Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum


Document Actions

Participation in CRC 1083 - Structure and Dynamics of Internal Interfaces

Collaborative Research Center 1083 - Structure and Dynamics of Internal Interfaces

Duration: 1 July 2017 - 30 June 2021

Prof. Dr. Ulrich Höfer
Phillips University Marburg
Faculty of Physics
Workgroup for Surface Physics
Renthof 5
35037 Marburg

Project leader in Giessen: Prof. Dr. Sangam Chatterjee

1st Physics Institute
Heinrich-Buff-Ring 26-32
35392 Giessen


Short Description

Internal interfaces between two solids play a decisive role in modern materials sciences and their technological applications. Among the most prominent examples are certainly semiconductor devices, which have been miniaturised to such an extent that their optical and electronic properties are determined decisively by interfaces. In the future, the importance of internal, solid/solid interfaces is expected to increase further due to the development of hybrid materials that combine specific properties of metals or inorganic semiconductors, on the one hand, with those of organic or bio-materials, on the other hand. Examples for such hybrids are novel solar cells, organic field-effect transistors, biosensors or core/shell nanoparticles. Despite their enormous importance, our microscopic understanding of buried internal interfaces is lagging behind that of volume or surface properties. The main reason of this knowledge gap is the experimental difficulty to detect and isolate the weak interface signature from that of the dominant bulk. The Collaborative Research Centre aims to close this gap by a collaboration between chemical synthesis, semiconductor physics, surface science, structural analysis and laser spectroscopy. Initially our investigations will not be directed towards specific functional materials, as those generally consist of many, frequently not well-defined interfaces. Instead we will focus on model systems with specially prepared internal interfaces. These interfaces will be structurally characterised on the atomic level and their optical and electronic properties will be systematically investigated. In this way, we want to achieve a detailed microscopic understanding of chemical bonding, electronic coupling and energy transfer for different classes of hetero-interfaces. In the long term, we shall then make use of this knowledge and tailor interfaces for specific applications and construct devices with novel properties and functions.