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Abstract. In recurrent backcrossing designed for introgression of a target al-
lele from a donor into the genetic background of a recurrent parent (RP),
molecular markers can accelerate recovery of the recurrent parent genome
(RPG). The objectives of this study were to determine in marker-assisted
backcrossing (MAB) (i) the optimum positioning of flanking markers (d1, d2)
and (ii) the minimum number of individuals (n) required for obtaining with
a certain probability a given number of individuals that carry the donor al-
lele at the target locus and have a minimum proportion of donor genome on
the carrier chromosome. Analytical solutions and tabulated results are given
for relevant parameters (d1, d2, n) required to obtain, with a specified proba-
bility of success, at least one desired individual. They depend on the length
of the carrier chromosome, the chromosomal position of the target locus, its
distance to the flanking marker loci, and the number of individuals evaluated.
Our approach can increase the efficiency of MAB by reducing the number of
individuals and marker data points required.

Recurrent backcrossing is a breeding method commonly employed to transfer
alleles at one or more loci from a donor to a recurrent parent (Allard, 1960). Ex-
amples include the transfer of resistance alleles from a wild or unimproved form
into elite breeding materials and cultivars or the transfer of a target allele intro-
duced by genetic transformation into a line that is easy to handle in tissue culture
but otherwise of no agronomic value (Ragot et al., 1995). Besides transfer of the
target allele(s), the main goal is to recover the RPG as completely and as quickly
as possible.

Molecular markers are used in recurrent backcrossing for two purposes: (i) as a
diagnostic tool for tracing the presence of a target allele, for which direct selection
is difficult or impossible (e.g., recessive alleles expressed at a late stage in plant
development or quantitative trait loci) and/or (ii) for identifying individuals with
a low proportion of the undesirable genome from the donor parent. Adopting the
terminology of Hospital and Charcosset (1997), we refer to the first approach as
“foreground selection” (for review see Melchinger, 1990) and to the second approach
as “background selection” (for review see Visscher et al., 1996). As demonstrated
by Tanksley et al. (1989) with computer simulations, use of molecular markers for
background selection can accelerate recovery of the RPG by two or three genera-
tions.
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Background selection has two goals: (i) reduction of the proportion of the donor
genome on the carrier chromosome of the target allele and (ii) reduction of the donor
genome on the non-carrier chromosomes. The length of the chromosome segment
from the donor that is linked to the target allele (“linkage drag”) is reduced by
selecting individuals that carry the target allele and are homozygous for the RP
alleles at tightly linked marker loci. In practical implementations of MAB, two
questions of crucial importance are: How should the flanking markers be positioned?
How many individuals must be generated and genotyped with molecular markers
in order to reduce the undesirable donor genome below a certain threshold?

Hospital et al. (1992) determined optimum distances d1 and d2 between the
target locus and the flanking marker loci in order to recover a maximum amount
of the RPG on the carrier chromosome by applying equation

d1 = d2 =
1
2

ln
(
1 + 2

√
s
)
, (1)

where s is the proportion of selected BC1 individuals. This approach is based
upon the assumption of an infinite population size. However, in practical breeding
programs the number of individuals available for testing and genotyping is limited.

Hospital and Charcosset (1997) investigated marker-assisted introgression of
quantitative trait loci (QTL) combining foreground and background selection. They
presented recurrence equations and pointed out these could be used to calculate the
minimum population size n(t) needed in each backcross generation BCt. Values for
n(t) are determined numerically before starting the breeding program.

The present study focuses on background selection for flanking markers in com-
bination with selection for a target allele based on phenotypic evaluation. Our
objectives were to determine (i) the optimum positioning of flanking markers and
(ii) the minimum number of individuals that have to be genotyped in order to
obtain at least m desired individuals, which carry the target allele and have a max-
imum proportion of RPG on the carrier chromosome. We provide closed analytical
solutions for important situations in backcrossing that can be easily applied by
breeders.

Methods

We consider a chromosome of length L. Positions on the chromosome are repre-
sented by a scale (in Morgan units) ranging from 0 to L. The target locus is located
at position x and two flanking markers at positions yl and yr (Fig. 1). Let d1 and
d2 denote the lengths of the intervals between the flanking markers and the target
locus (]yl, x[ and ]x, yr[, respectively), and l1 and l2 the lengths of the intervals
between the target locus and the ends of the chromosome (]0, x[ and ]x, L[, respec-
tively). Without loss of generality, we assume d1 ≤ d2. Note that in all subsequent
equations di and li are in Morgan units while specifications in the text and tables
are in cM for the sake of convenience. Adopting the terminology of Hospital and
Charcosset (1997), we denote by z− the genotype of an individual homozygous for
the RP allele and by z+ the genotype of an individual heterozygous for the RP at
the locus at position z.

Abbreviations: BC, backcross; BCt, t-th backcross generation; cM, centimorgan; MAB,
marker-assisted backcrossing; NRP, non-recurrent parent; QTL, quantitative trait loci; RP, re-
current parent; RPG, recurrent parent genome; RFLP, restriction fragment length polymorphism.
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Under the assumptions (a) the average number of crossovers formed on a chro-
matid is equal to its length in Morgan units and (b) the locations of crossovers are
uniformly and independently distributed on the chromatid, the random variable K,
counting the number k of crossovers formed on a chromatid or a chromatid segment
of length l, follows a Poisson distribution with parameter l (Libermann and Karlin,
1984):

P (K = k) =
lk

k!
e−l . (2)

Assumptions (a) and (b), which also underlie Haldane’s (1919) mapping function,
imply that neither chiasma interference nor chromatid interference (Stam, 1979)
occurs. This assures the stochastic independance of crossover formation in adjacent
chromosome segments.

The probability that an odd number of crossovers occur (i.e., recombination
occurs) in an interval is the recombination frequency r related to the map distance
by Haldane’s (1919) mapping function:

p = r =
∞∑

ν=0

P (Ki = 2ν + 1) = sinh (di) e−di =
1
2

(
1− e−2di

)
. (3)

We define the events A: No crossover occurs in ]0, yl[; B: Recombination occurs
in ]yl, x[; C: Recombination occurs in ]x, yr[; and D: No crossover occurs in ]yr, L[.
Applying Eq. (2) and (3), the respective probabilities are

pA = e−(l1−d1) (4)

pB = sinh (d1) e−d1 = (1− e−2d1)/2 (5)

pC = sinh (d2) e−d2 = (1− e−2d2)/2 (6)

pD = e−(l2−d2). (7)

On the basis of the genotype at the target locus and the two flanking marker
loci, different types of individuals are defined (Table 1):

Type 1: An individual is heterozygous for the donor allele at the target locus
and homozygous for the RP allele at both flanking markers.

Type 2, 2L/2R: A Type 2 individual is heterozygous for the donor allele at the
target locus and homozygous for the RP allele at one of the flanking markers. The
second flanking marker is heterozygous for the RP allele. Depending on whether

Figure 1. Chromosome of length L with target locus at position
x and two flanking marker loci at positions yl and yr. l1 and
l2 are the map distances between the target and the ends of the
chromosomes, d1 and d2 are the map distances between the target
locus and the flanking markers.
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the flanking marker on the left or right hand side is fixed for the RP allele, we
distinguish between individuals of Type 2L and Type 2R.

Type 3L/3R: An individual is heterozygous for the donor allele at the target
locus and homozygous for the RP allele at one flanking marker, irrespective of
the genotype at the other flanking marker. As before, we distinguish between
Type 3L and Type 3R individuals, depending on which flanking marker is under
consideration.

Type 4: An individual is heterozygous for the donor allele at the target locus
and heterozygous for the RP allele at both flanking markers.

Type 5: An individual is homozygous for the RP allele at the target locus, i.e.,
it is not a carrier of the target allele.

Adding a further criterion, we define Type 1?, 2?, 2L?/2R?, and 3L?/3R? as
individuals of Type 1, 2, 2L/2R, and 3L/3R, respectively, which carry no chromo-
somal segments of the donor between the flanking marker(s) carrying homozygous
the RP allele(s) and the respective end(s) of the chromosome (Table 1).

Probabilities P (G|H) that a BC individual is of a certain Type (Event G), given
that its non-recurrent parent (NRP) is of a specified genotype (Condition H) are
presented in Table 1. While the conditional probabilities p1, p2L, p2R, p2, p3L, p3R,
p4, and p5 are valid for any BC generation, p?

1, p?
2L, p?

2R, p?
2, p?

3L, and p?
3R are valid

only for generation BC1. In the following generations they are only exact under the
condition that no recombination occurred on the carrier chromosome in previous
BC generations. Otherwise, they are approximate and the exact probabilities are
higher. The exact probabilities for generation BCt + 1 in this case could be obtained
by redefining pA and pD according to the observed genotype at additional markers
on the carrier chromosome at the individual selected in generation BCt.

Concerning the carrier chromosome, an individual of Type 1? has by expectation
the smallest proportion of donor genome; it can be regarded as the final product
of a gene introgression program. As noticed by Young and Tanksley (1989), the
probability that recombination occurs in small regions at both sides of the target
locus in one BC generation is much lower than in two generations, when one re-
combination can occur in each. Therefore, the other types are defined in order to
design breeding programs that reduce the donor genome on the carrier chromosome
in successive BC generations.

If a particular genotype occurs with probability p, the number m of individuals
of this type in a sample of size n is assumed to be binomially distributed:

P (Y = m) =
(

n

m

)
pm (1− p)n−m. (8)

The probability q that in n genotypes (before performing any selection) at least
one individual has the desired type is

q = P (Y > 0) = 1− P (Y = 0) = 1− (1− p)n (9)

and the probability qm that there are at least m genotypes of the desired type is

qm = P (Y ≥ m) = 1−
m−1∑

i=0

P (Y = i)

=
(

n

m

)
(1− p)n

(
p

1− p

)m

hg
(

[1,m− n], [1 + m],
p

p− 1

) (10)
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Table 1. Definition of various Types of BC individuals depending
on (i) the genotype at the target locus and flanking marker loci
and (ii) on adjacent chromosome segments without crossovers. For
a given genotype of the non-recurrent parent (NRP), conditional
probabilities that BC individuals are of the specified Type are
given.

Event G: Condition H: Conditional
No cross- NRP is of probability

Type Genotype over in Genotype P (G|H)

1 y−l x+y−r — y+
l x+y+

r p1 = pBpC/2
2L y−l x+y+

r — y+
l x+y+

r p2L = pB(1− pC)/2
2R y+

l x+y−r — y+
l x+y+

r p2R = (1− pB)pC/2
2 2L or 2R p2 = p2L + p2R

3L y−l x+ — y+
l x+ p3L = pB/2

3R x+y−r — x+y+
r p3R = pC/2

4 y+
l x+y+

r — y+
l x+y+

r p4 = (1− pB)(1− pC)/2
5 x− — x+ p5 = 1/2
1? y−l x+y−r ]0, yl[ and ]yr, L[ y+

l x+y+
r †‡ p?

1 = pApBpCpD/2
2L? y−l x+y+

r ]0, yl[ y+
l x+y+

r † p?
2L = pApB(1− pCpD)/2

2R? y+
l x+y−r ]yr, L[ y+

l x+y+
r ‡ p?

2R = (1− pApB)pCpD/2
2? 2L? or 2R? p?

2 = p?
2L + p?

2R

3L? y−l x+ ]0, yl[ y+
l x+ † p?

3L = pApB/2
3R? x+y−r ]yr, L[ x+y+

r ‡ p?
3R = pCpD/2

† and no crossovers in ]0, yl[ in previous BC generations.
‡ and no crossovers in ]yr, L[ in previous BC generations.

where ‘hg’ is the generalized hypergeometric function implemented in common cal-
culation software such as Maple (Char et al., 1991).

In order to determine the dimensioning of generation BCt + 1 based on the
marker genotype of the selected individual in generation BCt, a combination of
the conditional probabilities (Table 1) with Eq. (9) and (10) can be used. The
parameters d1, d2, or n can be determined in such a way that at least one indi-
vidual of a given Type is generated with probability q by combining Eq. (9) with
the corresponding conditional probabilities. A more general result is obtained by
inserting the corresponding conditional probability instead of p into Eq. (10). This
can be used to design a MAB breeding program such that at least m individuals of
a certain type are produced with probability qm, but the equations for determining
the parameters d1, d2, or n must be solved numerically for m > 1.

Optimum Positioning of Flanking Marker Loci

The minimum marker distance di required to obtain under Condition H (Table
1) with probability q at least one BC individual of Type 1, 2, or 3L/3R in a sample
of n is derived by combining the respective conditional probabilities (Table 1) with
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Table 2. Minimum marker distance [cM] to obtain with probabil-
ity q = 0.90, 0.95, and 0.99 at least one individual of Type 1 or 3L
(for definition see text), if n individuals are assayed in generation
BCt + 1. Assumptions: The non-recurrent parent has genotype
y+

l x+y+
r for Type 1 individuals and genotype y+

l x+ for Type 3L
individuals; Type 1: d1 = d2.

Number n of BC individuals

Type 50 75 100 125 150 175 200 300 500

Minimum marker distance d1 [cM]
Probability q = 0.90:

1 46 34 28 25 22 20 19 15 11
3L 10 7 5 4 4 3 3 2 1

Probability q = 0.95:
1 58 42 34 29 26 23 22 17 13
3L 14 9 7 5 5 4 4 3 2

Probability q = 0.99:
1 92 59 46 39 34 31 28 22 16
3L 22 14 10 8 7 6 5 4 2

Eq. (9). Solving for d1 yields for Type 1 (assuming d1 = d2)

d1 = −1
2

ln
(

1− 2
√

2− 2 n
√

1− q

)
, (11)

for Type 2 (assuming d1 = d2)

d1 = −1
4

ln
(
4 n
√

1− q − 3
)

, (12)

and for Type 3L (i = 1) and Type 3R (i = 2)

di = −1
2

ln
(
4 n
√

1− q − 3
)

. (13)

On the basis of Eq. (11) and (13), the minimum marker distances were calculated
for population sizes n ranging from 50 to 500 and probabilities q = 0.90, 0.95, and
0.99 (Table 2). The values for Type 2 individuals (Eq. (12)) were not tabulated
because they are half the values for Type 3L individuals. The minimum marker
distance decreases with increasing number of genotyped individuals. In addition,
the marker distance increases with increasing probability of q for any of the three
types of individuals. The values range from tightly linked markers (2 cM to obtain
with probability q = 0.99 at least one Type 3L individual in a backcross popu-
lation of 500 individuals) to nearly unlinked flanking markers (46 cM to obtain
with probability q = 0.99 at least one Type 1 individual in a sample of 100 BC1
individuals).

The minimum distance di required to warrant with probability q the occurrence
of at least one individual of Type 1?, 2?, or 3L?/3R? in a sample of n individuals is
derived by combining the respective conditional probabilities (Table 1) with Eq. (9).



DESIGN OF MARKER-ASSISTED BACKCROSSING 7

Table 3. Minimum marker distance [cM] to obtain with probabil-
ity q = 0.99 at least one individual of Type 2? or 3L? (for definition
see text), if n individuals are assayed in generation BCt + 1. As-
sumptions: No recombination event must have occurred on the
carrier chromosome in the non-recurrent parent up to generation
BCt; Type 2?: the target locus is positioned in the center of the
chromosome (l1 = l2) and the marker bracket is symmetric (d1 =
d2).

l1 Number n of BC individuals

[cM] 50 75 100 125 150 175 200 300 500

Minimum marker distance d1 [cM]
Type 2?:

25 13 9 7 5 5 4 3 2 2
50 17 11 8 7 6 5 4 3 2
75 21 14 10 8 7 6 5 4 2
100 27 18 13 11 9 8 7 5 3
125 34 23 17 14 11 10 9 6 4
150 43 29 22 17 14 12 11 7 5
175 54 36 27 22 18 16 14 9 6
200 67 46 35 28 23 20 18 12 7

Type 3L?:
25 23 16 12 10 8 7 6 4 3
50 29 20 15 12 10 9 8 6 4
75 37 25 19 16 13 11 10 7 4
100 47 32 25 20 17 15 13 9 5
125 59 41 31 25 21 19 16 11 7
150 73 52 40 32 27 24 21 14 9
175 90 65 50 41 34 30 26 18 11
200 108 80 63 52 44 38 34 23 14

Solving for di yields for Type 1? (assuming d1 = d2)

d1 = Arsinh
(

e
l
2

√
2− 2 n

√
1− q

)
, (14)

for Type 2? (assuming d1 = d2)

d1 = Arsinh
1
4

(
el1 + el2 −

√
e2l1 + e2l2 + el1+l2

(
16 n

√
1− q − 14

))
, (15)

which simplifies for l1 = l2 to

d1 = Arsinh
(

1
2
el1

[
1−

√
4 n
√

1− q − 3
])

, (16)

and for Type 3L? (i = 1) and Type 3R? (i = 2)

di = Arsinh
(
2eli

[
1− n

√
1− q

])
, (17)



8 M. FRISCH, M. BOHN, AND A.E. MELCHINGER

where ‘Arsinh’ is the inverse of the hyperbolic sine. Note that for l1 = d1 and
l2 = d2, Eq. (14) to (17) simplify to Eq. (11) to (13) as expected.

Minimum marker distances to obtain at least one individual of Type 2? or Type
3L? with probability q = 0.99 were calculated for chromosome segments l1 of varying
length (between 25 and 200 cM) and for population sizes n ranging from 50 to
500 individuals (Table 3). For Type 2? individuals, a symmetric marker bracket
(d1 = d2) and a target locus in the middle of the chromosome (l1 = l2) was assumed.
The minimum marker distances increase with increasing length of the respective
chromosome arm and the values vary from tightly linked markers to nearly unlinked
markers. For Type 1? individuals, large numbers of individuals are required (data
not shown). For example, for a chromosome of length 125 cM and n = 300, the
distance of the flanking markers d1 = d2 has to be larger than 33 cM in order to
obtain with probability q = 0.99 at least one individual of Type 1?.

Minimum Sample Size Required in MAB

Suppose flanking markers are positioned at distances d1 and d2 from the target
locus and at least one individual of a certain Type should be recovered with proba-
bility q. Given the NRP satisfies Condition H (Table 1), the minimum sample size
n needed to achieve this goal with probability q is n = ln(1− q)/ ln(1− p), were p
equals the corresponding conditional probability P (G|H) given in Table 1.

Hence, for getting at least one desired BC individual with probability q, the
minimum sample size is for Type 1

n =
ln (1− q)

ln
(

1− 1
8

[1− e−2d1 ] [1− e−2d2 ]
) , (18)

for Type 2

n =
ln(1− q)

ln
(

3
4

+
1
4
e−2(d1+d2)

) , (19)

and for Type 3L (i = 1) and Type 3R (i = 2)

n =
ln(1− q)

ln
(

3
4

+
1
4
e−2di

) . (20)

Minimum sample sizes were calculated according to Eq. (18) to (20) for marker
distances d1 and d2 ranging from 5 to 50 cM, and probability q = 0.99 (Table 4).
Within marker brackets of 5 to 50 cM, the required n for Type 1 individuals ranges
from 4066 to 90. The required n for Type 2 individuals varies between 100 and 20
and that for Type 3L/3R individuals ranges between 192 and 27 individuals. For
tightly linked flanking markers, n for Type 2 individuals is about half the sample
size required for Type 3L individuals. For large marker brackets, the values of n
for Type 2 and Type 3L individuals are almost equal.

The number of individuals required to reduce the length of the chromosome
segment linked to the target allele below a fixed threshold (g = d1 + d2) for Type 1
individuals is minimized, if d1 and d2 are of equal size (Table 4). For example for a
marker bracket of length g = 40 cM, n = 359 individuals are required if d1 = 15 cM
and d2 = 25 cM, whereas n = 337 individuals are required if d1 = d2 = 20 cM. A
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Table 4. Minimum number of individuals n required to obtain
with probability q = 0.99 at least one individual of Type 1, 2, or 3L
(for definition see text), if n individuals are assayed in generation
BCt + 1. Assumptions: The non-recurrent parent has genotype
y+

l x+y+
r for Type 1 and 2 individuals and genotype y+

l x+ for Type
3L individuals.

d2 d1 [cM]

[cM] 5 10 15 20 25 30 35 40 50

Minimum number of individuals n
Type 1:

5 4066 2134 1492 1172 982 856 767 701 611
10 1119 782 615 515 449 402 367 320
15 547 429 359 313 281 256 233
20 337 282 246 220 201 175
25 236 206 184 168 146
30 179 160 146 127
35 144 131 114
40 120 104
50 90

Type 2:
5 100 69 54 45 39 35 32 29 26
10 54 45 39 35 32 29 27 24
15 39 35 32 29 27 26 23
20 32 29 27 26 24 23
25 27 26 24 23 22
30 24 23 23 21
45 23 23 21
40 21 20
50 20

Type 3L:
192 100 69 54 45 39 35 32 27

Type 2 individual occurs if a cross-over is formed between the two flanking marker
loci, no matter whether it is formed in ]yl, x[ or ]x, yr[. Hence, in contrast to Type 1
individuals, a symmetric placement of the markers has no influence on the required
minimum sample size for Type 2 individuals.

The minimum number of individuals needed to obtain with probability q at least
one BC individual is for Type 1?

n =
ln (1− q)

ln
(

1− 1
2

sinh (d1) sinh (d2) e−l

) , (21)

for Type 2?

n =
ln (1− q)

ln
(

1− 1
2

sinh (d1) e−l1 − 1
2

sinh (d2) e−l2 + sinh (d1) sinh (d2) e−l

) , (22)
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Table 5. Minimum number of individuals required to obtain with
probability q = 0.99 at least one individual of Type 2? or 3L?

(for definition see text), if n individuals in generation BCt + 1 are
assayed. Assumptions: No recombination event occurred on the
carrier chromosome in the non-recurrent parent up to generation
BCt; Type 2?: the target locus is positioned in the center of the
chromosome (l1 = l2) and the marker bracket is symmetric (d1 =
d2).

l1 d1 [cM]

[cM] 5 10 15 20 25 30 35 40 50

Minimum number of individuals n
Type 2?:

25 121 62 43 33 -† - - - -
50 155 79 54 41 34 29 25 23 -
75 198 100 68 52 42 36 31 28 23
100 253 128 86 65 53 44 38 34 28
125 324 163 110 83 67 56 48 43 34
150 415 209 140 106 85 71 61 53 43
175 533 267 179 135 108 90 77 68 54
200 683 343 229 172 138 115 98 86 68

Type 3L?:
25 235 116 77 57 -† - - - -
50 302 150 99 74 58 48 41 35 -
75 388 193 128 95 75 62 53 46 36
100 499 248 164 123 97 80 68 59 46
125 641 319 212 158 125 104 88 76 60
150 823 410 272 203 162 134 114 99 77
175 1058 527 350 261 208 172 147 127 100
200 1359 678 450 336 268 222 189 164 129

† Not possible because d1 ≤ l1.

and for Type 3L? (i = 1) and Type 3R? (i = 2)

n =
ln (1− q)

ln
(

1− 1
2

sinh (di) e−li

) . (23)

The minimum sample sizes for getting at least one individual of Type 2? or 3L?

with probability q = 0.99 were calculated for values of l1 and l2 varying from 25 to
200 cM and flanking marker distances d1 and d2 from 5 to 50 cM (Table 5). For
Type 2? individuals, equal marker distances (d1 = d2) and a target locus in the
middle of the chromosome (l1 = l2) were assumed. The sample sizes for a marker
distance of 10 cM range from 62 to 343 individuals for Type 2? and from 116 to 678
individuals for Type 3L?. In all cases tabulated, the n values for Type 2? individuals
were about half the corresponding n values required for Type 3L? individuals. The
n values required for obtaining at least one individual of Type 1? with probability
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q are generally large (data not shown). For example, for a chromosome of length
100 cM at least 616 individuals are required if d1 = d2 = 20 cM.

Design of a Two-Generation MAB Program

We consider here dimensioning a two-generation MAB program that has the goal
to produce with probability q

(2)
1 at least one individual of Type 1 in generation BC2.

Flanking markers are assumed to be located at distances d1 and d2 with d1 ≤ d2.
From generation BC1, one individual of the most desirable Type is selected in the

given order: Type 1 Â Type 2L Â Type 2R Â Type 4. If in generation BC1 more
than one individual satisfying the strongest condition is found, selection between
them can be performed based on analysis of further marker loci (located either on
the carrier or on non-carrier chromosomes) in order to determine the most desirable
individual for producing generation BC2. Similar selection schemes were proposed
by various authors (e.g., Tanksley et al., 1989; Hospital and Charcosset, 1997),
but in the later study no distinction was made between Type 2L and Type 2R
individuals, even if d1 6= d2. Provided the (very unlikely) case that none of the
BC1 individuals carries the target allele, the BC program failed in BC1.

Assume we used n(1) individuals in BC1 and selected one as described above,
then the probabilities z

(1)
i that the selected BC1 individual is of Type i (i ∈

{1, 2L, 2R, 4}) are:

z
(1)
1 = 1− (1− p1)n(1)

(24)

z
(1)
2L = (1− p1)n(1) − (1− p1 − p2L)n(1)

(25)

z
(1)
2R = (1− p1 − p2L)n(1) − (1− p1 − p2)n(1)

(26)

z
(1)
4 = (1− p1 − p2)n(1) − 1/2n(1)

(27)

The probability that the target allele is lost in BC1 (i = 5) is:

z
(1)
5 = 1/2n(1)

(28)

The probabilities (24) to (28) sum up to 1 and cover all possible results for gener-
ation BC1.

Depending on the Type i of the selected individual in BC1, the population size
n

(2)
i is chosen such that at least one BC2 individual of Type 1 is generated with

probability q
(2)
1 . The respective mimimum population sizes are (from Eq. (9)):

n
(2)
1 = ln(1− q

(2)
1 )/ ln(1/2) (29)

n
(2)
2L = ln(1− q

(2)
1 )/ ln(1− p3R) (30)

n
(2)
2R = ln (1− q

(2)
1 )/ ln(1− p3L) (31)

n
(2)
4 = ln (1− q

(2)
1 )/ ln(1− p1) (32)

Irrespective of the Type i of the selected BC1 individual, choice of n
(2)
i according

to Eq. (29) to (32) assures that with probability q
(2)
1 at least one individual of Type

1 is produced in generation BC2. Hence, the probability of success of the entire
MAB program is (1− z

(1)
5 )q(2)

1 . Note that z
(1)
5 ≈ 0 for values of n(1) typically used

in a BC program.
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For choosing a value for n(1) we propose two methods. First, n(1) can be de-
termined such that at least one Type 2 individual is generated in BC1 with a
given probability, e.g., q

(1)
2 = 0.99. This procedure has the advantage of a simple

calculation by using Eq. (19) but is not optimizing the procedure.
The second method is to choose n(1) such that at the expected number of in-

dividuals required for the two-generation program is minimized. The number of
individuals required in BC2 depends on the choice of n(1). Its expectation is

E(n(2)) =
∑

i∈{1,2L,2R,4}
z
(1)
i n

(2)
i (33)

and the expectation for the total number of individuals required in BC1 and BC2
is

E(n(1) + n(2)) = n(1) + E(n(2)) (34)
Partial differentiation with regard to n(1) yields

∂E(n(1) + n(2))
∂n(1)

=1 +
ln(1− q

(2)
1 ) (1− p1)

n(1)

ln(1− p1)
ln(2)

+
ln(1− q

(2)
1 ) (1− p1)

n(1)

ln(1− p1)
ln(1− p3R)

− ln(1− q
(2)
1 ) (1− p1 − p2L)n(1)

ln(1− p1 − p2L)
ln(1− p3R)

+
ln(1− q

(2)
1 ) (1− p1 − p2L)n(1)

ln(1− p1 − p2L)
ln(1− p3L)

− ln(1− q
(2)
1 ) (1− p1 − p2)

n(1)

ln(1− p1 − p2)
ln(1− p3L)

+
ln(1− q

(2)
1 ) (1− p1 − p2)

n(1)

ln(1− p1 − p2)
ln(1− p1)

+
ln(1− q

(2)
1 ) (1/2)n(1)

ln(2)
ln(1− p1)

(35)

Equating Eq. (35) to zero and solving for n(1) yields the extrema of Eq. (34). By
considering the second partial derivation or by calculating E(n(1) + n(2)) at the
extrema, a value for n(1) that minimizes the expected total number of individuals
can be found.

A third possibility would be to choose n(1) in order to minimize the required
number of marker analyses in BC1 and BC2 E(a(1) +a(2)) by partial differentiation
of

E(a(1) + a(2)) = 2n(1) + z
(1)
2L n

(2)
2L + z

(1)
2R n

(2)
2R + 2z

(1)
4 n

(2)
4 (36)

with regard to n(1) and equating the result to zero. In this calculation, only
marker analyses for marker loci flanking the target locus are taken into account.

Generalizations

We now consider the general description of a MAB program in which selec-
tion of individuals is performed based on the ranking described above: Type 1 Â
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Type 2L Â Type 2R Â Type 4. If the target allele is lost in any generation, the
BC programm is considered as not successful. Let the vector

z(t+1) =
[
z
(t+1)
1 , z

(t+1)
2L , z

(t+1)
2R , z

(t+1)
4 , z

(t+1)
5

]′
(37)

consist of the probabilities that an individual of Type 1 to 4 is selected in generation
t+1 and the probability that the BC program failed in generation BCt+1 due loss
of the target allele. The probabilities z(t+1) can be caluclated as

z(t+1) = Pz(t) , (38)

where the transition matrix P is defined as

P =




1− ( 1
2 )n1 1− (1− p3R)n2L 1− (1− p3L)n2R 1− (1− p1)n4 0

0 (1− p3R)n2L

−( 1
2 )n2L 0 (1− p1)n4

−(1− p1 − p2L)n4 0

0 0 (1− p3L)n2R

−( 1
2 )n2R

(1− p1 − p2L)n4

−(1− p1 − p2)n4 0

0 0 0 (1− p1 − p2)n4

−( 1
2 )n4 0

(1
2 )n1 ( 1

2 )n2L ( 1
2 )n2R ( 1

2 )n4 1




(39)

The values for n1 to n4 for the final BC generation can be derived from Eq. (9),
as shown in Eq. (29) to (32). For generation BC0 (=F1), the initial values are
z(0) = (0, 0, 0, 1, 0)′.

Modifications of P can be applied to alternative situations. For example, if
the target allele got lost in generation BCt + 1, the breeder usually backs up one
generation by using either remnant seed or another Type i individual to produce
generation BCt + 1 anew with ni∗ individuals. This procedure corresponds to
substituting column five by the same expressions as in the column with power ni

but using population size ni∗ .
Given that n4 determined by Eq. (32) is generally a high number, a MAB pro-

gram over t + 1 generations must be regarded as failed, if only a Type 4 individual
can be selected in generaton BCt. A transition matrix taking this into account is
obtained by replacing the first element of the fourth column by 0 and by replac-
ing in the other elements of this column n4 by the maximal number of individuals
(nmax) that can be handled.

In conclusion, applying Eq. (38) with the original or a modified transition matrix
allows the dimensioning of a wide range of MAB programs consisting of one or more
generations. In particular, previously described results (Eq. (24) to (28)) can be
obtained as special cases of Eq. (38).

When comparing Eq. (38) with the transition probabilities presented by Hospital
and Charcosset (1997) in their Eq. (A.16) to (A.19) for QTL introgression, two main
differences are: (1) We recommend to use variable population sizes n

(t)
1 , . . . , n

(t)
4 that

depend on the Type of the selected individual in generation BCt. In contrast, Hos-
pital and Charcosset (1997) suggest a fixed population size n

(t)
1 = n

(t)
2L = n

(t)
2R = n

(t)
4 .
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(2) We prefer Type 2L over Type 2R individuals, while Hospital and Charcosset
take one at random if no Type 1 but several Type 2 individuals are present (even
if d1 < d2).

Discussion

The distances d1 and d2 between the flanking markers and the target locus are
key parameters in MAB. Hospital et al. (1992) determined d1 and d2 in order to
recover a maximum amount of the RPG on the carrier chromosome. Their calcu-
lations were based on the assumptions of a target locus located in the middle of a
chromosome and an infinite sample size. However, if markers are spaced according
to the rule (see Eq. (1)) described by these authors, MAB with sample sizes typ-
ically used in practical breeding programs has little chance of success in one BC
generation. Considering n = 100 individuals from which one has to be selected
(s = 0.01), the optimum distance of two flanking markers is d1 = d2 = 9 cM, based
on Eq. (1). For this marker distance the probability that in 100 BC1 individuals,
there is at least one of Type 1, is only q = 0.29 (Eq. (9)). Instead of determining
d1 and d2 to maximize the percentage of the RPG on the carrier chromosome, we
propose to choose d1, d2, and n according to our Eq. (11) to (17) such that with
probability q, there will be at least one individual of the desired Type.

Hospital and Charcosset (1997) presented an approach for determining the min-
imum sample size in QTL introgression programs under both marker-assisted fore-
ground and background selection over an arbitrary number of BC generations. They
gave recurrence equations in terms of recombination frequencies that can be used
to obtain numerical solutions for the population sizes n(t) required in BCt in order
to select with probability z

(w)
i an individual of Type i (i ∈ {1, 2L, 2R, 4}) in genera-

tion BCw. Considering the special case of one QTL with known map position, their
Eq. (A.16) to (A.18) could be applied to determine population sizes n(1), . . . , n(w)

for obtaining at least one Type 1 individual in generation BCw. Since these values
are determinded ‘a priori’ (before starting the breeding program), n(t+1) is applied
in generation BCt + 1 irrespective of the observed marker genotype of the selected
individual in generation BCt. While this procedure assures that with probability
z
(w)
1 a least one individual of Type 1 is generated up to generation BCw, it has the

following consequences, illustrated here for w = 2: (1) If there neither a Type 1
individual nor a Type 2 individual is found in BC1, the actual probability of success
q
(2)
1,4 with n(2) in BC2 is lower than z

(2)
1 (q(t)

i,j is the probability that at least one
individual of Type i is produced in generation t under the condition that the NRP
is of Type j; i, j ∈ {1, 2L, 2R, 4}). (2) If the selected individual in BC1 is either
of Type 1 or Type 2, then using n(2) results in a probability of success q

(2)
1,1, q

(2)
1,2L

or q
(2)
1,2R in BC2 higher than z

(2)
1 (and consequently n(2) is higher than required for

having success with probability q
(2)
1 ). This is demonstrated numerically in Example

3. A general proof of this proposition follows directly from the Theorem of Total
Probability.

In contrast, we recommend for MAB over several BC generations a sequential
approach, in which calculation of n(t+1) depends on the observed marker genotype
of the individual selected in generation BCt by using Eq. (29) to (32). For each
possible Type i of the selected individual, n

(t+1)
i is calculated such that at least

one individual of Type j (i, j ∈ {1, 2L, 2R, 4}) is generated with probability q
(t+1)
j
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in generation BCt + 1. This ensures that (i) the actual probability of success in
BCt + 1 is always q

(t+1)
j , even if in BCt no flanking marker was fixed, and (ii) only

the number of individuals actually required to reach a given q
(t+1)
j in BCt + 1 are

generated, if already one or two flanking markers are fixed in BCt.
In order to determine the dimensioning of a MAB program, we propose first

to check whether, depending on the markers and the population size available, an
individual of Type 1 or 1? can be generated in BC1 with a given probability q

(1)
1

or q
(1)
1? , respectively. Provided this is possible and economical with the available

resources, BC1 is dimensioned accordingly. If not, a two-generation BC program is
designed as described above. The proposed procedure is illustrated by the following
three Examples.

Example 1: With probability q
(1)
1 = 0.99 at least one Type 1 individual should

be generated in BC1. Due to practical limitations, the maximum population size
per generation that can be handled by the breeder is n(1) = 150. According to
Table 2, the minimum flanking markers distances are d1 = d2 = 34 cM. Note that
the expected value of the donor segments in the interval [yr, yl] is (d1 + d2)/2 and
d1 + d2 is only the maximum.

Example 2: With probability q
(1)
1 = 0.99 at least one Type 1 individual should

be generated in BC1. On the basis of prior linkage information, it is known that the
map distances between the target locus and its two flanking markers are d1 = 20 cM
and d2 = 25 cM. According to Table 4, at least n(1) = 282 BC1 individuals have
to be produced.

Example 3: The length of the linkage drag d1+d2 should be reduced with proba-
bility q

(2)
1 = 0.99 below a threshold of 10 cM (d1 = d2 = 5 cM) in a two-generation

BC program. Numerical results for three alternative strategies are given in Table 6.
Strategy A was proposed by Hospital and Charcosset (1997) and employs a fixed
population size in generation BCt + 1, irrespective of the type of the selected indi-
vidual in generation BCt. According to their Table 6 (for m = 1, S = 10, S? = 10),
choosing n(1) = 118 and n(2) = 200 assures z

(2)
1 = 0.99 for a Type 1 individual. In

strategy B, n(1) = 100 is chosen to generate at least one BC1 individual of Type 2
with probability q

(1)
2 = 0.99 (Eq. (19)). Depending on the genotype of the selected

individual in BC1, n
(2)
1 = 7, n

(2)
2L = n

(2)
2R = 192 or n

(2)
4 = 4066 is chosen in BC2

(based on Eq. (29) to (32)), to warrant that a Type 1 individual in generation BC2
is found with probability q

(2)
1 = 0.99. In Strategy C, n(1) = 114 is chosen to mini-

mize the expected total number of individual assayed in BC1 and BC2 by equating
Eq. (35) to zero. For generation BC2, n

(2)
1 , . . . , n

(2)
4 are chosen as in Strategy B

in order to assure that a Type 1 individual is found with probability q
(2)
1 = 0.99.

The results demonstrate that taking into consideration the genotype of the selected
individual in BCt for dimensioning BCt+1 is superior over Strategy A with regard
to (a) the expected total number of indivduals in the breeding program and (b)
warranting a constant probability of success for all possible genotypes that might
be selected in BC1.

The difference between the required individuals for Strategies A and C increases
substantially for asymmetric marker brackets. Assume that in the above example
d1 = 5 cM and d2 = 15 cM. According to Eq. (35), choosing n(1) = 101 minimizes
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the expected total number of individuals and yields E(n(2)) = 76 for Strategy C.
For n(1) = 101, Strategy A would require n(2) = 122 individuals.

Our approach neglects the effects of interference. In the case of negative chiasma
interference (Stam, 1979), multiple crossovers in a chromosome segment occur less
frequently than expected in the absence of interference. This results in an overes-
timation of the probabilities for the occurrence of Type 1 and Type 1? individuals.
Hence, the values for the minimum sample sizes and minimum marker distances
obtained by our equations and presented in the tables are underestimated when
negative interference exists. For positive chiasma interference the situation is re-
verse. To obtain individuals of Type 2, 2?, 3L/3R and 3L?/3R? only one crossover
is required in a small chromosome region adjacent to the target locus. Hence, in
these cases interference has only a minor effect on the calculated parameters.

Modelling interference by relating recombination frequencies and map distance
via a mapping function that takes interference into account is not possible. Cal-
culation of probabilities of joint events as products of probabilites of simple events

Table 6. Numerical results of three alternative approaches for
dimensioning a two-generation BC program designed to obtain at
least one Type 1 individual (d1 = d2 = 5 cM) in generation BC2
with probability q

(2)
1 = 0.99. For definition of symbols see text.

Strategy A: Strategy B: Strategy C:

Hospital and Minimize

Parameter Charcosset (1997) q
(1)
2 ≥ 0.99 E(n(1) + n(2))

n(1) 118 100 114

z
(1)
1 0.1251 0.1071 0.1211

z
(1)
2L 0.4356 0.8029 0.8146

z
(1)
2R 0.4356 0.0814 0.0598

z
(1)
4 0.0037 0.0086 0.0044

z
(1)
5 2−118 2−100 2−114

n
(2)
1 200 7 7

n
(2)
2L 200 192 192

n
(2)
2R 200 192 192

n
(2)
4 200 4066 4066

q
(2)
1,1 1− 2−200 0.9900 0.9900

q
(2)
1,2R 0.9999 0.9900 0.9900

q
(2)
1,2L 0.9999 0.9900 0.9900

q
(2)
1,4 0.2027 0.9900 0.9900

E(n(1) + n(2)) 318 306 300
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(as needed for all defined Types of individuals except those of Type 3L/3R, 4, and
5) requires the stochastic independence of recombination events in two adjacent
intervals. This is ensured by Haldane’s mapping function but not by other com-
monly employed mapping functions, which take interference into account (such as
Kosambi, Morgan, Carter-Falconer, or Felsenstein).

Our approach emphasizes recovery of the RPG on the carrier chromosome. This
is required when a genotype should be completely converted like in the examples
described above. A total conversion is only necessary when the agricultural prop-
erties of the donor are poor (Tanksley et al., 1989). If the target allele is already
introduced into elite lines, a partially converted genotype may be superior to a to-
tally converted one, because the donor segments may contain favorable alleles (Lee,
1995) and a strict reduction of the linkage drag may not be nessecary. Background
selection on the non-carrier chromosomes is not considered in this treatise. Re-
sults on the dimensioning of BC programs, comparing the effect of various selection
strategies on the recovery of the RPG on the carrier and non-carrier chromosomes
are presented in a companion paper (Frisch et al., 1999).

Comparison with a practical example. Ragot et al. (1995) demonstrated that
MAB can be efficiently used for introgressing a transgene construct, containing the
Bt-gene, from a transformed parent into an elite maize inbred. On the basis of
the RFLP genotype, plants showing a maximum number of RP marker alleles were
selected. A total of 61 RFLP markers were used for genotyping each of the BC1
individuals. Following the approach proposed in this study, out of the 15 markers
evaluated on the carrier chromosome, only two flanking markers could have been
used for the detection of Type 1 individuals. Selection among the detected Type
1 individuals could have been perfomed using the additional markers in order to
detect putative Type 1? individuals and select among them. This illustrates that
our approach can substantially increase the efficiency of MAB by reducing the total
number of marker data points required.
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