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Abstract The identification of superior hybrids is

important for the success of a hybrid breeding program.

However, field evaluation of all possible crosses among

inbred lines requires extremely large resources. Therefore,

efforts have been made to predict hybrid performance (HP)

by using field data of related genotypes and molecular

markers. In the present study, the main objective was to

assess the usefulness of pedigree information in combina-

tion with the covariance between general combining ability

(GCA) and per se performance of parental lines for HP

prediction. In addition, we compared the prediction effi-

ciency of AFLP and SSR marker data, estimated marker

effects separately for reciprocal allelic configurations

(among heterotic groups) of heterozygous marker loci in

hybrids, and imputed missing AFLP marker data for

marker-based HP prediction. Unbalanced field data of 400

maize dent 9 flint hybrids from 9 factorials and of 79

inbred parents were subjected to joint analyses with mixed

linear models. The inbreds were genotyped with 910 AFLP

and 256 SSR markers. Efficiency of prediction (R2) was

estimated by cross-validation for hybrids having no or one

parent evaluated in testcrosses. Best linear unbiased pre-

diction of GCA and specific combining ability resulted in

the highest efficiencies for HP prediction for both traits

(R2 = 0.6–0.9), if pedigree and line per se data were used.

However, without such data, HP for grain yield was more

efficiently predicted using molecular markers. The addi-

tional modifications of the marker-based approaches had

no clear effect. Our study showed the high potential of joint

analyses of hybrids and parental inbred lines for the pre-

diction of performance of untested hybrids.

Introduction

For hybrid variety development, maize breeders continu-

ously develop a large number of inbred lines. This has been

facilitated and accelerated in recent years by establishing the

doubled haploid technology (Schmidt 2004; Seitz 2005).

With an increase in the number of inbreds, the number of

crosses between lines from different heterotic pools grows

very rapidly and their field evaluation requires large

resources. Thus, in practice only a small proportion of all

possible experimental hybrids are evaluated in field trials.

Identification of promising inter-pool hybrids without hav-

ing them tested in the field has been attempted by prediction

of hybrid performance (HP) utilizing field trial data avail-

able from related crosses. Promising results were obtained

with best linear unbiased prediction (BLUP) of HP, using

mixed linear models for the analysis of phenotypic trait data

together with coancestry coefficients estimated from pedi-

gree records or marker data (Bernardo 1994).
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Mixed linear models for the joint analysis of field data

from hybrids and their parental inbreds allow adjustment

for trial and environmental effects and facilitate the esti-

mation of mid-parent heterosis across several field experi-

ments. In such a joint analysis, covariance between the per

se performance and the general combining ability (GCA)

of the parental lines can be considered in the model. In

addition, covariance among parental lines can be modeled

with pedigree-based coancestry coefficient matrices

(Piepho et al. 2008). The gain of information from related

genotypes is expected to improve the prediction, especially

of hybrids between parents for which no testcross data are

available (Schrag et al. 2009). However, the degree of

improvement in HP prediction by considering the covari-

ance between GCA and line per se performance in com-

bination with pedigree-based relationship matrices has not

been investigated so far.

Since the advent of molecular markers, various marker-

based measures have been used to predict HP in maize.

These measures are genetic distance (Lee et al. 1989;

Bernardo 1992; Charcosset and Essioux 1994), hybrid

value (Dudley et al. 1991) and predicted specific combin-

ing ability (SCA) (Charcosset et al. 1998). Another

approach to make use of molecular markers for HP pre-

diction is support vector machine regression (Maenhout

et al. 2010). In BLUP analyses of field data, Bernardo

(1999) included marker data to account for quantitative

trait loci (QTL). However, only marginal improvements

were observed if compared with a model using field data

alone. Linear regression on marker-based estimates of

genotypic values was used by Vuylsteke et al. (2000) to

predict HP and SCA of inter-pool crosses in maize. This

approach was extended and validated for the prediction of

grain yield (GY) and grain dry matter content (GDMC) in

dent 9 flint factorial crosses using bi-allelic amplified

fragment length polymorphism (AFLP) markers by Schrag

et al. (2006, 2007).

Multi-allelic marker systems, such as simple sequence

repeat (SSR) markers, play an important role in plant

breeding (Karakousis et al. 2003). They are expected to

carry higher information content per marker locus than bi-

allelic markers and thereby enhance the probability of

distinguishing different functional alleles for estimation of

marker effects. However, the number of observations per

allelic configuration of marker loci in hybrids is reduced.

This leads to the question, whether efficiency of HP pre-

diction based on a SSR marker data set is higher than with

an AFLP marker data set, assuming that both are dimen-

sioned with comparable expenses.

Previous studies ignored whether alleles that were

identical in state were contributed by the dent or by the flint

parent (Vuylsteke et al. 2000; Schrag et al. 2007). For a

given marker locus of a hybrid, the reciprocal allelic

configurations of heterozygous marker loci were therefore

not distinguished for estimation of marker effects. This

model assumes that a marker allele is coupled with the

same QTL allele in both heterotic pools. However, the

European flints were introduced into Europe more than

500 years ago (Rebourg et al. 2003), whereas the dent lines

in Central Europe were derived from US dent lines during

the past 50 years (Stich et al. 2005). Hence, dent and flint

lines have been genetically separated for a long period and,

therefore, the linkage disequilibria between markers and

QTL may differ between both heterotic pools (Charcosset

and Essioux 1994). This raises the question, whether effi-

ciency of HP prediction increases by estimating the marker

effects separately for reciprocal allelic configurations of

heterozygous marker loci in hybrids.

Markers with missing observations cannot be used for

prediction approaches based on the total contribution of

selected markers (TCSM, Vuylsteke et al. 2000) or multi-

ple linear regression (MLR, Schrag et al. 2007). As the

number of parental genotypes increases, this problem

becomes very severe due to the increasing probability of at

least one dropout for a given marker. One possibility is to

develop prediction models that accept missing observa-

tions, such as the TEAM approach (Schrag et al. 2007). A

more general approach is to estimate missing marker data

from the observed genotypes of tightly linked markers

(Balding 2006; Roberts et al. 2007). This promises to be a

simple and effective solution for prediction approaches that

otherwise cannot handle missing marker data. However,

the usefulness of such data imputation for marker-based

prediction of HP has not been studied so far.

The goal of our study was to investigate marker-based

prediction of the performance of inter-pool maize hybrids

using joint analyses of hybrids and parental lines. The main

objective was to study the advantage of including pedigree-

based estimates of covariance among relatives as well as

covariance between GCA and per se performance of

parental lines in the mixed linear model. In addition, we

compared the prediction efficiency using SSR instead of

AFLP marker data, investigated the efficiency of prediction

using marker effects that were estimated separately for

reciprocal allelic configurations of heterozygous marker

loci in hybrids, and analyzed the benefit of imputing

missing AFLP marker data for marker-based HP

prediction.

Materials and methods

Phenotypic and pedigree data

Field data and pedigree records were used as described by

Schrag et al. (2009). Briefly, nine factorial mating designs
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of dent 9 flint maize hybrids were evaluated each in a

1-year multi-location experiment. This resulted in 54

experiment by location combinations, designated as single

trials, and involved 6 years and 11 locations in total.

Between 5 and 9 check hybrid varieties were included in

each experiment. By combining these data, an unbalanced

factorial between 47 dent and 32 flint inbred parents was

generated, comprising 400 tested hybrids. The 79 inbred

parents and 41 additional lines were evaluated for their

per se performance in 11 single trials, involving 3 years

and 5 locations. All trials were carried out using adjacent

a-designs with two-row plots, five plots per block, and two

to three replicates. GY was recorded in Mg ha-1 adjusted

to 155 g kg-1 grain moisture, while GDMC was recorded

in percent.

Mixed linear model analysis

Data for GY and GDMC from all experiments were ana-

lyzed with mixed linear models. The 41 additional lines in

the line per se experiment, which were not used as parents

in factorials matings, were treated as checks. These and the

check varieties in the experiments of the hybrids were used

to adjust for single trial effects, but were not used to esti-

mate genetic variances. Dummy variables were used to

divide genotypes into hybrids, dent and flint parental lines,

and checks. The model can be described in the syntax of

Patterson (1997) by

Y þ Lþ Y � Lþ C : T � Y � Lþ R � T � Y � L
þ B � R � T � Y � Lþ C � Lþ C � Y þ C � Y � L
þ GCAdent þ GCAflint þ SCAþ linedent þ lineflint

þ GCAdent � Lþ GCAflint � Lþ SCA � Lþ linedent � L
þ lineflint � L

þ GCAdent � Y þ GCAflint � Y þ SCA � Y þ linedent � Y
þ lineflint � Y

þ GCAdent � Y � Lþ GCAflint � Y � Lþ SCA � Y � L
þ linedent � Y � Lþ lineflint � Y � L

ð1Þ

where fixed and random effects were separated by a colon

and interactions between two effects were denoted by a dot

between the main effects. Main effects for the factors year

(Y), location (L), and check (C) were treated as fixed

effects, which allowed accounting for performance

differences between single trials. Genotypic effects, all

interactions, and effects of trials (T), replicates (R) within

trials, and incomplete blocks (B) within replicates were

treated as random. Genotypic effects of the factorial

crosses were partitioned into GCA effects of the parental

dent and flint inbreds, and SCA effects of the crosses

(Gardner and Eberhart 1966). It was assumed that the

vector of GCA effects was normally distributed with

variances A1r2
GCAdent and A2r2

GCAflint for the dent and flint

pools, respectively, where A1 and A2 were the additive

relationship matrices for genotypes of the respective pools.

They were computed from coefficients of coancestry

among the inbred lines (Bernardo 2002). The vector of

SCA effects was assumed to have variance Dr2
SCA, where D

was a matrix with elements equal to the product of parental

coefficients of coancestry. Inbreds were divided into dent

ðlineDentÞ and flint ðlineFlintÞ lines with variances

A1r2
PERSEdent and A2r2

PERSEflint. A covariance between the

per se performance of an inbred and its corresponding

GCA effect was considered in the model as follows. If

GCA denotes a vector of GCA effects of all parents in one

pool and PERSE denotes a vector of the corresponding

effects of line per se performance in the same pool and

both vectors have the same order of genotypes, then the

covariance of both vectors can be described by

cov
GCA

PERSE

� �
¼ A � r2

GCA A � rGCA;PERSE

A � rGCA;PERSE A � r2
PERSE

� �

¼ R� A;

where A is the additive relationship matrix, rGCA;PERSE is

the covariance between GCA and per se effect of parental

lines, and R is a 2 9 2 unstructured matrix. This covari-

ance structure was assumed for main GCA and line per se

effects for both dent and flint lines as well as their inter-

actions with location effects. All other interactions of

genetic effects with year and location were assumed

independent due to convergence issues, which may result

from much stronger imbalance of parent-by-year classifi-

cations than of parent-by-location classifications. The

residual error and the variance of incomplete blocks were

assumed to be specific for each single trial. Since this

model used pedigree (P?) data in the relationship matrices

and considered covariance (C?) between GCA and line per

se performance, the model was denoted as P?/C? model.

Three additional models were used, with varying variance–

covariance structure. In the Model P?/C- all covariances

between line per se performance and corresponding GCA

effect were dropped from the model, so that R was diag-

onal. In Model P-/C?, identity matrices were used instead

of A1, A2, and D. In Model P-/C- neither pedigree-based

relationship matrices nor covariance between GCA and

line per se performance were considered. These four

models were compared on the basis of their restricted log-

likelihood LLR and the number of estimated parameters k

by using Akaike’s information criterion (AIC), which was

calculated as -2 LLR ? 2k, where models with lower AIC

are preferable (Bozdogan 1987). All mixed linear model

analyses were performed with ASReml (Gilmour et al.

2002). Coefficients of coancestry were calculated using the

SAS procedure INBREED (SAS Institute Inc. 2000). The
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P?/C? model was chosen as the underlying model to

study the influence on prediction efficiency of using

(1) SSR instead of AFLP markers, (2) marker effects that

were estimated separately for reciprocal allelic configura-

tions of heterozygous marker loci, and (3) imputed missing

AFLP marker data.

Molecular data

The 47 dent and 32 flint lines were genotyped with AFLP

and SSR markers. The AFLP analyses were carried out

with 20 primer-enzyme combinations (Vos et al. 1995), as

described in detail by Schrag et al. (2006). Positions of 910

mapped AFLP bands were obtained from an integrated

AFLP map (Vuylsteke et al. 1999). The SSR analyses were

conducted with bulked samples of five plants per inbred

line. Harvested leaves were freeze-dried and ground to

powder. Genomic DNA was extracted using a modified

CTAB procedure (Saghai-Maroof et al. 1984). Analyses

were carried out for 256 publicly available SSR markers,

which were uniformly distributed across the genome. Map

positions (IBM2 2004 neighbors) and primer sequences

were obtained from MaizeGDB (http://www.maizegdb.org).

The primer pairs were synthesized by Sigma-Genosys

(Steinheim, Germany), with one primer of each pair being

fluorescent labeled with indodicarbocyanine (Cy5) at the 50

end. The PCR reactions were performed in a total volume

of 9.75 ll containing 60 ng of template DNA, 154 lM of

each dNTP, 256 nM of each primer, 2.56 mM MgCl2,

1 9 PCR Buffer (Mg2?-free), and 0.5 U Taq DNA poly-

merase (Invitrogen, Karlsruhe, Germany). Thermocycling

consisted of an initial denaturation step of the template

DNA at 94�C for 150 s, followed by 33 cycles of 93�C for

45 s, 52–60�C (depending on the primer set) for 45 s, and

72�C for 45 s, with a final extension phase of 10 min at

72�C. For some primer sets, a touchdown step from in

between 58 and 64�C down to 55�C was included in the

protocol. The resulting amplified DNA products were

analyzed on polyacrylamide gels (Ultra Pure SequaGel-

XR; National Diagnostics, Atlanta) on an ALF Express

DNA sequencer (Amersham Biosciences, UK). The DNA

fragments were sized with ALFWIN v2 software. Molec-

ular markers were used for prediction if they were poly-

morphic and exhibited less than 30% missing observations,

separately for dent and flint lines.

Imputation of missing AFLP marker data

Missing observations in the AFLP marker data set were

replaced by predictions of marker genotypes, resulting in a

complete marker data set, which was denoted as AFLP*.

The missing genotypes were imputed based on measures of

pair-wise haplotype dissimilarity within sliding windows of

variable size, using NPUTE software (Roberts et al. 2007).

Imputations were carried out separately for dent and flint

lines and for each chromosome.

Cross-validation

Efficiency of prediction was evaluated by cross-validation

with 300 randomized runs as described in detail by

Schrag et al. (2009). For each cross-validation run, the

47 9 32 factorial data set was divided into an estimation

set and a test set. In each cross-validation run, half of the

parental lines from each heterotic group were randomly

assigned as ‘testcross-evaluated’. The crosses between

testcross-evaluated lines formed the estimation set. The

remaining crosses formed the test set, consisting of

‘Type 0’ crosses, meaning that none of the parents were

evaluated for testcross performance, and ‘Type 1’ crosses,

meaning that one parent was evaluated for testcross per-

formance. In contrast to subsampling of testcross data, the

per se performance data of all lines always remained in

the estimation set. Variance components were estimated

from the complete data set and used for all cross-vali-

dation runs. For each run, the Pearson correlation coeffi-

cient between predicted and observed performance was

separately determined for Type 0 and Type 1 hybrids in

the test set. The median across all runs of squared cor-

relation coefficients (R2) was considered as prediction

efficiency. Boxplots of R2 values were based on Tukey’s

five number summary (Tukey 1977).

Prediction methods

For HP prediction, six methods were studied, two of

which were based on phenotypic and pedigree data (PP),

and four on phenotypic, pedigree, and molecular marker

data (Schrag et al. 2009). In the PP-GS method, HP was

predicted by BLUPs for GCA and SCA of the corre-

sponding dent and flint lines and their cross, estimated by

mixed linear model analysis from the hybrids in the

estimation set. If coefficients of coancestry were included

in the mixed linear model analysis, the GCA estimates

for testcross-unevaluated parental lines were obtained

from data of related testcross-evaluated inbred lines, and

the SCA estimates of untested hybrids were obtained

from related tested hybrids. In the PP-L method, the

average of BLUPs for per se performance of both

parental lines was used as predictor of HP. Marker-based

prediction methods were built on either multiple linear

regression (MLR) or ‘total effects of associated markers’

(‘TEAM’), both approaches being described in detail by

Schrag et al. (2007). In short, for the MLR approach,

performance of hybrids was regarded as a function of the

effects of their allelic configurations at the marker loci in

454 Theor Appl Genet (2010) 120:451–461
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the model. Variable selection of the marker loci was

carried out by forward selection based on the F-to-enter

procedure. For the TEAM approach, each marker locus

was separately tested for significant association with

hybrid performance at a false discovery rate of 5%. The

effects of the allelic configurations on hybrid perfor-

mance were then estimated and summed up across all

significant loci, resulting in the TEAM value and con-

sidered as marker-based estimate of the genotypic value

of a hybrid. In a simple linear regression across all

hybrids, TEAM values were then used as predictors for

hybrid performance (Schrag et al. 2007). In the MLR-H

and TEAM-H methods, marker effects for HP were

obtained from the estimation set and used for prediction

of HP in the test set. In the analogous manner, marker

effects were computed for mid-parent heterosis in the

estimation set, and used for prediction of mid-parent

heterosis in the test set. For the MLR-LM and TEAM-

LM methods, these mid-parent heterosis predictions were

combined with BLUPs of line per se performance, pro-

viding HP predictions of test set hybrids.

Distinguishing identical marker alleles from different

heterotic groups

The marker genotype of each hybrid was determined by the

marker genotypes of its parental inbred lines (Schrag et al.

2007). Given n marker alleles for a single locus, there are

n2 possible combinations of parental alleles. These consist

of n homozygous and n2 - n heterozygous hybrid marker

genotypes, the latter comprising (n2 - n)/2 unique allele

combinations and their (n2 - n)/2 alternate counterparts.

In a first approach (Het1), the reciprocal allelic configu-

rations of heterozygous marker loci in hybrids were pooled

together in the marker data as was done by Schrag et al.

(2007, 2009). In a second approach (Het2), the reciprocal

allelic configurations were distinguished for estimation of

marker effects.

Results

Marker data

Assessment of the marker data for polymorphism and a

maximum drop-out rate of 0.3 resulted in the retention of

732 markers in the AFLP data set, 891 markers in the

AFLP* data set, and 179 markers in the SSR data set. The

average numbers of allelic configurations at marker loci of

hybrids for the AFLP data were 2.7 for Het1 and 3.5 for

Het2, and these were very similar for AFLP*. The average

numbers of allelic configurations for the SSR data set were

10.4 for Het1 and 12.2 for Het2.

Joint analyses of hybrids and inbreds

The number of estimated parameters k was 159 for P?/C?

and P-/C? models, and 155 for P?/C- and P-/C-

models. The models using pedigree-based relationship

matrices (P?) showed lower AIC values (Table 1) than

those using identity matrices (P-). Models including

covariance between GCA and per se performance of the

parental lines (C?) resulted in lower AIC than those, in

which this covariance was not considered (C-). Conse-

quently, the P?/C? model showed the lowest AIC and the

P-/C- model the highest. The estimates of variance

components for GCA ranged from 0.175 to 0.226 for GY in

Mg ha-1 and 1.89–2.92 for GDMC in percent (Table 1).

Estimates for GCA and SCA variance components were

higher for P? models in most cases. The ratio of

SCA:GCA variance components for the model with the

lowest AIC (P?/C? model) was 0.29 for GY and 0.14 for

GDMC.

The differences in efficiencies between HP prediction

approaches that were based on the four models P?/C?,

P?/C-, P-/C?, and P-/C-, were largest for PP-GS and

smallest for TEAM-H (Table 2). The prediction efficien-

cies were lower for MLR-H and MLR-PM (not shown)

than for TEAM-H and TEAM-PM. However, the predic-

tion efficiencies of the four models (P?/C?, P?/C-,

P-/C?, P-/C-) showed similar patterns for MLR-H

versus TEAM-H and for MLR-PM versus TEAM-PM. Use

of the pedigree-based covariance matrices for GCA and

SCA effects instead of identity matrices increased R2 pre-

dominantly for PP-GS. With the P-/C- model, BLUP for

GCA and SCA were zero due to the lack of covariance

information between the genotypes, and, therefore, Type 0

hybrids were not predicted with PP-GS. However, while

for GY these increases were large in C? and C- models,

for GDMC this was observed in C- models only. The

inclusion of covariance between GCA and line per se

performance in the mixed linear model enhanced R2 pre-

dominantly for PP-GS, followed by PP-L and TEAM-LM,

however, not for TEAM-H. This increase in R2 of PP-GS

was more pronounced for GDMC than for GY.

Modifications of the marker-based prediction methods

Markers associated with HP and mid-parent heterosis for

GY and GDMC were selected with the marker-based pre-

diction methods (Table 3). On the average across all runs,

distinctly more markers were selected with TEAM than

with MLR. When MLR methods were applied to SSR data,

they selected only a very small number of markers and

failed in some cases to select any marker. Distinguishing

reciprocal allelic configurations of heterozygous marker

loci in hybrids (Het2 vs. Het1) increased the number of
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selected markers for the TEAM methods, but reduced it for

the MLR methods. For the imputed AFLP* data set, more

markers were selected than for the original AFLP data set.

Prediction efficiencies for GY were highest for PP-GS

(Table 4). For GY, the marker-based methods MLR-LM,

TEAM-H and TEAM-LM were superior to PP-L, while for

GDMC, only TEAM-LM resulted in similarly high R2 as

PP-L. The use of the SSR marker data set instead of AFLP

for MLR-based prediction changed R2 by -0.01 to ?0.10

for Type 0 hybrids, and by -0.13 to ?0.03 for Type 1

hybrids. With TEAM approaches, R2 was increased by

0.03–0.04 for GY, but often reduced for GDMC (-0.05 to

0.02). Distinguishing identical marker alleles from differ-

ent heterotic groups changed R2 by -0.01 to ?0.03 (data

not shown). With the imputed AFLP* data set, R2 of MLR-

H was up to 0.06 higher than with the original AFLP data

set. For the remaining marker-based approaches, R2 chan-

ged by -0.02 to ?0.02 when based on AFLP*.

Discussion

Joint analyses of hybrids and inbreds

Our study was based on field data that were also used by

Schrag et al. (2009) for prediction of HP with mixed linear

models. While performing the current analyses of the data

we detected an incorrect ordering of columns and rows of

the pedigree-based relationship matrices for GCA and line

per se performance in the previous study. Owing to the

corrected covariance matrices and some minor changes of

the model in the present study, for P?/C?, the estimates of

variance components and the R2 of prediction based on

GCA and line per se performance differed considerably

from the earlier results in Schrag et al. (2009).

Variance components for GY in the present study were

comparable to those reported by Fischer et al. (2008) for

breeding material that covered a period of 30 years in the

same breeding program. For GDMC, the variance com-

ponents were in good agreement with Parisseaux and

Bernardo (2004), who analyzed 22,774 single crosses

belonging to nine heterotic patterns. Larger variance

components for the P? models in contrast to the P-

models (Table 1) may be due to the reason that relation-

ships among parental lines were considered by using ped-

igree-based covariance matrices instead of assuming

unrelated parental lines by using identity matrices. To

explain larger variance components for the P? models,

let us consider two genotypes with positive correlation

b between them. Then, the A-matrix can be written as

(1 - b)I ? bJ, where I is an identity matrix and J is a

matrix with all entries equal to 1. In this case, bJ is a

constant effect for all genotypes and confounded with the

overall mean of genotypes. For P- models, the A-matrix

is an identity matrix I. For the considered case, Ar2 is

equal for P? and P- models, from which follows, that

(1 - b)Ir2
pþ ¼ Ir2

p�; and thus for the estimated variance

components, r2
pþ[ r2

p�.

Pedigree-based relationship matrices were used to

model the covariance among inbred lines, both for their

GCA and line per se performance. With these P? models,

R2 for HP prediction of GY was greatly improved for PP-

GS, but only marginally for PP-L and TEAM. These dif-

ferences were due to considering the untested parental lines

Table 1 Estimates of mixed linear model parameters from joint analyses of hybrids and parental lines for grain yield (in Mg ha-1) and grain dry

matter content (in %)

Trait/estimate P? P-

C? C- C? C-

Grain yield

LLR -28,114 -28,128 -28,152 -28,164

AIC 56,546 56,566 56,622 56,638

r2
GCAdent 0.226 ± 0.069 0.185 ± 0.067 0.175 ± 0.042 0.178 ± 0.042

r2
GCAflint 0.192 ± 0.074 0.197 ± 0.077 0.198 ± 0.064 0.200 ± 0.064

r2
SCA 0.061 ± 0.015 0.063 ± 0.016 0.043 ± 0.012 0.043 ± 0.012

Grain dry matter content

LLR -8,394 -8,435 -8,491 -8,544

AIC 17,106 17,180 17,300 17,398

r2
GCAdent 2.92 ± 0.70 2.70 ± 0.67 2.44 ± 0.51 2.36 ± 0.49

r2
GCAflint 2.17 ± 0.66 2.21 ± 0.72 2.00 ± 0.59 1.89 ± 0.58

r2
SCA 0.36 ± 0.06 0.36 ± 0.06 0.28 ± 0.04 0.28 ± 0.04

Restricted log-likelihood (LLR), Akaike’s information criterion (AIC), and variance components (r2) of general (GCA) as well as specific

combining ability (SCA) and their standard errors are given. The analyses were performed considering presence and absence of pedigree

information (P?/P-) in combination with or without modelling the covariance between GCA and per se performance of parental lines (C?/C-)
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as having no testcrosses but being evaluated for line per se

performance. Therefore, in our cross-validation approach,

HP data were removed from the estimation sets, but data of

line per se performance were retained. The GCA effects of

parental lines that were not evaluated in testcrosses were

not estimable from field data, but could be predicted from

related genotypes by using pedigree-based covariance

information. In contrast, the PP-L approach was based on

the per se performance of lines, which was included in all

estimation sets, resulting in only small additional benefit if

pedigree-based covariance information was utilized. For

GDMC there were practically no positive effects of P?

over P- under the C? scenario, even for PP-GS. However,

in the C- case, where PP-GS did not benefit from line per

se GDMC performance data, additional information from

related genotypes via pedigree-based relationship matrices

improved the prediction efficiency of PP-GS. The

improvement in R2 of P? was often larger for Type 0 than

Table 2 Efficiency of prediction (R2) of grain yield (GY) and grain

dry matter content (GDMC) of hybrids having no (Type 0) or one

(Type 1) parental line evaluated in testcrosses

Trait/hybrid type Method Median R2

P? P-

C? C- C? C-

Grain yield

Type 1 PP-GS 0.73 0.61 0.53 0.39

PP-L 0.32 0.14 0.23 0.13

TEAM-H 0.54 0.54 0.50 0.50

TEAM-LM 0.61 0.53 0.54 0.50

Type 0 PP-GS 0.60 0.40 0.22 NA

PP-L 0.27 0.14 0.17 0.12

TEAM-H 0.43 0.44 0.36 0.37

TEAM-LM 0.46 0.39 0.37 0.35

Grain dry matter content

Type 1 PP-GS 0.87 0.61 0.83 0.44

PP-L 0.77 0.64 0.78 0.63

TEAM-H 0.43 0.43 0.42 0.41

TEAM-LM 0.80 0.72 0.80 0.72

Type 0 PP-GS 0.79 0.32 0.75 NA

PP-L 0.75 0.64 0.75 0.63

TEAM-H 0.23 0.24 0.22 0.23

TEAM-LM 0.75 0.65 0.74 0.65

Prediction was based on phenotypic data (PP-GS, PP-L) or pheno-

typic and AFLP marker data (TEAM-H, TEAM-LM). The underlying

joint analyses of hybrids and parental lines were performed consid-

ering presence and absence of pedigree information (P?/P-) in

combination with or without modeling the covariance between

general combining ability and per se performance of parental lines

(C?/C-). The median prediction efficiency (R2) was obtained across

300 cross-validation runs

NA not applicable

Table 3 Average number of markers selected for prediction of

hybrid performance and mid-parent heterosis of grain yield and grain

dry matter content

Trait/marker

data

Hybrid performance Mid-parent heterosis

TEAM MLR TEAM MLR

Het1 Het2 Het1 Het2 Het1 Het2 Het1 Het2

Grain yield

AFLP 281.6 344.6 16.8 12.1 252.8 313.8 13.3 10.0

AFLP* 365.6 442.0 21.0 13.0 329.6 402.9 16.9 10.8

SSR 104.5 112.6 2.5 2.4 102.9 108.9 2.8 2.6

Grain dry matter content

AFLP 233.3 296.6 20.6 13.9 141.8 189.9 14.7 10.7

AFLP* 300.3 381.1 26.0 14.1 181.0 242.7 19.7 12.4

SSR 92.1 101.0 2.5 2.2 76.1 82.4 2.1 2.0

Two methods (TEAM and MLR) were applied to three marker data

sets, namely AFLP, AFLP* (AFLP with imputed missing observa-

tions), and SSR, to identify associated markers. Reciprocal allelic

configurations of heterozygous marker loci in hybrids were pooled

(Het1) or distinguished (Het2)

Table 4 Efficiency of prediction (R2) for grain yield and grain dry

matter content of hybrids having no (Type 0) or one (Type 1) parental

line evaluated in testcrosses

Method Marker data Median R2

Grain yield Grain dry matter content

Type 1 Type 0 Type 1 Type 0

PP-GS – 0.73 0.60 0.87 0.79

PP-L – 0.32 0.27 0.77 0.75

MLR-H AFLP 0.38 0.16 0.31 0.06

AFLP* 0.44 0.21 0.31 0.09

SSR 0.36 0.25 0.18 0.06

MLR-LM AFLP 0.54 0.33 0.74 0.62

AFLP* 0.54 0.33 0.71 0.60

SSR 0.49 0.33 0.76 0.71

TEAM-H AFLP 0.54 0.43 0.43 0.23

AFLP* 0.54 0.45 0.43 0.25

SSR 0.57 0.46 0.42 0.19

TEAM-LM AFLP 0.61 0.46 0.80 0.75

AFLP* 0.63 0.49 0.80 0.74

SSR 0.65 0.50 0.82 0.76

Prediction was based on phenotypic data (PP-GS, PP-L) or pheno-

typic and AFLP marker data (MLR-H, MLR-LM, TEAM-H, TEAM-

LM). The marker-based methods were applied to three marker data

sets, namely AFLP, AFLP* (AFLP with imputed missing observa-

tions), and SSR. Reciprocal allelic configurations of heterozygous

marker loci in hybrids were pooled for estimation of marker effects.

The median prediction efficiency (R2) was obtained across 300 cross-

validation runs
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for Type 1 hybrids, which was most evident with PP-GS.

Since for Type 0 hybrids no testcross observations for the

respective parental lines were available, the information

gain due to the pedigree-based covariance matrix was more

effective. For HP prediction, this demonstrated the

advantage of covariance information among parents, if

testcross information is lacking.

The correlation between the per se performance of

parental inbred lines and their testcross performance is

expected to be lower for heterotic traits, such as GY

in maize, than for non-heterotic traits, such as GDMC

(Hallauer and Miranda Filho 1988). Accordingly, for the

C- models, the R2 values of the PP-L approaches were

among the lowest for GY and highest for GDMC. Con-

sideration of covariance between GCA and per se perfor-

mance of parental lines increased the efficiency of HP

prediction for both traits and both PP-models, especially of

GDMC for PP-GS. In the basic P-/C- model, the effi-

ciency of the PP-GS method to predict GDMC of hybrids

was much lower than for PP-L. Thus, for GDMC, PP-GS

benefited from PP-L by taking into account the covariance

between GCA and line per se performance, and in some

cases even to such an extent, that R2 with PP-GS were

slightly higher than with PP-L. For Type 0 hybrids, no field

data on testcrosses were available for estimation of GCA of

the respective parental lines, so that pedigree-based rela-

tionship matrices and covariance between GCA and line

per se performance were the only sources of information.

This lack of other information may explain the fact that the

beneficial effect of C? for GDMC prediction with PP-GS

was larger for Type 0 hybrids than for Type 1 hybrids and

also larger, if no pedigree-based relationship matrices were

used.

The use of pedigree-based relationship matrices and

covariance between GCA and per se performance of

parental lines enabled the exploitation of additional infor-

mation from related genotypes and resulted in a better

model fit to phenotypic data, indicated by the AIC values.

In general, both enhancements also improved the effi-

ciencies of HP prediction, yet to a varying degree,

depending on the prediction method, trait and type of

hybrid. The prediction approaches that were restricted to

the use of phenotypic and pedigree data were more sensi-

tive to the use of additional information from related

genotypes than those based on markers (Fig. 1). For GY,

the marker-based TEAM prediction approaches were often

superior or at least similar to the PP approaches for their

R2, if no pedigree-based relationship matrices were used. In

the P?/C- case, the TEAM approaches were comparable

to PP-GS and clearly superior to PP-L. With the P?/C?

model, however, PP-GS achieved the highest R2. For the

prediction of GDMC based on C- models, the TEAM-L

(marker-based) and PP-LM (not marker-based) methods

were superior with respect to R2. In summary, the results

revealed the high predictive power of joint analyses of

hybrids and lines, which utilized pedigree-based relation-

ship matrices and covariance between GCA and per se

performance of parental lines.

Enhancements of the marker-based prediction methods

Among the four mixed linear models, the P?/C? model

showed the lowest AIC for GY and GDMC, and therefore

was chosen to further investigate the effects of modifica-

tions of the marker-based prediction methods on their

efficiency. Efficiencies for prediction of HP using an AFLP

marker data set were compared with that using an SSR

marker data set, but did not reveal a general superiority of

one over the other. Considering the use of mapped markers

in this study, the total marker costs were estimated to be

comparable or slightly lower for AFLP than for SSR data.

The genome coverage in terms of the number of hybrid

allele configurations across all loci was similar for AFLP

and SSR. Due to higher costs and higher information

P+/C+ P+/C− P−/C+ P−/C− P+/C+ P+/C− P−/C+ P−/C−

0.0

0.2

0.4

0.6

0.8

1.0

R2

PP−GS TEAM−H

Fig. 1 Efficiency of prediction (R2) of grain yield for hybrids having

no or one parental line evaluated in testcrosses. Prediction was based

on estimates of general and specific combining ability (PP-GS) or

combining abilities and AFLP marker data (TEAM-H). The under-

lying joint analyses of hybrids and parental lines were performed

considering presence or absence of pedigree information (P?/P-) in

combination with or without modeling the covariance between

general combining ability and per se performance of parental lines

(C?/C-). Each of the eight boxplot columns corresponds to a specific

prediction scenario and comprises 300 R2 values, which in cross-

validation were obtained from observed and predicted performance of

hybrids
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content per SSR marker locus, the initial number of

available SSR markers was lower than for AFLP markers.

Consequently, fewer markers were found to be signifi-

cantly associated with the traits under study. Markers with

missing observations in the respective data sample had to

be excluded from the MLR analyses. This reduced the

number of available SSR markers approximately by a

factor of ten (data not shown), which can be the reason for

the very low numbers of selected SSR markers for MLR.

When estimating the effects separately for reciprocal

allelic configurations of heterozygous marker loci in

hybrids, a reduced estimation error of marker effects and

improved efficiency for HP prediction would be expected

under the assumption that heterotic groups differ in their

linkage disequilibria between marker and QTL alleles. The

advantage of such a fine distinction of allelic configurations

is associated with the disadvantage of higher numbers of

configurations. Given n alleles for one locus, the maximum

number of hybrid marker genotypes is (n2 ? n)/2 for Het1,

and a higher number of n2 configurations for Het2. Con-

sequently, an increase of the average number of configu-

rations was observed, resulting in a reduced number of

observations per configuration. For the TEAM approaches,

each marker was tested separately, so that the adverse

effects on prediction may be smaller. However, in the MLR

approach, all markers included in the model were fitted

simultaneously. This could explain the considerable

reduction in the number of selected markers. Both,

advantage and disadvantage together, may explain the

small differences in R2 between Het1 and Het2. Population

substructure within heterotic pools, e.g., Iodent and Stiff-

Stalk subgroups within the dent pool, may be important.

However, such further differentiation of alleles and their

effects would aggravate the problem of large numbers of

allelic configurations. Another problem when identifying

markers associated with HP is the relationship among

individuals. The true number of uncorrelated observations

and therefore the degrees of freedom remain veiled, which

may lead to false-positive marker associations in the MLR

or TEAM approaches.

Missing marker observations in the AFLP data set were

imputed using NPUTE software (Roberts et al. 2007). In

this imputed data set AFLP* with no missing observations,

the number of markers retained after assessment of data

quality was higher (891 instead of 732). The number of

markers that were selected by TEAM or MLR for their

association with GY and GDMC was increased by a similar

degree. However, R2 values of TEAM differed only mar-

ginally between the imputation approach (AFLP*) and the

original approach (AFLP), which substituted missing esti-

mates of marker effects with average values. This indicated

that both approaches were comparable in their potential to

handle missing observations in the analyzed marker data

set of AFLP markers. For the MLR approach, however,

markers cannot be used for HP prediction if one or more

observations are missing. Thus, improved R2 were espe-

cially expected for the MLR approaches if applied to the

AFLP* data set. This was observed for hybrid GY pre-

diction with MLR-H only, however, not in the other cases.

Altogether, the effects of imputing missing observations on

HP prediction were small. With a drop-out rate of 1–3%

and N = 79 genotyped inbreds, the expected proportion of

usable markers is 9–45%, which is similar to what was

observed for MLR in the current study (data not shown).

However, in commercial breeding programs with very

large number of analyzed inbred lines, this limitation will

be even more severe. With a low drop-out rate of 0.5% and

with N = 1,000 genotyped lines, only 0.7% of all marker

loci would be usable for MLR, which is a highly inefficient

use of marker data. Thus, with an increasing amount of

genotyping data, imputing missing marker observations

seems to remain an issue. Also, for higher map densities,

the efficiency of predicting missing marker observations

from observed genotypes of tightly linked markers is

expected to increase due to the higher linkage disequilibria.

The joint effect of two modifications, namely (1) distin-

guishing reciprocal allelic configurations of heterozygous

marker loci in hybrids (Het2) and (2) imputing missing

observations in marker data (AFLP*) resulted in a slight

increase of R2 for prediction of GY mainly for MLR-H. In

general, however, the modifications of the marker-based

approaches had no clear effect (Fig. 2).

Conclusions for the application in breeding programs

For the prediction of GY and GDMC of hybrids, the PP-GS

approach was superior to PP-L and marker-based approa-

ches, if pedigree-based relationship measures and covari-

ance between GCA and line per se performance were used.

The choice of model for analysis of the phenotypic data

had a considerably higher impact on R2 than the modifi-

cations of marker-based approaches. It was demonstrated,

that owing to the relatedness in the breeding materials and

the relationship between hybrids and inbreds, the consid-

eration of pedigree information (P?) and per se data (C?)

resulted in the highest prediction efficiencies, especially for

the non-marker approaches PP-GS and PP-L. For an

untested hybrid, phenotypic data of its parents per se per-

formance or of hybrids sharing a common parent can be

regarded as estimators for the total effects of all trait-rel-

evant genes in that hybrid. However, if no hybrids exist,

that share one of the parents of the hybrid to be predicted,

and also no per se performance of its parents is available,

then marker-based approaches for prediction of HP have

the potential to improve the efficiency of identifying

superior hybrids. Molecular marker data may substitute
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pedigree data for the determination of the genotypic

covariance matrix and could hereby further improve the

prediction of hybrid performance.
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