Benutzerspezifische Werkzeuge

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Titel

Artikelaktionen

Phosphorylcholin als immunmodulatorische Komponente

PC has been recognized as a structural component in both prokaryotic and eukaryotic pathogens. First detected in the Gram-positive bacterium Streptococcus pneumoniae in 1967 (1); it was later found in both Gram-negative bacteria and many important disease-causing parasites, such as, protozoa (2,3), and gastrointestinal (4,5) and filarial nematodes (for reviews see (6,7)). It was further found in the cestode Bothriocephalus scorpii (8) and trematode Schistosoma mansoni (5). PC can be attached to teichoic acid (9), lipoteichoic acid (10), lipopolysaccharide (11), glycolipids and glycoproteins (12). Work on PC-epitope bearing bacteria, however, has shown, that this modification can act as a double-edged sword, facilitating colonization and invasiveness but also being a target for innate and adaptive immune responses (7,11,13-15).

An immunosuppressive activity of PC-antigens was first reported from Trichinella spiralis in infected mice during the muscle phase of the life cycle (16-21). Immunolocalization studies revealed the presence of these epitopes in different internal structures (22-25). The PC-moieties are attached via complex-type N-glycans to antennae predominantly comprised of lacdiNAc (GalNAcß1-4GlcNAc) (26,27) (see Fig. 1). Somatic antigen-bound PC-epitopes were also found in Brugia (28) in addition to those on the circulating filarial antigen. These antigens were found to suppress the T cell proliferative response towards phytohemagglutinin in a dose-dependent manner (29). There is evidence for N- and O-glycan linked PC-epitopes in these parasites (30,31). Similar results have also been reported for O. gibsoni excretory-secretory (ES) products (32). The N-glycan structures of O. volvulus and O. gibsoni containing PC resemble those from A. viteae (33) (see Fig. 1). The first mass-spectrometrical localization of a PC-epitope linked via an N-glyan was performed by Haslam et al. (34) for C. elegans. It could be demonstrated, that PC is linked - similarly as for the glycosphingolipid-based epitope - to C6 of GlcNAc, substituting a trimannosyl fucosylated core structure (Fig. 1). A second, but different PC-epitope from C. elegans was published by Cipollo et al., postulating a PC-substituted Man5-structure (Fig. 5) (35). A PC-substituted ES product has also been described for Wuchereria bancrofti (36). Likewise, PC-epitopes were reported for Dictyocaulus viviparus (37), N. brasiliensis (38,39) and A. suum (40).

Most of our current knowledge on the biological implications of PC-substituted proteins results from investigations on ES-62, a secretory product from the filariid A. viteae (41-43). This glycoprotein of tetrameric structure (44) revealed homology to aminopeptidases (45,46). Sensitivity towards N-glycosidase F treatment indicated the presence of PC-substituted N-glycans (47,48) on ES-62. Mass spectrometric analysis revealed partially fucosylated trimannosyl core structures, carrying between one and four additional N-acetylglucosamine residues substituted with PC (49) (see Fig. 1). Further PC-epitopes have been found in the egg, and on uterine and intestinal membranes of A. viteae (50,51). ES-62 was found to be stage-specifically expressed and secreted in the post-L3 stages, whilst mRNA was also found in L1 and L3 stages (52).

Filariasis is characterized by a suppressed, anti-inflammatory T-helper (Th2) type of immune response with reduced IFN-g, increased IL-10 and greatly elevated IgG4 antibody levels (53). There was early evidence, that PC might be this immunomodulatory component (54). Later it was found, that ES-62 at concentrations found in filariasis patients indeed prevented proliferation of B lymphocytes, beeing associated with ligation to the B-cell receptor (BCR) (55), in a PC-dependent manner by anergizing B cells (56), whereas at high concentrations an activation was observed. Similar suppressive effects were also found for T cells (56,57).

The interference with proliferation of B cells, however, resulted in the activation of several tyrosine kinases like Lyn, Syk and Blk, and Erk2, an isoform of MAPkinase, and modulation of PKC isoform expression (55,58,59). Desensitization further resulted in a failure to activate the phosphoinositide 3-kinase (PI-3-kinase) and Ras-MAPK pathways via the BCR (58). Anergy of T cells was found to be associated with disruption of TCR coupling to the phospholipase D, PKC, PI-3-kinase and RasMAPK signalling cascades (56,57). Later, it was found that ES-62 induces the activation of two negative regulatory molecules, the tyrosine phosphatase SHP-1 and the MAPkinase phosphatase PAC-1, which dephosphorylate the immunoreceptor tyrosine-based activation motifs (ITAMS) on Ig-ß, thus preventing the recruitment of other signalling molecules, and MAPkinase (see Fig. 2) (60). Until now, it remains unclear, however, whether PC acts on the cell surface or after internalization.

In addition to the biological activities outlined above, ES-62 has further effects on antibody and cytokine responses. It induces a Th2 antibody response as indicated by the production of IgG1 antibodies (56) in an IL-4-dependent manner (61). This shift towards a Th2 response might be due to the induction of IL-10 by ES-62 (56). IL-10 downregulates IFN-g, a cytokine necessary for antibody-class switching to IgG2a, an antibody characteristic for Th1 responses. In macrophages, it suppresses the production of IL-12, a key cytokine in the development of Th1 responses, and that of the proinflammatory cytokines TNF-a and IL-6 (62). Investigations on the effects of ES-62 on dendritic cells revealed an induction of maturation of dendritic cells with the capacity to induce a Th2 response (63).

Immunomodulation
Immunomodulation

Literature:

1.         Tomasz, A. (1967) Science 157, 694-697

2.         Heise, A., Peters, W., and Zahner, H. (1999) Exp Parasitol 92, 279-282

3.         Lal, R. B., and Ottesen, E. A. (1989) Trans. R. Soc. Trop. Med. Hyg. 83, 652-655

4.         Crandall, C. A., and Crandall, R. B. (1971) Exp. Parasitol. 30, 426-437

5.         Pery, P., Petit, A., Poulain, J., and Luffau, G. (1974) Eur. J. Immunol. 4, 637-639

6.         Lochnit, G., Dennis, R. D., and Geyer, R. (2000) Biol Chem 381, 839-847

7.         Harnett, W., and Harnett, M. M. (1999) Immunol. Today 20, 125-129

8.         Fletcher, T. C., White, A., and Baldo, B. A. (1980) Parasite Immunol. 2, 237-248

9.         Brundish, D. E., and Baddiley, J. (1968) Biochem. J. 110, 573-582

10.       Briles, E. B., and Tomasz, A. (1973) Journal of Biological Chemistry 248, 6394-6397

11.       Weiser, J. N., Shchepetov, M., and Chong, S. T. H. (1997) Inf. Immun. 65, 943-950

12.       Houston, K. M., and Harnett, W. (1999) Trends in Glycosciences and Glycotechnology 11, 43-52

13.       Weiser, J. N., and Pan, N. (1998) Molec. Microbiol. 30, 767-775

14.       Weiser, J. N., Pan, N., McGowan, K. L., Musher, D., Martin, A., and Richards, J. (1998) J. Exp. Med. 187, 631-640

15.       Weiser, J. N., Williams, A., and Moxon, E. R. (1990) Infect Immun 58, 3455-3457.

16.       Baltar, P., Leiro, J., Santamarina, M. T., Sanmartin, M. L., Porto, M. C., and Ubeira, F. M. (1991) Parasitology 102, 411-418

17.       Dea-Ayuela, M. A., and Bolas-Fernandez, F. (1999) Vet Res 30, 559-571

18.       Ubeira, F. M., Leiro, J., Santamarina, M. T., and Sanmartin-Duran, M. L. (1987) Parasitology 95, 583-592

19.       Ubeira, F. M., Leiro, J., Santamarina, M. T., Villa, T. G., and Sanmartin-Duran, M. L. (1987) Parasitology 94, 543-553

20.       Baltar, P., Romaris, F., Estevez, J., Leiro, J., and Ubeira, F. M. (1998) Exp Parasitol 90, 95-102

21.       Peters, P. J., Gagliardo, L. F., Sabin, E. A., Betchen, A. B., Ghosh, K., Oblak, J. B., and Appleton, J. A. (1999) Infect Immun 67, 4661-4667

22.       Choy, W. F., Ng, M. H., and Lim, P. L. (1991) Exp Parasitol 73, 172-183

23.       Takahashi, Y., Homan, W., and Lim, P. L. (1993) J. Parasitol. 79, 604-609

24.       Sanmartin, M. L., Iglesias, R., Santamarina, M. T., Leiro, J., and Ubeira, F. M. (1991) Parasitol Res 77, 301-306

25.       Hernandez, S., Romaris, F., Acosta, I., Gutierrez, P. N., and Ubeira, F. M. (1995) Parasitol Res 81, 643-650

26.       Morelle, W., Haslam, S. M., Olivier, V., Appleton, J. A., Morris, H. R., and Dell, A. (2000) Glycobiology 10, 941-950

27.       Appleton, J., Dell, A., Nitz, M., and Bundle, D. (2001) Trends in Glycosciences and Glycotechnology 13, 481-492

28.       Wenger, J. D., Forsyth, K. P., and Kazura, J. W. (1988) Am. J. Trop. Med. Hyg. 38, 133-141

29.       Lal, R. B., Kumaraswami, V., Steel, C., and Nutman, T. B. (1990) Am. J. Trop. Med. Hyg. 42, 56-64

30.       Nor, Z. M., Devaney, E., and Harnett, W. (1997) Parasitol Res 83, 813-815

31.       Nor, Z. M., Houston, K. M., Devaney, E., and Harnett, W. (1997) Parasitology 114, 257-262

32.       MacDonald, M., Copeman, D. B., and Harnett, W. (1996) Int. J. Parasitol. 26, 1075-1080

33.       Haslam, S. M., Houston, K. M., Harnett, W., Reason, A. J., Morris, H. R., and Dell, A. (1999) J Biol Chem 274, 20953-20960

34.       Haslam, S. M., Gems, D., Morris, H. R., and Dell, A. (2002) Biochem. Soc. Symp. 69, 117-134

35.       Cipollo, J. F., Costello, C. E., and Hirschberg, C. B. (2002) J Biol Chem 277, 49143-49157

36.       Lal, R. B., Paranjape, R. S., Briles, D. E., Nutman, T. B., and Ottesen, E. A. (1987) J. Immunol. 138, 3454-3460

37.       Gilleard, J. S., Duncan, J. L., and Tait, A. (1995) Exp. Parasitol. 80, 441-453

38.       Pery, P., Luffau, G., Charley, J., Petit, A., Rouze, P., and Bernard, S. (1979) Ann. Immunol. (Inst. Pasteur) 130C, 889-900

39.       Pery, P., Luffau, G., Charley, J., Petit, A., Rouze, P., and Bernard, S. (1979) Ann. Immunol. (Inst. Pasteur) 130C, 879-888

40.       Gutman, G. A., and Mitchell, G. F. (1977) Exp. Parasitol. 43, 161-168

41.       Harnett, W., and Harnett, M. M. (2000) Mod. Asp. Immunobiol. 1, 40-42

42.       Harnett, W., and Harnett, M. M. (2001) Biochim Biophys Acta 1539, 7-15

43.       Harnett, W., Harnett, M. M., and Byron, O. (2003) Curr Protein Pept Sci 4, 59-71

44.       Ackerman, C. J., Harnett, M. M., Harnett, W., Kelly, S. M., Svergun, D. I., and Byron, O. (2003) Biophys J 84, 489-500

45.       Harnett, W., Houston, K. M., Tate, R., Garate, T., Apfel, H., Adam, R., Haslam, S. M., Panico, M., Paxton, T., Dell, A., Morris, H., and Brzeski, H. (1999) Mol Biochem Parasitol 104, 11-23

46.       Harnett, W., Worms, M. J., Kapil, A., Grainger, M., and Parkhouse, R. M. E. (1989) Parasitology 99, 229-239

47.       Harnett, W., Frame, M. J., Nor, Z. M., MacDonald, M., and Houston, K. M. (1994) Parasite 1, 179-181

48.       Harnett, W., Houston, K. M., Amess, R., and Worms, M. J. (1993) Exp. Parasitol. 77, 498-502

49.       Haslam, S. M., Khoo, K. H., Houston, K. M., Harnett, W., Morris, H. R., and Dell, A. (1997) Mol. Biochem. Parasitol. 85, 53-66

50.       Gualzata, M., Weiss, N., and Heusser, C. H. (1986) Exp. Parasitol. 61, 95-102

51.       Gualzata, M. D., Rudin, W., Weiss, N., and Heusser, C. H. (1988) Parasite Immunol. 10, 481-491

52.       Stepek, G., Auchie, M., Tate, R., Watson, K., Russell, D. G., Devaney, E., and Harnett, W. (2002) Parasitology 125, 155-164

53.       Maizels, R. M., and Lawrence, R. A. (1991) Parasitol. Today 7, 271-276

54.       Mitchell, G. F., and Lewers, H. M. (1976) Int. Arch. Allergy appl. Immunol. 52, 235-240

55.       Harnett, W., and Harnett, M. M. (1993) J. Immunol. 151, 4829-4837

56.       Harnett, W., Deehan, M. R., Houston, K. M., and Harnett, M. M. (1999) Parasite Immunol 21, 601-608

57.       Harnett, M. M., Deehan, M. R., Williams, D. M., and Harnett, W. (1998) Parasite Immunol 20, 551-563

58.       Deehan, M. R., Frame, M. J., Parkhouse, R. M. E., Seatter, S. D., Reid, S. D., Harnett, M. M., and Harnett, W. (1998) J. Immunol. 160, 2692-2699

59.       Deehan, M. R., Harnett, M. M., and Harnett, W. (1997) J. Immunol. 159, 6105-6111

60.       Deehan, M. R., Harnett, W., and Harnett, M. M. (2001) J Immunol 166, 7462-7468

61.       Houston, K. M., Wilson, E. H., Eyres, L., Brombacher, F., Harnett, M. M., Alexander, J., and Harnett, W. (2000) Infect Immun 68, 5466-5468

62.       Goodridge, H. S., Wilson, E. H., Harnett, W., Campbell, C. C., Harnett, M. M., and Liew, F. Y. (2001) J Immunol 167, 940-945

63.       Whelan, M., Harnett, M. M., Houston, K. M., Patel, V., Harnett, W., and Rigley, K. P. (2000) J Immunol 164, 6453-6460