent and one from the flint pool, were
included in each of the experiments if they were not part of the factorial
anyway. For exps. 2 and 4, only 9 dent lines were included in the micro-
array experiment, reducing the size of the factorials to 9 9 4, the total
number of inbred lines to 48 and the total number of hybrids to 254, of
which 230 were different. An interwoven loop design of two-colour

Fig. 1: The 34 dent and 14 flint lines of our data set and the hybrids generated from them. The display illustrates prediction of type 0 (dark blue) and type
1 (medium blue) hybrids of exps. 2–4 using the factorial of Exp. 1 (light blue) as training set [Color figure can be viewed at wileyonlinelibrary.com]
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hybridizations striving for equal sampling and minimal distance between
pairs of genotypes (Kerr and Churchill 2001) was developed for each
factorial to minimize average variance. Sixty-three, 21, 57 and 21
hybridizations were performed for exps. 1, 2, 3 and 4 including 21, 15,
22 and 15 inbred lines, respectively. Both dyes (Cy3 or Cy5) were alter-
nately used for each genotype to reduce systematic bias. RNA labelling
and hybridizations were performed according to the protocols of the
maize oligonucleotide array project (http://www.maizearray.org). The
micro-arrays were scanned (AppliedPrecision ArrayWorx Scanner;
Applied Precision Inc., Issaquah, Washington, USA), and the data were
evaluated using the Software GENEPIX PRO 4.0 (Molecular Devices, Sunny-
vale, CA, USA). The 2k micro-array was used for exps. 2–4. For Exp. 1,
the raw files from the 46k micro-array were reduced to the oligos from
the 2k micro-array. The data for exps. 1–4 have been deposited in
NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and are accessible
through GEO Series accession numbers GSE17754, GSE85286,
GSE85287 and GSE85288, respectively.

The limma package (Ritchie et al. 2015) was applied for the tests.
For each experiment, n!1 of the arrays were chosen as coefficients,
with n being the number of lines investigated in that experiment and
the coefficients describing the interconnections between all arrays. A
background correction, a normalization within arrays, and a normaliza-
tion between arrays was carried out. An ordinary least squares model
was fit for each gene with the coefficients describing differences
between the RNA sources hybridized on the corresponding arrays.
These differences were tested for significance with a moderated F-test
(Smyth 2004). A false discovery rate (Benjamini and Hochberg 1995)
of 0.01 was used to adjust for multiple testing (Fu et al. 2012). The
micro-array data were first analysed separately for each experiment. In
total, 2122, 104, 542 and 140 genes of the 2k core set were found to
be differentially expressed in exps. 1–4, respectively. In a second step,
all micro-arrays of the four experiments were analysed together, result-
ing in 985 differentially expressed genes. For all differentially
expressed genes, we calculated the expression level (log2 scale) of
each gene for each inbred line from the coefficients from the linear
model.

Transcriptome-based distances: The binary transcriptome-based
distance DB between two inbred lines i and j for ng genes was calculated
as:

DBði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns ði; jÞ
ng

s

; ð1Þ

with ns (i, j) being the number of genes differentially expressed in inbred
lines i and j (Frisch et al. 2010). Two genes were considered to be differ-
entially expressed if the difference in their gene expression level
exceeded a threshold of 1.3. The calculated transcriptome-based distances
DB were then used in a linear regression model:

y ¼ b0 þ b1DBðu; vÞ; ð2Þ

with y as the response vector consisting of the hybrid performance of the
i = 1 . . . n hybrids, b0 as a fixed intercept, b1 as a regression coefficient
and DB (u,v) as a vector with the binary transcriptome-based distances
between all u = 1 . . . nu female and v = 1 . . . nv male parents (Frisch
et al. 2010). For a hybrid with parents u and v in the training set, DB

between the two parents was calculated and Eq. (2) was used to predict
the performance ŷ of the resulting hybrid.

We employed the binary transcriptome-based distance DB, because in a
previous analysis of Exp. 1, predictions withDB showed greater correlations
to the observed values than predictions with the Euclidean distance DE,
which is based on the quantitative expression levels (Frisch et al. 2010).

Ridge-regression model: To estimate the predictor effects, we used a
linear model that relates the phenotype of a hybrid to the marker
genotypes or mRNA transcription profiles that were observed in the two
parental lines of the hybrid as described in Zenke-Philippi et al. (2016):

y ¼ 1b0 þ FuþMvþ e

uj &Nð0;r2
f Þ vj &Nð0;r2

mÞ ei &Nð0;r2
eÞ

ð3Þ

y is the response vector consisting of the hybrid performance of the
i = 1 . . . n hybrids, 1 is a vector of 1’s and b0 a fixed intercept. u and v
are the vectors of the genetic effects of the j = 1 . . . p predictors in the
female and male parent, respectively. The design matrices F and M con-
sist of values fi,j and mi,j that code the observation of the j-th predictor at
the i-th hybrid. For marker data, fi,j or mi,j is 1 if the AFLP band was
observed in a parent and 0 otherwise. For mRNA transcripts, the design
matrices contain the gene expression of gene j in the parents of the i-th
hybrid. The columns of the design matrices F and M were normalized.
For F, the normalization was carried out according to Frisch et al.
(2010):

fi;j ¼
oi;j

k 2 f1. . .sg
max(ok ;jÞ

; ð4Þ

where oi,j are non-normalized original values for gene expression, and s
is the number of parental lines used as female parents. For M, the nor-
malization was carried out analogously. The variances r̂2

f , r̂
2
m, and r̂2

e
were estimated by restricted maximum likelihood (REML). The effects û
and v̂ were obtained by solving the mixed model equations (Henderson
1984). With this model, the genotypic value of hybrids can be predicted
as,

ŷ' ¼ 1b̂0 þ F'ûþM'v̂; ð5Þ

where F' and M' are the design matrices for the predictors observed at
the parental lines of the hybrid.

The components of u and v are additive main effects of the poly-
morphisms indicated by the respective design matrices. Genetically,
they can be interpreted as effects for testcross performance if only the
lines of the investigated experiment are considered. If the lines of the
investigated experiment are considered as a representative sample from
all lines of the opposite heterotic pool, the effects can be considered
as estimates for the general combining ability. Technically an exten-
sion of the model to include the interaction effects between compo-
nents of the parameter vectors of u and v is straightforward. By some
authors these interactions are considered as dominance effects (Eq. 4
of Technow et al. 2012). The interaction effects could also be inter-
preted as effects for special combining ability. We chose not to
include the interaction effects in the model, because it cannot be
expected that interaction effects could be estimated with sufficient pre-
cision from the data set.

Assessment of prediction accuracy: For comparing the models, we
determined prediction accuracies as the correlation rðy; ŷÞ between
predicted and observed hybrid performance. Some authors refer to this
correlation as ‘predictive ability’ (cf Albrecht et al. 2011).

We used cross-validation, in which the data were split into training
and validation sets on the basis of a random assignment. Cross-validation
was carried out for 1000 replications, and in each run, the prediction
accuracy was assessed. In addition, we validated the prediction accuracy
by dividing the data into training and validation set on the basis of the
four experiments.

For evaluating prediction accuracies, we distinguished three types of
hybrids. For type 2 hybrids, both parental lines of an untested hybrid
were part of the training set, for type 1 and type 0 hybrids, one or none,
respectively. The structure of training and validation set for type 0 and
type 1 hybrids for cross-validation within experiments is illustrated in
Fig. 1 of Fu et al. (2012). Cross-validation across experiments is illus-
trated in Fig. 1 of Schrag et al. (2009). Validation using Exp. 1 as train-
ing set and exps. 2–4 as validation set is illustrated in Fig. 1.

Cross-validation within experiments was carried out to evaluate the
prediction accuracy of transcriptome-based distance prediction following
the scheme described by Fu et al. (2012).
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The estimation set for evaluating the prediction accuracy for type 2
hybrids in Exp. 1 consisted of three randomly chosen flint and five ran-
domly chosen dent lines and their hybrids, and the validation set con-
sisted of the remaining part of the factorial. For exps. 2–4, we used three
flint and three dent lines; for Exp. 3, five flint and two dent lines; and
for Exp. 4, three flint and three dent lines and the corresponding hybrids
as training set. The remaining part of the factorial was used as validation
set. For the evaluation of the prediction of type 0 hybrids, ten and five,
six and three, ten and four, and six and three flint and dent lines were
used in exps. 1–4, respectively.

Cross-validation across experiments was carried out following the
scheme of Schrag et al. (2009), in which seven flint and 17 dent lines
were randomly chosen. Their marker genotype or transcription profiles,
together with the hybrids that were actually available in the unbalanced
data set, were used as training set and the remaining hybrids as valida-
tion set.

For validation on the basis of the four experiments, the subdivisions
of the data set into training and validation sets are listed in Table 1.

Results
Cross-validation within experiments with transcriptome-based
distances determined from the 2k core set of mRNA transcripts
resulted in prediction accuracies rðy; ŷÞ with large ranges and
mean values around zero for exps. 2–4 for GY and GDMC
(Fig. 2). Only for Exp. 1, which was used to define the 2k core
set of genes, the average prediction accuracy reached a value of
0.63 for GY.
Cross-validation across experiments for assessing the

prediction accuracies for GY and GDMC with ridge regression
resulted in small differences between AFLPs and mRNA tran-
scripts (Fig. 3). The average prediction accuracy for hybrid per-
formance of type 1 hybrids was greater than rðy; ŷÞ = 0.6 for
both GY and GDMC. For type 0 hybrids, the prediction

accuracies amounted to 0.5 for GY and 0.25 for GDMC. The
variances of the prediction accuracies among the cross-validation
runs were small.
For validation by splitting the data into training and validation

set on the basis of the four experiments, and predicting hybrid
performance with ridge regression, average prediction accuracies
of around 0.6 were observed for type 1 hybrids for both traits
for AFLPs as well as for mRNA transcripts (Table 1). For type 0
hybrids, the prediction accuracies were considerably smaller than
0.5 on average.

Discussion
The efficient use of previously generated data as training set is
essential for the successful implementation of hybrid prediction,
as the assembly and data generation of training sets can be
costly and time-consuming. We discuss approaches to re-use
data from factorial crosses originally conducted to select among
experimental hybrids as training set for the prediction of hybrid
performance for GY and GDMC of related breeding material.
In general, the gene expression data showed a high level of

statistical robustness with respect to the developmental stage of
the plant. The prediction accuracies were high, even if the gene
expression in early seedling stages might not be the same as in
later developmental stages that determine agronomic perfor-
mance, and even if the 7-day-old plants might not be in exactly
the same developmental stage. This high level of robustness
might be explained by gene expression patterns that stay con-
stant within the developmental stages of a certain genotype but
vary between genotypes.

Transcriptome-based distances

Employing the gene expression of a 46k micro-array for hybrid
prediction with transcriptome-based distances resulted in predic-
tion accuracies of up to rðy; ŷÞ = 0.8 for GY of type 2 hybrids
in cross-validation with the data set of Exp. 1 (Frisch et al.
2010). Creating a core set of genes with a good ability to predict
hybrid performance could considerably reduce the resources
required and therefore contribute to establishing the method in
breeding programmes. This was our motivation to build a core
set of 2k genes, which were selected on the basis of the associa-
tion of differential gene expression and hybrid performance in
Exp. 1.
Cross-validation within exps. 2–4 resulted in low prediction

accuracies for type 2 hybrids (Fig. 2) and prediction accuracies
near zero for type 0 hybrids (results not shown). These values
cannot be regarded as useful for indirect selection. The results of
the cross-validation consequently suggest that using a core set of
genes for hybrid prediction with transcriptome-based distances is
not effective.
Establishing the 2k core set was based on the association of

differential gene expression with hybrid performance for GY and
GDMC. As these two traits are negatively correlated, including
genes related to both traits in the 2k core set could serve as an
explanation for the low prediction accuracies. To investigate this
hypothesis, we carried out an additional analysis, in which we
divided the genes of the 2k core set into two subsets. One
subset contained genes associated with GY, and the second con-
tained genes associated with GDMC. Hybrid prediction with
these subsets did not result in prediction accuracies that were
greater than with the complete 2k core set (results not shown).
Hence, having genes related to both traits in the 2k core set does

Table 1: Accuracy rðy; ŷÞ of predicting hybrid performance for GY and
GDMC with ridge regression using AFLPs and mRNA transcripts. One
or two of the experiments were used as the training set and the remain-
ing experiments were used as the validation set

Training set Validation set GY GDMC
Exps. Exps. Type 0/Type 1 Type 0/Type 1

rðy; ŷÞ
Ridge regression with 1k AFLPs
1 2,3,4 0.25/0.58 !0.19/0.27
2 1,3,4 0.36/0.71 0.14/0.74
3 1,2,4 0.33/0.51 0.36/0.69
4 1,2,3 0.22/0.57 !0.10/0.26
1,2 3,4 0.26/0.50 0.55/0.72
1,3 2,4 0.02/0.51 !0.09/0.66
1,4 2,3 0.15/0.64 0.02/0.40
2,3 1,4 0.56/0.55 0.28/0.59
2,4 1,3 0.34/0.65 0.07/0.62
3,4 1,2 0.54/0.66 0.53/0.66
Mean 0.30/0.59 0.16/0.56

Ridge regression with the 2k core set of mRNA transcripts
1 2,3,4 0.30/0.56 !0.24/0.25
2 1,3,4 0.52/0.65 0.15/0.81
3 1,2,4 0.49/0.56 0.47/0.72
4 1,2,3 0.25/0.50 0.08/0.32
1,2 3,4 0.26/0.42 0.36/0.71
1,3 2,4 0.13/0.57 0.37/0.73
1,4 2,3 0.07/0.58 !0.07/0.34
2,3 1,4 0.69/0.63 0.50/0.57
2,4 1,3 0.60/0.61 0.02/0.74
3,4 1,2 0.50/0.69 0.77/0.73
Mean 0.38/0.58 0.24/0.59
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not seem to be the reason for the low prediction accuracies in
our data set.
The cross-validation was complemented by a validation using

one or two experiments as training set for predicting the perfor-
mance of the type 0 and type 1 hybrids of exps. 1–4 with tran-
scriptome-based distances determined with the 2k core set. The
correlation between observed and predicted hybrid performance
was close to zero for both traits (results not shown).

To summarize, neither cross-validation within experiments nor
validation across experiments convincingly demonstrated that a
core set of genes determined in one experiment can be used for
hybrid prediction with transcriptome-based distances in other
experiments. In particular, it was not possible with the 2k core
set to reach the high prediction accuracies that were observed
with the full 46k micro-array for type 0 hybrids in earlier studies
(Frisch et al. 2010, Fu et al. 2012). We therefore conclude that
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preselecting a core set of genes is not a useful strategy for sav-
ing resources in hybrid prediction with transcriptome-based dis-
tances.

Ridge regression

The transcriptome-based distance approach attempts to identify
genes of which differential gene expression in parental lines is
associated with high hybrid performance. Even if the idea of
identifying 2k genes of which the differential gene expression is
functionally related to hybrid performance for GY and GDMC
was not successful with our data set, the gene expression data of
the 2k core set can be employed in a ridge-regression model in
the sense of marker data (Zenke-Philippi et al. 2016). In this
case, similar expression of a certain gene in two parental lines
can be regarded as an indicator for a common genomic region,
and the prediction accuracies of ridge-regression models with
mRNA transcription profiles and AFLP markers can be com-
pared.
Our data set can be regarded as an ‘incomplete factorial’ (see

Fig. 1 of Schrag et al. 2009, for a graphical illustration), and the
1k AFLPs or 2k mRNA transcripts can be used as predictors for
ridge regression. This allows cross-validation to investigate
hybrid prediction with unbalanced data, employing the cross-
validation procedure described by Schrag et al. (2009). In cross-
validation, the average prediction accuracy for performance of
type 1 hybrids was greater than rðy; ŷÞ = 0.6 for both traits, irre-
spective of whether AFLPs or mRNA transcription profiles were
used as predictors in the ridge-regression approach (Fig. 3). For
type 0 hybrids, the prediction accuracies were around 0.5 for
GY and 0.25 for GDMC.
To complement the cross-validation, we used the data of either

one or two of the four experiments as training set and predicted
the hybrid performance of the remaining factorials (Table 1).
Prediction of exps. 2–4 using Exp. 1 as training set is illustrated
in Fig. 1. For type 1 hybrids, a mean prediction accuracy of
about 0.6 was reached for both traits. For type 0 hybrids, predic-
tion accuracies that were on average smaller than 0.5 were
observed, with small differences between AFLPs and mRNA
transcripts. This confirms that the ridge-regression approach,
which resulted in high prediction accuracies for the balanced
data of Exp. 1 (Zenke-Philippi et al. 2016), has the potential to
be successfully applied with unbalanced data sets.
The motivation for using transcriptome data in hybrid predic-

tion is that mRNA transcripts might be able to capture gene
interactions and epistatic effects that cannot be captured by
DNA markers. However, prediction accuracies of the ridge-
regression model reached similar values for mRNA transcripts
and AFLP data (Fig. 3). From this we conclude that, with our
data set, the mRNA transcripts have about the same level of
information content as ALFPs, and the confirmation of the
hypothesis that additional information content of mRNA tran-
scripts can be used to increase prediction accuracy remains open
for further research.
For the cross-validation within the unbalanced data set,

17 9 7 parental lines were selected as parents of the training set
(following Schrag et al. 2009). On average, the training set con-
sisted of 58 hybrids obtained from crosses of these parental
lines. Technow et al. (2014) reported that the prediction
accuracy for type 2 and type 1 hybrids increased when the size
of the training set increased from 300 to 450 hybrids. For type 0
hybrids, a plateau of prediction accuracy was reached at a train-
ing set size of 300 hybrids. This indicates that increasing the size

of the training set compared to our data might further improve
prediction accuracies. Nevertheless, reliable and stable prediction
results could already be achieved in the present study with rela-
tively low numbers of hybrids in the training set. Close relatives
in training and validation set (Albrecht et al. 2011) and a good
resemblance of the validation set and the training set (Albrecht
et al. 2014) are prerequisites for successful predictions. We con-
clude that with relatively narrow breeding pools, as in our exper-
iment, hybrid prediction with ridge regression is promising with
small training sets. This enables hybrid prediction even in situa-
tions where only limited resources are available.
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