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Abstract Marker-based prediction of hybrid performance

facilitates the identification of untested single-cross hybrids

with superior yield performance. Our objectives were to (1)

determine the haplotype block structure of experimental

germplasm from a hybrid maize breeding program, (2)

develop models for hybrid performance prediction based

on haplotype blocks, and (3) compare hybrid performance

prediction based on haplotype blocks with other ap-

proaches, based on single AFLP markers or general com-

bining ability (GCA), under a validation scenario relevant

for practical breeding. In total, 270 hybrids were evaluated

for grain yield in four Dent · Flint factorial mating

experiments. Their parental inbred lines were genotyped

with 20 AFLP primer–enzyme combinations. Adjacent

marker loci were combined into haplotype blocks. Hybrid

performance was predicted on basis of single marker loci

and haplotype blocks. Prediction based on variable haplo-

type block length resulted in an improved prediction of

hybrid performance compared with the use of single AFLP

markers. Estimates of prediction efficiency (R2) ranged

from 0.305 to 0.889 for marker-based prediction and from

0.465 to 0.898 for GCA-based prediction. For inter-group

hybrids with predominance of general over specific com-

bining ability, the hybrid prediction from GCA effects was

efficient in identifying promising hybrids. Considering the

advantage of haplotype block approaches over single

marker approaches for the prediction of inter-group hy-

brids, we see a high potential to substantially improve the

efficiency of hybrid breeding programs.

Introduction

Prediction methods for single-cross performance have the

potential to substantially improve the efficiency of maize

(Zea mays L.) hybrid breeding programs. Several hundred

single-cross combinations could potentially be generated

by breeders each year. However, due to expensive and

time-consuming field trials, only a small fraction of all

possible single crosses can be tested. Performance predic-

tion of single-cross hybrids utilises available data at no

costs of additional trials and facilitates the identification of

untested single-cross hybrids with superior yield perfor-

mance.

General combining ability (GCA) estimates of the

parental lines provide an established and simple approach

to predict hybrid performance (Cockerham 1967; Melchi-

nger et al. 1987). Prediction based on GCA alone ignores

specific combining ability (SCA), which is related to het-

erosis and constitutes an important component of hybrid

performance (Gardner and Eberhart 1966). Therefore,
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marker-based approaches were developed with the aim of

improving the prediction of inter-group hybrids. However,

estimates of genetic distances between the parental lines

using unselected DNA markers for prediction of inter-

group hybrids were not promising (Melchinger 1999). This

was explained with quantitative genetics theory by Char-

cosset and Essioux (1994). Extending the best linear

unbiased prediction (BLUP) approach (Bernardo 1994,

1996) with marker data in addition to the trait data (TM-

BLUP) resulted only in marginal improvements for pre-

dicting single-cross performance (Bernardo 1998, 1999).

Vuylsteke et al. (2000) presented a linear regression ap-

proach to predict hybrid performance and SCA for grain

yield using marker-based estimates of genotypic value for

inter-group hybrids. Recently, this approach was enhanced

and validated for the prediction of grain yield and grain dry

matter content in four factorial experiments (Schrag et al.

2006).

In the latest two publications, the problem of an in-

creased rate of false-positives due to multiple testing was

addressed by a stringent threshold for the comparison-wise

error, but not by controlling the experiment-wise error.

Furthermore, this approach does not account for correlation

of marker information, which can be the result of (1) close

linkage between marker loci, particularly with high marker

densities, (2) closely related individuals, as occur in

breeding programs, and (3) sampling a limited number of

genotypes. As a consequence, the effect of a quantitative

trait locus (QTL) linked to a series of correlated markers

can be inflated and, thereby, increase the prediction error.

Second, ignoring the correlation of markers for example

with the Bonferroni method results in an overly stringent

adjustment for multiple testing and thereby reduces the

power of detecting QTL. These problems can be addressed

by combining highly correlated adjacent markers into

haplotype blocks.

Finding block boundaries by specifying a fixed block

length (Jansen et al. 2003) is a straightforward approach.

However, it ignores the correlation structure of the actual

marker data. Data-driven strategies account for the given

marker data and determine haplotype block boundaries by

(1) optimising for minimum linkage disequilibrium (LD)

between blocks and maximum LD within blocks (Gabriel

et al. 2002), (2) assessing the haplotype diversity within

blocks (Patil et al. 2001; Zhang et al. 2002), or (3)

simultaneously using information about LD decay between

blocks and diversity of haplotypes within blocks (Anderson

and Novembre 2003). Such data-driven approaches were

developed with the aim of assisting association-based

methods for mapping of disease genes by the use of single

nucleotide polymorphism (SNP) data from the human

genome. These strategies optimise the block boundaries in

order to explain a high proportion of the haplotype diver-

sity with a low number of SNPs, called ‘‘haplotype tagging

SNPs’’. However, for marker-assisted prediction of hybrid

performance, the aim is to reduce the number of estimated

parameters while utilising the total haplotype diversity

described by all markers. Such criteria to find haplotype

block boundaries and predict the hybrid performance on

the basis of haplotype blocks have not been investigated

hitherto.

Our objectives were to (1) determine the haplotype

block structure of experimental germplasm from a hybrid

maize breeding program, (2) develop models for hybrid

performance prediction based on haplotype blocks, and (3)

compare hybrid performance prediction based on haplo-

type blocks with other approaches, based on single

amplified fragment length polymorphism (AFLP) markers

or GCA, under a validation scenario relevant for practical

breeding.

Materials and methods

Phenotypic data

The experimental design and biometrical analysis of the

phenotypic data was described in detail by Schrag et al.

(2006). Briefly, we analysed four Dent · Flint factorial

mating experiments (14 · 7, 11 · 4, 14 · 6, 11 · 4), fur-

ther referred to as Exps. 1 to 4. The matings were produced

from 52 maize elite inbred lines developed within the

breeding program of the University of Hohenheim, Ger-

many. Eight Dent lines and six Flint lines were included in

multiple factorials. Each factorial was evaluated in field

trials at four to six locations in Germany under diverse

agroecological conditions. Hybrid performance of the

crosses was recorded for grain yield in Mg ha–1 adjusted to

155 g kg–1 grain moisture. Adjusted entry means and

effective error mean squares (Cochran and Cox 1957) of

each trial were used to calculate the variance components

as well as GCA and SCA effects of the factorial mating

designs (Comstock and Robinson 1952) for each experi-

ment in the combined analysis of variance across locations.

For the GCA prediction approach, hybrid performance of

untested hybrids was predicted using the GCA estimates, as

described in Eqs. 2 and 3 by Schrag et al. (2006).

Molecular data

The inbred lines were assayed for AFLP markers based on

published protocols (Vos et al. 1995). Genotyping was

conducted with 20 AFLP primer–enzyme combinations,

described by Schrag et al. (2006). It was assumed that each

AFLP band position corresponds to a locus and presence or

absence of the band was scored as two alleles of that locus.
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Positions of mapped AFLP bands were obtained from an

integrated AFLP map (Peleman et al. 2000; Vuylsteke

et al. 1999). Out of 910 mapped markers, subsets were

specifically selected for the parental inbred lines of each

experiment. Markers were only included if they (1) were

polymorphic and (2) exhibited less than 30% missing

observations in the specific set of inbred lines. For each

pair of linked markers, Fisher’s exact test was calculated to

test genotypic LD (Zaykin et al. 1995) at a significance

level of a = 0.05. For the underlying Monte Carlo method,

17,000 replications were used (Guo and Thompson 1992).

Analysis of haplotype block structure

To consider a group of marker loci as a unit, adjacent

marker loci were combined and regarded as haplotype

blocks. The first and the last marker locus of a haplotype

block constituted the haplotype block boundaries. Within

each haplotype block, the observed sets of marker alleles

were regarded as haplotype alleles (Fig. 1). For haplotype

blocks comprising n bi-allelic markers, the possible num-

ber of haplotype alleles is 2n. Therefore, haplotype blocks

were regarded as multi-allelic markers. Haplotype alleles,

which included missing data at underlying marker loci,

were defined as missing. Thus, for blocks of length two or

longer, missing marker observations caused the informa-

tion loss of the remaining marker observations in the

considered haplotype allele.

Separately for each experiment, the haplotype block

structure was analysed with three different methods. For

the HB1 approach, haplotype block boundaries were

determined by specifying a fixed block length of four

adjacent mapped markers along the chromosome (Jansen

et al. 2003). This straightforward approach was included to

allow comparisons with more elaborate, data-driven ap-

proaches HB2 and HB3, which determined the block

boundaries by performing the following steps for each

chromosome: (1) generating all potential blocks of adjacent

markers with block lengths between one and a defined

maximum block length, (2) determining the number of

haplotype alleles within each potential block, (3) discard-

ing all potential blocks which violated the restrictions

specifically defined for HB2 and HB3 (the restrictions will

be described in the following paragraph), (4) determining

an optimum haplotype block solution with the lowest

chromosome-wise haplotype allele number using Dijkstra’s

shortest path algorithm (Dijkstra 1959), and (5) assigning

the haplotype alleles.

For the HB2 approach, the maximum block length was

four markers to allow comparison with the HB1 approach.

Furthermore, potential blocks were discarded if at least one

marker included in the potential block had missing obser-

vations. With this restriction, markers affected by missing

observations were considered as blocks with the length of

one. For the HB3 approach, maximum block length was 15

markers, and solutions were retained only if strong LD was

observed within the investigated haplotype block. This was

achieved by discarding potential blocks, where the median

of Fisher’s exact P-value across all pair-wise comparisons

between markers in the investigated haplotype block was

higher than a = 0.05.

Prediction based on total effects of associated markers

For each experiment, markers associated significantly with

hybrid performance were identified separately. For each

marker the genotypic class of a hybrid was determined by

the marker of the homozygous parental inbreds. Modifying

the approach of Vuylsteke et al. (2000), for each marker

the genotypic effects were estimated and tested across all

hybrids in the estimation set with the following model:

yck ¼ lþ sc þ eck ð1Þ

where yck = mean performance of the k-th hybrid of

genotypic class c; l = grand mean; sc = effect of

genotypic class c with zero-sum constraint Ssc = 0; and

eck ~ N (0; r2
e) residual error of yck. The effect of marker

genotypic class on hybrid performance was tested with an

F test of H0: s1 = s2 = ��� = sC at a false discovery rate of

5% (Benjamini and Hochberg 1995). Across all markers,

which were significantly associated with hybrid

performance, the genotypic value for each hybrid was

then estimated by the sum of its sc. These genotypic value

estimates were considered as the total effects of associated

markers (TEAM) and were used as predictor for hybrid

performance in a simple linear regression:

yij ¼ aþ TEAMij � b ð2Þ

where yij = mean performance of the hybrid between

parental inbreds i and j; TEAMij = total effects of associ-

ated markers for hybrid ij. The TEAM values of the test set

hybrids were determined using the sc estimates obtained

from the estimation set. In cases where for a given marker

(1) the sc of the genotypic class c could not be estimated

due to the lack of observations for genotypic class c in the

estimation set or (2) the genotypic class of the test set

hybrid was unknown due to missing marker data, the

average of the sc estimates weighted by the number of

observations kc in the estimation set was used as a sub-

stitute. Hybrid performance of the hybrids in the test set

was then predicted by using their TEAM values in the

simple linear regression (Eq. 2), for which parameters a

and b were obtained in the estimation set. The TEAM

procedure was applied in the same manner to (1) single
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AFLP markers (SM) as well as (2) haplotype blocks HB1

to HB3, which were regarded as multi-allelic markers.

Prediction based on multiple linear regression

In a second approach, prediction of hybrids based on

estimation of QTL effects was regarded as a multiple linear

regression (MLR) problem:

yij ¼ lþ
X

m;c

am;c � xm;c
ij þ eij ð3Þ

where yij = mean performance of the hybrid between

parental inbreds i and j; l = intercept; am,c = effect of

genotypic class c at marker locus m; xij
m,c = indicator var-

iable [0,1] for the genotype c at marker locus m of hybrid

ij; and eij ~ N (0; r2
e) residual error of yij. The summation

is over genotypic classes c of markers m affecting the trait.

Markers were added to the reduced model using forward

selection. At each step, the most significant marker was

added to the model until no other marker had an F value of

4.0 or higher. Additionally, a forward selection procedure

was performed with an alpha-to-enter of 0.05 and 0.20,

respectively, divided by the appropriate number of markers

in each experiment. Further, we employed the Schwarz

Bayesian criterion for a genome-wide forward selection

procedure and a two-step forward selection procedure. For

the latter approach, variables were forward selected sepa-

rately for each chromosome in the first step, which then

provided the shortlist for the genome-wide forward selec-

tion in the second step. In those cases where for a given

marker m the effect am,c of the genotypic class c could not

be estimated due to the lack of observations for c in the

estimation set, the average of all estimated am,c for marker

m, weighted by the number of observations in the estima-

tion set, was used as a substitute effect in the prediction of

test set hybrids. The MLR procedure was applied in the

same manner to SM as well as HB1 to HB3. Model

selection and prediction was performed with software R

using routines from its ‘stats’ package (R Development

Core Team 2004).

Evaluating the efficiency of prediction models

for hybrid performance

Cross-validation was performed with 100 randomised

replications per experiment to evaluate the efficiency of the

GCA- and marker-based prediction models. For each cross-

validation run, the entire factorial data set of an experiment

was divided into an estimation set and test set. In order to

mimic the situation in plant breeding, five Dent lines and

three Flint lines were used as testers. Therefore, in each

cross-validation run, five Dent and three Flint testers were

chosen at random (Fig. 2, exemplarily for Exp. 1). The

chosen testers were crossed with all lines of the respective

opposite heterotic group, forming the estimation set. All

remaining crosses formed the test set. The estimation set

a) AFLP markers b) AFLPs with indicated blocks c) Resulting haplotype blocks

1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 3 1 1 1 1 1 2 2 2 2 1

2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2

3 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2

4 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 3

5 1 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 2 2 4

6 1 1 1 1 1 1 2 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 2 1 1 1 2 2 5

7 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 6

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 1 1 1 2 2 2 1 1 3 3 4 7

9 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1

10 2 2 1 2 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1 1 1 2 2 2 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

12 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 8

13 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 5 1 1 1 1 4 1 2 3 9

14 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2

15 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1

16 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2

17 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 10
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Fig. 1 Conversion of AFLP allele data into haplotype alleles,

exemplarily showing the HB2 approach applied to a segment of 17

loci on chromosome 1 with marker data from Exp. 4. Missing AFLP

observations were indicated as blank cells, observed alleles were

colored in grey. On basis of the underlying AFLP data (a), block

boundaries were identified by the haplotype block algorithm (b).

Within resulting haplotype blocks, the observed sets of marker alleles

were regarded as haplotype alleles (c)
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was used for QTL detection and parameter estimation in

each prediction approach. In the test set, predictions de-

rived from the estimation set were tested for their validity

by determining the squared correlation coefficient (R2) and

the square root of mean square deviation (RMSD) between

observed and predicted hybrid performance values for each

prediction approach.

Results

Biometrical analysis of field data

The estimates of variance components for Exps. 1–4 were

given by Schrag et al. (2006), and will be presented briefly

(Table 1). The SCA variance component for grain yield for

Exp. 1 (0.170) was remarkably higher than for the

remaining experiments (0.029–0.072). When averaging

GCA variance over Flint and Dent, the ratio of SCA to

GCA variance ranged from 0.19 to 1.12, with highest

values for Exp. 1.

Analysis of molecular data

The marker subsets, which were specific for Exps. 1–4,

comprised 720, 674, 638, and 583 mapped AFLP markers,

respectively (Table 1). The HB3 approach resulted in the

highest number of blocks (489–584), followed by HB2

(382–474) and HB1 (150–184). Accordingly, the average

block lengths were shortest for HB3 with 1.16–1.29

markers per block, followed by HB2 with 1.36–1.62

markers per block. For HB1, the average block lengths

were longest with 3.89–3.92 markers per block, which

differed from 4.0 markers per block, as the number of

AFLP markers per chromosome was not always a multiple

of four. The average number of alleles per marker or

haplotype block was 2.0 for SM in all experiments, fol-

lowed by HB3 (2.12–2.26), HB2 (2.43–2.79), and HB1

(5.32–6.22). The average number of genotypic classes per

marker or haplotype block was 3.0 for SM in all experi-

ments, followed by HB3 (3.40–4.03), HB2 (4.63–6.14),

and HB1 (17.52–23.46). Ranking the approaches for block

length, number of alleles, and number of genotypic classes

resulted in the same order across all experiments: SM,

HB3, HB2, and HB1. In the SM subsets, between 2.0 and

3.8% of the AFLP observations were missing. For HB1,

between 7.4 and 13.4% of the underlying AFLP marker

observations were missing, whereas for HB2 the percent-

ages were identical to SM. Consequently, between 5.4 and

9.6% of the AFLP markers were additionally discarded in

HB1 compared with HB2. The percentage of linked marker

pairs in LD for the populations of parental inbreds in Exps.

1–4 was 9.0, 5.9, 8.2, and 6.5%, respectively.

Selected markers or haplotype blocks for prediction

For the TEAM-based approaches, the average numbers of

selected markers or haplotype blocks (Table 2) in each

experiment were highest for SM (126.4–219.9), followed

by HB2 (99.5–195.1), HB3 (91.7–182.8), and HB1 (58.3–

116.0). For the MLR-based approaches, the average num-

bers of selected markers or haplotype blocks were dis-

tinctly lower compared with the TEAM-based approaches,

with highest values for SM (6.9–9.0) and HB3 (7.0–8.6),

followed by HB2 (5.4–7.9), and again lowest values for

HB1 (1.1–2.2). Ranking the SM and HB1–HB3 approaches

for the number of selected markers resulted in a similar

order as for block length, number of alleles, and number of

genotypic classes among both the TEAM-based and the

MLR-based approaches.

Efficiency of prediction models for hybrid performance

Across all approaches, values of R2 (Fig. 3) were lowest for

Exp. 1, intermediate for Exp. 3, and highest for Exps. 2

and 4. In Exp. 1, the median R2 (Table 2) was highest for

D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14

F01 ES ES ES ES ES ES ES ES ES ES ES ES ES ES

F02 ES TS TS TS ES TS ES TS TS TS ES TS ES TS

F03 ES ES ES ES ES ES ES ES ES ES ES ES ES ES

F04 ES TS TS TS ES TS ES TS TS TS ES TS ES TS

F05 ES TS TS TS ES TS ES TS TS TS ES TS ES TS

F06 ES ES ES ES ES ES ES ES ES ES ES ES ES ES

F07 ES TS TS TS ES TS ES TS TS TS ES TS ES TS

Fig. 2 Randomised subdivision of the Exp. 1 data set used for cross

validation (exemplarily showing one possible randomisation). In each

of the 100 cross-validation runs, five of the 14 Dent lines (D01–D14)

and three of the seven Flint lines (F01–F07) were randomly chosen as

testers. The chosen testers were crossed with all lines of the respective

opposite heterotic group, forming the estimation set (ES). All

remaining crosses formed the test set (TS)
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HB2-TEAM (0.466) and GCA (0.465), whereas for the

MLR approaches, the median R2 was clearly lower (0.305–

0.370). In Exp. 2, GCA had the highest median R2 (0.888)

and a lower variance of R2 values compared with the

marker-based approaches. Among the marker-based pro-

cedures, the median R2 was highest for HB3-TEAM

(0.843) and HB2-MLR (0.843). For HB1 the median R2

was clearly lowest, both for HB1-TEAM (0.755) and HB1-

MLR (0.689). For Exp. 3, again the median R2 for GCA

was highest (0.754) and showed a low variance of R2

values. Among the marker-based procedures, highest

median R2 were obtained with the MLR-based approaches

HB3-MLR (0.702) and SM-MLR (0.689). However, the

median R2 of HB1-MLR was very low (0.363) compared

with all other approaches in Exp. 3. Outliers with very low

R2 values were more pronounced for the MLR-approaches

than for the TEAM-approaches. For Exp. 4, the differences

between the approaches were clearly smaller compared

with Exps. 1–3. The median R2 for GCA was highest

(0.898), followed by HB2-MLR (0.889) and HB1-MLR

(0.888). Across all experiments, median R2 of HB2 was

generally higher than for HB1, and median R2 of GCA was

generally higher or equal compared with the marker-based

prediction procedures. In general, the results for RMSD

(Table 2) were very similar compared with those for R2.

However, in Exp. 4, the advantage of the HB1 and HB2

approaches in comparison with SM and HB3 was more

pronounced for RMSD. In Exp. 2, outliers with high

RMSD values for the MLR-based predictions (data not

shown) were more distinct compared with the corre-

sponding R2 outliers.

Discussion

Haplotype blocks have been suggested as a means for

association mapping (Anderson and Novembre 2003). We

took this idea one step forward to improve the marker-

based prediction of hybrids from germplasm of a com-

mercial breeding program. The approach is linked to the

idea that if parents were derived from few ancestors, the

number of different haplotypes is expected to be smaller

than the number of parents, thus enabling a large reduction

in the number of estimated parameters (Jansen and Stam

1994). The correlation between alleles at different marker

loci in a population is referred to as LD (Flint-Garcia et al.

2003). LD is a measure that highly depends on the genetic

structure of the population or breeding pool from which the

individuals were sampled. In contrast to studies, which

were based on genetically diverse material of broad geo-

graphic origin and a large number of heterotic groups

(Tenaillon et al. 2001), in our study the inbred lines orig-

inated from one commercial breeding program using the

Dent/Flint heterotic pattern. The germplasm was derived

from a limited number of ancestors, and relatedness, pop-

ulation stratification, and genetic drift can be regarded as

the main forces for generating LD. Maurer et al. (2006)

and Stich et al. (2006) analysed and thoroughly discussed

the conditions in commercial breeding germplasm, result-

Table 1 Experimental setup, field data results and marker data re-

sults for Exps. 1–4

Experiment

1 2 3 4

Experimental setup

Dent · Flint 14 · 7 11 · 4 14 · 6 11 · 4

Parental lines 21 15 20 15

Hybrids 98 44 84 44

Variance components for grain yield (Mg ha–1)

SCA 0.170 0.072 0.066 0.029

GCA 0.151 0.383 0.155 0.149

Number of markers or haplotype blocks

SM 720 674 638 583

HB1 184 172 164 150

HB2 444 474 470 382

HB3 584 583 495 489

Average block length (in markers)

HB1 3.91 3.92 3.89 3.89

HB2 1.62 1.42 1.36 1.53

HB3 1.23 1.16 1.29 1.19

Average number of alleles per marker or haplotype block

SM 2.00 2.00 2.00 2.00

HB1 6.22 5.65 6.11 5.32

HB2 2.79 2.52 2.43 2.62

HB3 2.25 2.12 2.26 2.16

Average number of genotypic classes per marker or haplotype block

SM 3.00 3.00 3.00 3.00

HB1 23.46 19.66 22.95 17.52

HB2 6.14 5.08 4.63 5.40

HB3 3.97 3.40 4.03 3.54

Missing AFLP marker observations (%)

SM 2.0 3.8 2.7 3.0

HB1 7.4 13.4 9.8 10.8

HB2 2.0 3.8 2.7 3.0

HB3 2.8 5.0 4.6 4.2

Experimental setup comprised the number of parental Dent and Flint

lines, the total number of parental lines, and the number of hybrids.

Variance components for specific combining ability (SCA) and gen-

eral combining ability (GCA) were determined from field data and

averaged over Dent and Flint. From cross-validation with 100 sam-

pling rounds, the following averages were obtained for single markers

(SM) and haplotype blocks (HB1-HB3): number of amplified frag-

ment length polymorphism (AFLP) markers or haplotype blocks,

block length, number of alleles, number of genotypic classes, and

proportion of missing AFLP marker observations underlying the

haplotype blocks
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ing in high levels of LD and extended haploblocks. For

example, in the latter study, 35 Flint and 37 Dent inbred

maize lines exhibited extended AFLP haplotype blocks

with less than 100 blocks across the whole genome. Con-

sequently, the chosen set of AFLP markers is expected to

adequately cover the limited number of haplotype blocks

for the material investigated in our study.

Regardless of its origin, the correlation between markers

affects the marker-based prediction of hybrids perfor-

mance, as (1) for the TEAM approach, series of correlated

markers are expected to overestimate the contributed

effects of linked QTL, thereby increasing the prediction

error, and (2) for the MLR approach, the number of

parameters to be estimated for prediction is inflated. These

issues were addressed by combining highly correlated

adjacent markers into haplotype blocks.

In several publications from the field of human ge-

nomics, approaches were suggested to find haplotype block

boundaries, using information about (1) LD decay between

blocks and (2) diversity of haplotypes within blocks

(Gabriel et al. 2002; Zhang et al. 2002). These strategies

aim to identify a small number of so-called ‘‘haplotype

tagging SNPs’’ (Johnson et al. 2001), with which the

haplotype diversity can be explained sufficiently. This

would allow the conduction of association-based mapping

of disease genes in a more cost-effective way. For marker-

based prediction of hybrid performance, however, the aim

is to utilise the total haplotype diversity while reducing the

number of parameters to be estimated for hybrid prediction.

Therefore, we developed procedures to optimise the block

boundaries with respect to a minimum overall haplotype

allele number.

Procedures to find haplotype block boundaries

The straightforward HB1 approach considered the map

order of markers. However, it ignored the actual allele data.

Furthermore, in situations where the haplotype block of a

given individual was affected by missing marker data, the

resulting haplotype block allele could not be determined.

This resulted in a loss of 5.4–9.6% of the AFLP marker

information, as available marker data in affected block

alleles could not be utilised. Therefore, we proposed a data-

driven approach HB2, which (1) defined block boundaries

in dependence on the chromosome-wise number of alleles

and (2) restrictively defined block boundaries to minimise

the information loss due to missing marker observations.

The maximum block length for HB2 was limited to four

markers to allow comparison with HB1.

The HB2 approach indirectly accounted for the corre-

lation of markers, since combining correlated markers into

a block reduces the allele number and would therefore be

preferred by the algorithm. In contrast, the HB3 approach

(1) allowed for a higher maximum block length of 15

markers, and (2) directly considered pair-wise LD, which

was determined in the population of parental inbreds sep-

arately for each experiment. In cases of map regions with

high marker density, this would facilitate the combination

of a higher number of adjacent markers into one block, thus

allowing a more accurate representation of the actual

haplotype block structure existing in the germplasm of the

parents.

Table 2 Prediction results from cross-validation with 100 sampling

rounds for Exps. 1–4

Experiment

1 2 3 4

Average number of selected markers or haplotype blocks

SM-TEAM 182.1 219.9 175.2 126.4

HB1-TEAM 87.6 116.0 80.2 58.3

HB2-TEAM 148.2 195.1 151.5 99.5

HB3-TEAM 148.0 182.8 143.5 91.7

SM-MLR 8.5 6.9 9.0 8.8

HB1-MLR 2.0 1.1 1.6 2.2

HB2-MLR 6.2 5.5 7.9 5.4

HB3-MLR 8.3 7.0 8.6 8.2

Median R2

SM-TEAM 0.418 0.829 0.636 0.857

HB1-TEAM 0.439 0.755 0.632 0.839

HB2-TEAM 0.466 0.822 0.640 0.856

HB3-TEAM 0.426 0.843 0.649 0.847

SM-MLR 0.346 0.837 0.689 0.869

HB1-MLR 0.305 0.689 0.363 0.888

HB2-MLR 0.322 0.843 0.631 0.889

HB3-MLR 0.370 0.833 0.702 0.861

GCA 0.465 0.888 0.754 0.898

Median RMSD

SM-TEAM 0.484 0.375 0.338 0.270

HB1-TEAM 0.481 0.436 0.341 0.231

HB2-TEAM 0.468 0.398 0.337 0.232

HB3-TEAM 0.486 0.390 0.340 0.257

SM-MLR 0.549 0.385 0.309 0.212

HB1-MLR 0.555 0.455 0.440 0.162

HB2-MLR 0.540 0.379 0.344 0.175

HB3-MLR 0.565 0.389 0.290 0.226

GCA 0.465 0.301 0.276 0.184

Average number of selected markers or haplotype blocks, median

squared correlation coefficient (R2) and median square root of mean

square deviation (RMSD) between observed and predicted hybrid

performance were given. Predictions were based on the total effects of

associated markers (TEAM) and on multiple linear regression (MLR),

using single markers (SM) or haplotype blocks (HB1–HB3). Addi-

tionally, predictions were performed from estimates of general

combining ability (GCA)
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The marker order between genetic and physical maps

can be inconsistent, which could impair the identification

of haplotype blocks. However, misordering of loci within

haplotype blocks does not affect any of the presented ha-

ploblock finding approaches. Misordering of loci across

haplotype blocks could potentially disrupt the structure into

shorter blocks. Even then the data-driven approaches HB2

and HB3 would robustly minimize the overall allele

number for the given marker data. In addition, the under-

lying proprietary map (Peleman et al. 2000; Vuylsteke

et al. 1999) was developed by integrating multiple map-

ping populations, resulting in a reduced probability of locus

misorder between distant markers.

Prediction based on total effects of associated markers

The prediction approach presented by Vuylsteke et al.

(2000) depends on bi-allelic marker data, thus cannot be

applied to multi-allelic marker data such as SSRs or hap-

lotype blocks. In their approach, the total contribution of

selected markers (TCSM) for a given hybrid was obtained

by summing up the additive and dominance effects across

all selected markers. For the case of bi-allelic marker data,

the genotypic value estimates TCSM and TEAM are per-

fectly correlated and therefore resulting in identical pre-

dictions of hybrids performance. However, with the

modification of using effects sc of genotypic classes instead

of additive and dominance effects, more than three geno-

typic classes can be accounted for. In this way, the TEAM-

based prediction procedure can be extended from bi-allelic

to multi-allelic marker data such as haplotype blocks and

SSRs.

Prediction based on multiple linear regression

By defining haplotype blocks as blocks of adjacent mark-

ers, only the correlation between tightly linked markers is

considered. To take genome-wide correlation of markers

into account, an additional approach was examined.

Sequential methods for multiple linear regression such as

forward selection are appropriate approaches in situations

where multicollinearity among the variables exists and the

number of independent variables (i.e. markers) is large

compared with the number of observations (i.e. hybrids). In

a step-by-step procedure, variables are included into the

model only if they significantly increase the variation ex-

plained by the enhanced model. With such an approach,

markers are disregarded if correlated with already included

markers. An F-to-enter forward selection approach was

applied, but this does not ascertain the nominal alpha level

(Piepho and Gauch 2001). This problem of compromised

type-I error rates was addressed by additionally performing

a forward selection procedure where the desired alpha level

was divided by the number of variables (results not shown).

Model selection criteria such as the Schwarz Bayesian

criterion provide means of comparing the goodness of fit of

competing models while taking into account the principle

of parsimony, and were recommended by Piepho and

Gauch (2001) based on a simulation study of QTL mapping

scenarios. The Schwarz Bayesian criterion was considered
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Predictions were based on the

total effects of associated

markers (TEAM) and on

multiple linear regression

(MLR), using single markers

(SM) or haplotype blocks

(HB1–HB3). Additionally,

predictions were performed

from estimates of general

combining ability (GCA).

Boxplots were based on

Tukey’s five number summary
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in (1) a genome-wide forward selection procedure and (2) a

two-step forward selection procedure (results not shown).

However, when examining the prediction efficiencies of

these various multiple linear regression approaches across

all experiments, the prediction efficiencies of the F-to-enter

procedure were highest or among the highest, and were

therefore chosen as a reference to compare the multiple

linear regression approaches with the TEAM-based pre-

diction approaches.

Validation of predictions

In cross-validation, samples are repeatedly assigned at

random to the estimation set or test set. In practical

breeding programs for inter-group hybrids, the inbred lines

from one heterotic group are crossed with a limited number

of tester lines from the opposite group. With a leave-one-

out validation, in each validation run only one hybrid was

removed from the entire data set for parameter estimation,

as published by Vuylsteke et al. (2000) and Schrag et al.

(2006). Thereby, the number of parental tester lines was

assumed overly high compared with the practical breeding

situation, where a distinctly smaller proportion of hybrids

in an experiment is available. Thus, for the sampling pro-

cedure in this work, parental lines instead of hybrid crosses

were chosen as the sampling unit, allowing the set up of a

validation procedure as close as possible to the practical

situation in breeding programs.

Advantages of data-driven haploblock approaches

for prediction

The prediction efficiency of the HB2-based approach was

at least similar but in most cases clearly higher compared

with the HB1-based approach. These results appear to be

contrary to the lower number of haplotype blocks and

haplotype alleles obtained for HB1, which (1) for the

TEAM-based approaches reduces an overly stringent

adjustment for multiple testing, thus increasing the power

for QTL detection, and (2) for the MLR-based approaches

suggests a reduction in the number of estimated parame-

ters. However, the HB1 haplotype blocks exhibited very

high numbers of alleles per locus, caused by using fixed

block lengths and ignoring the correlation structure of the

actual marker data. Consequently, the numbers of geno-

typic classes per locus (Table 1) and also the total numbers

of genotypic classes were extremely high for HB1 com-

pared with the SM, HB2, and HB3 approaches.

For such high numbers of genotypic classes (i.e. vari-

ables), as occurred with HB1, the numbers of observations

in the factorial experiments were rather low, so that

genotypic effects were often estimated with very few

observations or not estimable at all. As a consequence for

the TEAM-based approach, the genotypic values of the

hybrids were poorly estimated. And for the MLR-based

approach, only very few loci could be added to the model

due to the high number of effect estimates per locus. This

can be observed in Exps. 2–3, where only 1.1–1.6 blocks

were selected on average by HB1-MLR, in contrast to

6.9–9.0 blocks for SM-MLR, and 5.5–7.9 blocks for

HB2-MLR. Consequently, the prediction efficiencies of

HB1-MLR were extremely poor for these experiments,

compared with the remaining MLR approaches. Addition-

ally, the use of fixed block lengths increases the risk of

combining loci with effects differing in size and direction

into one block. This may further reduce the power to detect

significant haplotype blocks and thereby increase the

prediction error.

The issues related to the use of fixed block lengths were

addressed by the HB2 approach, which resulted in dis-

tinctly better predictions of hybrid performance. The HB2

approach indirectly accounted for the correlation of

markers by optimising the block boundaries with respect to

a minimum overall allele number. Furthermore, the ap-

proach avoided the propagation of marker information loss

due to haplotype blocks. When assigning unique alleles to

haplotypes, those haplotypes, which included missing data

at underlying marker loci were defined as missing.

Therefore, between 5.4 and 9.6% of the AFLP markers

were additionally discarded in HB1 compared with HB2.

This marker information loss is even more detrimental for

the MLR-based procedures, since loci affected by missing

observations were excluded from the analyses. As a result,

the number of available HB1 haplotype blocks was

strongly reduced, being an additional cause for the poor

prediction efficiencies of HB1-MLR in Exps. 2–3. Sum-

marizing, the use of haplotype blocks to improve hybrid

prediction is only effective if the actual marker data of the

involved genotypes is regarded in the process of finding

block boundaries. Furthermore, a larger number of ob-

served hybrids is needed to sufficiently estimate the marker

effects as the basis for hybrid prediction.

Comparing haplotype blocks with single markers

for prediction

A central question of this study was whether accounting for

correlation between markers by means of haplotype blocks

could improve the marker-based prediction of hybrid per-

formance. Among the TEAM-based approaches, prediction

efficiencies for HB2 were similar or better compared with

the SM approach. Also, the HB3 approach was predicting

the hybrid performance comparable with or better than the

SM approach in most cases, whereas the HB1 approach

resulted in poor prediction efficiencies. We conclude that

the TEAM approach benefits from less stringent adjustment
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for multiple testing and from avoidance of inflated QTL

effects by means of haplotype blocks, but only if the actual

marker data is considered for finding the block boundaries.

Among the MLR-based approaches, the prediction

efficiencies obtained with the HB3 blocks were higher

(Exps. 1 and 3), similar (Exp. 2), or only slightly lower

(Exp. 4) compared with the SM approach. For the HB2-

based procedures, the prediction efficiencies were ambig-

uous compared with SM, and for the HB1-based approach

the prediction efficiencies were clearly lower. Thus, the

most promising approach for MLR-based prediction was

HB3, which directly considered LD and allowed for block

lengths of up to 15 markers. Summarizing, in comparison

with the SM approach, the prediction efficiencies of HB1

were often inferior. The HB2 blocks for the TEAM ap-

proach, as well as the HB3 blocks for the MLR approach

were advantageous for hybrid prediction.

Marker-based prediction versus GCA-based prediction

The largest experiment (Exp. 1), which also showed the

highest SCA variance and SCA:GCA ratio, yielded the

lowest prediction efficiencies of all experiments and the

largest variance of R2 for the GCA-based approach. In our

study, Exp.1 is the only experiment where a marker-based

prediction approach (HB2-TEAM) achieved a prediction

efficiency, which was equal to that obtained with the GCA-

based prediction. The smallest experiments (Exps. 2 and 4)

exhibited the lowest SCA:GCA ratios and the highest

prediction efficiencies. In Exp. 4, MLR-based approaches

obtained prediction efficiencies close to those obtained

with the GCA-based approach, in contrast to Exp. 1, where

a TEAM-based approach achieved prediction efficiencies

equal to the GCA-based approach. Summarizing, in our

experiments from a breeding program for inter-group hy-

brids with predominance of GCA over SCA variances, the

hybrid prediction from GCA effects was efficient in iden-

tifying promising hybrids and resulted in equal or higher

prediction efficiencies compared with all investigated

marker-based approaches.

Data from field experiments of hybrids and genotyping

of their parental inbreds provided the basis for assessing

the presented approaches for prediction of untested hy-

brids. This has the clear advantage of being a real-life

example. However, even with that it is difficult to

examine the approaches under defined conditions while

assessing the influence of specified scenarios, such as the

effect of experiment size or relevance of SCA. Therefore,

simulation studies could be a valuable tool for undertak-

ing further extensive evaluation of the presented ap-

proaches. In the current work, the issue of missing marker

data was addressed by (1) discarding markers that were

strongly affected by missing observations, and (2) using

the average of the sc estimates as a substitute for missing

observations in the TEAM-based prediction procedures.

However, in the MLR approach, markers could only be

considered if completely unaffected by missing observa-

tions. Procedures to estimate haplotypes that are affected

by missing observations could be combined with either of

the marker-based prediction approaches and thereby fur-

ther improve their value for performance prediction of

untested hybrids. Thus, considering the advantage of data-

driven haplotype block approaches over single marker

approaches for prediction of inter-group hybrids, we see a

high potential to substantially improve the efficiency of

hybrid breeding programs.
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