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Abstract The performance of hybrids can be predicted

with gene expression data from their parental inbred lines.

Implementing such prediction approaches in breeding

programs promises to increase the efficiency of hybrid

breeding. The objectives of our study were to compare the

accuracy of prediction models employing multiple linear

regression (MLR), partial least squares regression (PLS),

support vector machine regression (SVM), and transcrip-

tome-based distances (DB). For a factorial of 7 flint and 14

dent maize lines, the grain yield of the hybrids was

assessed and the gene expression of the parental lines was

profiled with a 56k microarray. The accuracy of the pre-

diction models was measured by the correlation between

predicted and observed yield employing two cross-valida-

tion schemes. The first modeled the prediction of hybrids

when testcross data are available for both parental lines

(type 2 hybrids), and the second modeled the prediction of

hybrids when no testcross data for the parental lines were

available (type 0 hybrids). MLR, SVM, and PLS resulted in

a high correlation between predicted and observed yield for

type 2 hybrids, whereas for type 0 hybrids DB had greater

prediction accuracy. The regression methods were robust to

the choice of the set of profiled genes and required only a

few hundred genes. In contrast, for an accurate hybrid

prediction with DB, 1,000–1,500 genes were required, and

the prediction accuracy depended strongly on the set of

profiled genes. We conclude that for prediction within one

set of genetic material MLR is a promising approach, and

for transfering prediction models from one set of genetic

material to a related one, the transcriptome-based distance

DB is most promising.

Introduction

The prediction of the performance of a hybrid with data

gathered from its parental inbred lines is expected to

increase the efficiency of hybrid breeding. Recently sug-

gested prediction methods using field data, coancestry

coefficients, and DNA markers such as AFLPs and SSRs,

were reviewed by Schrag et al. (2009). Correlation of

heterosis with the average gene expression in the parental

inbred lines was suggested by the study of Springer and

Stupar (2007). This approach was taken up by Fu et al.

(2010) and Thiemann et al. (2010). An alternative

approach summarizes the differential gene expression in the

parental lines of a hybrid by defining transcriptome-based
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distance measures, and uses the distances to predict hybrid

performance (Frisch et al. 2010).

The data set employed by Frisch et al. (2010) was used

for DNA-marker based hybrid prediction (Schrag et al.

2006). A ceteris paribus comparison showed that using

transctriptome data resulted in a considerably more precise

prediction than AFLP markers and also than GCA esti-

mates obtained from field trials. In a furhter study in which

an extended version of this data set was used (Schrag et al.

2009), DNA-marker based prediction of hybrid perfor-

mance showed a greater prediction accuracy than BLUP

approaches based on pedigree and phenotypic data

(Bernardo 1994, 1999). These comparisons indicate that

transcriptome-based prediction might outperform GCA,

pedigree-based BLUP, and DNA marker-based prediction

of hybrid performance.

To address the over-parametrization in prediction mod-

els for heterosis and hybrid performance, support vector

machine regression (SVM) was suggested by Maenhout

et al. (2007) in a study with maize. Partial least squares

regression (PLS) was suggested in studies with metabolites

in Arabidopsis by Gärtner et al. (2009) and Steinfath et al.

(2010). A comparative study applying these different pre-

diction methods to one single data set is not yet available.

The goal of our study was to investigate the accuracy of

predicting grain yield of maize hybrids with gene expres-

sion data from their parental inbred lines. In particular, our

objectives were to (1) compare models employing binary

transcriptome-based distances (DB), SVM, PLS, and stan-

dard multiple linear regression (MLR), (2) investigate the

effect of the number of genes used in the prediction

models, (3) compare prediction when testcross data for the

parental lines of a hybrid are available with prediction

when no testcross data for the parental lines are available.

Materials and methods

Field data

Seven flint and 14 dent elite inbreds developed in the maize

breeding program of the University of Hohenheim were

used as parental inbreds for 98 = 7 9 14 factorial crosses

between both groups of inbreds. The inbreds comprised

eight dent lines with Iowa Stiff Stalk Synthetic background

(S028, S036, S044, S046, S049, S050, S058, and S067) and

six with Iodent background (P033, P040, P046, P048,

P063, and P066). Four flint lines (F037, F039, F043, and

F047) had a European Flint background and three (L024,

L035, and L043) a Flint/Lancaster background.

The factorial crosses were evaluated in 2002 at six

agroecologically diverse locations in Germany (Bad

Krozingen, Eckartsweier, Hohenheim, Landau, Sünching,

and Vechta). The trials were evaluated in two-row plots

using a designs with two to three replications. Hybrid

performance for grain yield was assessed in Mg ha-1

adjusted to 155 g kg-1 grain moisture. The field data were

analyzed with a mixed linear model, which was described

in detail in a previous study (Schrag et al. 2009), where it

was referred to as Experiment 1.

Gene expression data

Five seedlings of each of the 21 maize inbred lines were

grown in a climate chamber under regulated growth con-

ditions. RNA was isolated from a mixture of the seedlings

of each line when they were 7 days old. The 46k array

from the maize oligonucleotide array project (http://www.

maizearray.org/, University of Arizona, USA) was used for

transcription profiling (Thiemann et al. 2010). For the

microarray experiment an interwoven loop design (Kerr

and Churchill 2001) was applied. It resulted in 63 hybrid-

izations of dent and flint lines by sampling each dent line

five times and each flint line eight times. For experimental

validation of the microarray experiment, two genes in eight

different lines were evaluated by Quantitative RT-PCR,

essentially in accordance with the microarray data. The

microarray data have been deposited in Gene Expression

Omnibus (GEO) under the series accession GSE17754.

The gene-oriented probes together with spike-in probes

were tested for statistically significant differential expres-

sion across all comparisons with a moderated F test and

subsequently with a nested F test for each comparison of

parental lines. The limma package (Smyth 2004) was

applied for the tests. A false discovery rate (FDR; Benjamini

and Hochberg 1995) of 0.01 for all genes showing a fold

change of at least 1.3 was used to detect significant differ-

ential expression between inbred lines (Fu et al. 2010). For

all differentially expressed genes, we calculated the average

of the gene expression level (log2 scale) in the parents of

each hybrid.

Prediction methods

The prediction of new hybrids requires a set of related

breeding material. With this estimation set, the gene

expression of the parental lines and the hybrid performance

is assessed, and the parameters for the employed prediction

method are estimated. An outline of the prediction proce-

dure is presented in Fig. 1 of Frisch et al. (2010).

We employed the binary transcriptome-based distance

DB that quantifies the number of genes that were differ-

entially expressed in two parental lines. It does not take

into account the absolute amount of the differences in

gene expression. This avoids a bias in the selection of

genes toward those genes for which the difference in gene
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expression is greatest. Further, prediction with DB showed

a greater prediction acurracy than prediction with the

Euclidean transcriptome-based distance DE (Frisch et al.

2010).

For the calculation of DB, the genes were ranked

according to the p value of a test for the association of

differential gene expression with high hybrid performance.

A set of genes with small p values was used to estimate the

transcriptome-based distance, which was related to hybrid

performance with linear regression. For a detailed

description see Frisch et al. (2010).

For the regression techniques, the genes were ranked

according to the significance of the correlation between the

average expression level of a gene in the parental lines and

hybrid performance. The significance of the correlations

was tested with a t test adjusted for multiple testing using a

false discovery rate of 0.01. Sets of genes with small

p values were used as predictors in the regression models.

PLS is a regression technique using latent variables that

are chosen such that the correlation between predictors and

response is maximized. The original gene expression data

are projected into a latent lower dimensional space with

multidimensional scaling, and the first n latent variables are

used for MLR. n was determined with cross-validation

such that adding further latent variables to the prediction

model did not decrease the mean squared prediction error.

The calculations were carried out with the R package pls

(Mevik and Wehrens 2007).

SVM is a ‘‘machine-learning’’ technique (Drucker et al.

1997) that maps an n-dimensional vector of predictors to

the target variable. We used �-insensitive SVR as imple-

mented in the R package e1071 (Karatzoglou et al. 2006).

The optimal values of the parameters �;C and c that were

required for the Gaussian Radial Basis Function kernel

were determined with a grid search (Hsu et al. 2003) using

the tune function. The parameter space for c ranged from

10-6 to 10-3.

MLR with forward selection of regressors on basis of

Akaike information criterion (AIC) was carried out with

the step and lm functions of R (Ihaka and Gentleman,

1996).

Assessment of prediction accuracy

The accuracy of hybrid performance prediction was eval-

uated for (a) untested hybrids of a partial factorial and (b)

hybrids derived from parental lines for which no testcross

data are available.

For prediction of untested hybrids of a partial factorial,

we employed the cross-validation procedure of Schrag

et al. (2009). The estimation set consisted of three ran-

domly chosen flint and five randomly chosen dent lines and

their hybrids, and the validation set consisted of the

remaining hybrids of a 7 9 14 factorial. The principle is

illustrated in Fig. 1a. Both parental lines of an untested

hybrid in the validation set are also parents of hybrids

belonging to the estimation set. In the terminology of

Schrag et al. (2009), the hybrids of the validation set are

called type 2 hybrids, because testcross data are available

for both parental lines of a hybrids.

For prediction of hybrids derived from parental lines for

which no testcross data were available, we employed a

cross-validation procedure in which the estimation set

consisted of five randomly chosen flint lines and ten ran-

domly chosen dent lines and their hybrids. The validation

set consisted of the hybrids of the remaining two flint and

four dent lines of the 7 9 14 factorial (Fig. 1b). The

hybrids of the validation set are called type 0 hybrids,

because for none of the parental lines testcross data are

available.

For each scenario to be evaluated, cross-validation was

carried out for 100 runs and the prediction accuracy in the

validation set was measured by the correlation rðy; ŷÞ
between the predicted and the observed hybrid yield.

Sets of genes used for prediction

The genes were ranked according to the p value of the test

for association with hybrid yield as described above. For

a

b

Fig. 1 Cross validation schemes. a Evaluation of prediction accuracy

for untested hybrids in an incomplete factorial. The hybrids in the

validation set are of type 2. b Evaluation of prediction accuracy for

hybrids derived from parental lines of which no testcross data are

available. The hybrids in the validation set are of type 0. D01–D14,

parental dent lines in random order; F01–F07, parental flint lines in

random order; E, hybrids of the estimation set; V, hybrids of the

validation set
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convenience, we call sets of genes consisting of the n genes

with the smallest p value, as the ‘‘n best genes’’.

To investigate the number of genes required for the

different prediction methods, hybrid performance was

predicted with DB, SVR, and PLS employing the best 50,

100, 200, 500, 1,000, 1,500, 2,000, 3,000, 4,000, and 5,000

genes. For MLR, sets of the best 50, 100, and 200 genes

were used. Due to the employed forward selection algo-

rithm, only genes explaining a large proportion of the

variance are included in the model. Therefore, the larger

sets of genes are expected to result in the same final MLR

models as these three sets.

To investigate how important an optimal ranking of the

genes is, prediction on basis of DB, PLS, and SVM was

carried out with (1) the best 200 genes, (2) the second best

200 genes, (3) the third best 200 genes, (4) 200 random

genes out of the best 1,000 genes, (5) 200 random genes

out of the best 5,000 genes, (6) the best 1,000 genes, (7) the

second best 1,000 genes, (8) the third best 1,000 genes, (9)

1,000 random genes out of the first 5,000 genes, and (10)

1,000 random genes out of all genes with differential gene

expression. For prediction with MLR only the sets (1)–(5)

were used.

Results

The mean grain yield of the 98 hybrids was 11.72 Mg ha-1

with a broad sense heritability of 80.3%. The GCA and

SCA variance components, as well as their interactions

with the locations were significantly different from zero

(a = 0.05). The ratio of SCA:GCA variance components

was 1.12. The field data were presented in detail by Schrag

et al. (2006).

10,810 genes were differentially expressed in at least

one pair of parental lines of the factorial crosses. Thiemann

et al. (2010) as well as Fu et al. (2010) presented lists of

genes of which the average gene expression in the parental

lines was correlated with heterotic traits and provided a

functional characterization of heterosis.

For untested hybrids in an incomplete factorial (type 2

hybrids), prediction with the regression methods resulted in

a greater correlation between predicted and observed yield

than prediction with transcriptome-based distances

(Fig. 2). The differences between the regression methods

were small, and the correlations were almost not affected

by the number of genes employed for prediction. In con-

trast, for prediction with transcriptome-based distances, the

correlation between predicted and observed yield was

greatest when 1,000–1,500 genes were used for prediction.

The correlation between predicted and observed yield

was smaller for hybrids derived from parental lines of

which no testcross data are available (type 0 hybrids) than

for type 2 hybrids (Fig. 3). Furthermore, the correlation

coefficients determined in the cross-validation runs had a

considerable greater range for type 0 hybrids than for type

2 hybrids.

For type 0 hybrids, prediction with transcriptome-based

distances showed a greater correlation between predicted

and observed yield than prediction with the regression

methods (Fig. 3). Within the regression methods, PLS and

SVM showed a greater correlation between observed and

predicted yield than MLR. The low correlation with MLR

was accompanied by very large absolute values of the

prediction errors (results not shown).

For prediction with transcriptome-based distances, the

choice of the set of genes employed as predictors greatly

affected the observed correlations between predicted and

observed yield. Sets of genes with a highly significant

association with hybrid performance showed greater pre-

diction accuracy than sets of genes with lower significances

and sets of randomly selected genes (Figs. 2, 3). In con-

trast, for the regression-based methods the set of genes

employed for prediction had only a marginal effect on the

correlation between observed and predicted yield.

Discussion

Multiple linear regression

MLR with forward selection of predictor variables was

included in our study to investigate whether the more

sophisticated regression methods PLS and SVM were

superior to standard methods. Forward selection includes

predictor variables to the model until no further improve-

ment of the fit is detected by the AIC. Therefore, the

number of variables included is solely controlled by the

algorithm but not by the user. This property distinguishes

MLR from the other investigated prediction methods,

where the number of predictor variables in the model can

be determined by the user. With high multicollinearity, the

number of predictor variables included by forward selec-

tion into a MLR model is expected to be low. This was

observed with our data set, where the final model consisted

of seven to ten predictor variables in most of the cross-

validation runs.

It had only marginal effect on the prediction accuracy

whether the best 50 or 200 genes, or even random sets of

200 genes among the best 1,000 or 5,000 genes were used

as starting set for the model selection (Figs. 2, 3). This can

be explained by the low number of genes included in the

final model and the high multicollinearity of gene expres-

sion in our data set. The combination of both resulted in

final models with comparable prediction accuracy that

were found for different starting sets of genes. We
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conclude that MLR is robust to the choice of genes

employed as starting set for model selection.

The prediction accuracy of MLR was considerably

lower for type 0 hybrids than for type 2 hybrids. While a

lower prediction accuracy for type 0 hybrids was also

observed with the other prediction methods, the

difference between the two types of hybrids was greatest

for MLR (Figs. 2, 3). This can be interpreted as an

indicator for a low transferability of the genes selected

for prediction with MLR from one set of genetic mate-

rial to another set. The coincidence of the low number of

predictor variables in MLR and the large differences in
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Fig. 2 Prediction accuracy for

untested hybrids in an

incomplete factorial (3/5 cross

validation of type 2 hybrids).

Correlation rðy; ŷÞ between

predicted and observed hybrid

yield for the different prediction

methods. Left best 50 to 5,000

genes. Right sets consisting of

the best, second best, and third

best 200 genes, 200 random

genes among the best 1,000 (1),

200 random genes among the

best 5,000 (2), best, second best,

and third best 1,000 genes,

1,000 random genes among the

best 5,000 (3), and among

all differentially expressed

genes (4)
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prediction accuracy between type 0 and type 2 hybrids

suggests the hypothesis that the low transferability may

be a consequence of the low number of predictors in the

model. Analysis of further data sets is needed to inves-

tigate this hypothesis.

In our data set, a complete regression model including

expression of all 10,800 differentially expressed genes

would be heavily over-parameterized. Therefore, it might

be suspected that just by chance there could be a high

correlation between hybrid performance and the expression

50 10
0

20
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transcriptome-based distance 

No. of selected genes

50 10
0

20
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Partial least squares regression

No. of selected genes

50 10
0

20
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support vector machine regression

No. of selected genes

50 10
0

20
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multiple linear regression, forward selection

No. of input genes

1s
t 2

00

2n
d 

20
0

3r
d 

20
0

ra
n.

 2
00

 (
1)

ra
n.

 2
00

 (
2)

1s
t 1

00
0

2n
d 

10
00

3r
d 

10
00

ra
n.

 1
00

0 
(3

)

ra
n.

 1
00

0 
(4

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transcriptome-based distance 

1s
t 2

00

2n
d 

20
0

3r
d 

20
0

ra
n.

 2
00

 (
1)

ra
n.

 2
00

 (
2)

1s
t 1

00
0

2n
d 

10
00

3r
d 

10
00

ra
n.

 1
00

0 
(3

)

ra
n.

 1
00

0 
(4

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Partial least squares regression

1s
t 2

00

2n
d 

20
0

3r
d 

20
0

ra
n.

 2
00

 (
1)

ra
n.

 2
00

 (
2)

1s
t 1

00
0

2n
d 

10
00

3r
d 

10
00

ra
n.

 1
00

0 
(3

)

ra
n.

 1
00

0 
(4

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support vector machine regression

1s
t 2

00

2n
d 

20
0

3r
d 

20
0

ra
n.

 2
00

 (
3)

ra
n.

 2
00

 (
4)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multiple linear regression, forward selection

Fig. 3 Prediction accuracy for

hybrids derived from parental

lines of which no testcross data

are available (5/10 cross

validation of type 0 hybrids).

Correlation rðy; ŷÞ between

predicted and observed hybrid

yield for the different prediction

methods. Left best 50 to 5,000

genes. Right sets consisting of

the best, second best, and third

best 200 genes, 200 random

genes among the best 1,000 (1),

200 random genes among the

best 5,000 (2), best, second best,

and third best 1,000 genes,

1,000 random genes among the

best 5,000 (3), and among

all differentially expressed

genes (4)
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of some genes (or linear combinations of them). We

checked this hypothesis with randomized data sets, where

the yield values were randomly assigned to the hybrids. For

these randomized data sets no genes were found that

showed a significant correlation with yield (results not

shown). Hence, our data provide no evidence that the

heavy over-parameterization in combination with high

multicollinearity in gene expression data exclude MLR in

general as a suitable method for transcriptome-based pre-

diction of hybrid performance.

Partial least squares regression and support vector

machine regression

Hybrid prediction with PLS and SVM was as accurate as

prediction with MLR for type 2 hybrids. For type 0

hybrids, PLS and SVM were clearly superior to MLR and

the prediction accuracy increased slightly with increasing

number of genes used for prediction (Figs. 2, 3). Hence, for

PLS and SVM the transferability of estimation parameters

from one set of genetic material to another is better than for

MLR, and selecting only small numbers of genes for pre-

diction seems not to be desirable. In line with the

hypothesis that the low number of genes in MLR models is

responsible for the poor transferability, the greater number

of predictors with SVM and PLS might be responsible for

the better transferability.

In conclusion, the regression-based methods provided

for type 2 hybrids a better prediction accuracy than tran-

scriptome-based distances (Fig. 2) and DNA marker-based

prediction (Schrag et al. 2006). Moreover, the possibility

of specifying the numbers of genes in the model can be

regarded as an advantage of SVR and PLS compared with

MLR, resulting in a more robust prediction with respect to

the transferability to new genetic materials.

Transcriptome-based distances

For transcriptome-based distances, the correlation of pre-

dicted with observed hybrid yield depended strongly on the

number of genes included in the model. The optimum

number was 1,000–1,500 genes for type 0 hybrids and 500

for type 2 hybrids. The set of genes employed for predic-

tion strongly affected the prediction accuracy (Figs. 2, 3).

Hence, in contrast to the regression methods, the selection

of a suitable set of genes for prediction is of high impor-

tance with transcriptome-based distances. With MLR most

of the genes available for prediction were not included in

the model, and with SVR and PLS some genes may have a

low weight, even if they were included in the model. In

contrast, with binary transcriptome-based distances, all

genes included in the model contribute with equal weights

to the prediction. Therefore, including genes that explain

only a small part of the variation of the target variable

results in a decline of the prediction accuracy. This

explains the sensitivity of prediction with transcriptome-

based distances with respect to the employed set of genes.

For prediction of type 2 hybrids, the regression methods

provided a greater prediction accuracy than transcriptome-

based distances, whereas for type 0 hybrids transcriptome-

based distances were superior. Prediction of type 2 hybrids

can be regarded as prediction within one set of genetic

material. Within one set of genetic material, only some of

the loci that are underlying a quantitative trait may be

highly polymorphic, whereas at other loci underlying the

trait only a low level of polymorphism may occur. In

consequence, only those loci that show a high degree of

polymorphism explain a large proportion of the variation in

the target variable and were, therefore, included into

regression models with a high weight. Excluding genes

with small degree of polymorphism from the model has no

consequences on the prediction accuracy when prediction

is carried out within one set of genetic material. However,

excluding them when the prediction model is transferred to

a new set of genetic material may affect the prediction

accuracy. The variability of these genes in the new set of

breeding material may be greater than in the estimation set,

and hence, excluding them from the model may reduce the

proportion of variance explained by the model and result in

a lower accuracy.

The stringent selection of genes with MLR and the

weighing of predictor genes with PLS and SVM is

expected not to include genes in the prediction models that

are underlying the trait but have a low degree of poly-

morphism in the estimation set. In contrast, the lower

stringency in selection of genes for calculating transcrip-

tome-based distances is expected to include such genes. If

their degree of polymorphism in the new set of breeding

material to which the prediction parameters are transferred

is greater than in the estimation set, then these genes

contribute to a precise prediction of new hybrids. This

effect could explain the better transferability of prediction

models with transcriptome-based distances to new sets of

breeding materials and at the same time the superiority of

regression methods for type 2 hybrids.

The high transferability of transcriptome-based distance

models from one set of genetic material to another corre-

sponds well to the infinitesimal model of quantitative

genetics. This model postulates that a large number of

genes with small effects are underlying quantitative traits

like yield, which agrees with the observation that

1,000–1,500 genes with small effects of equal size explain

a high proportion of the variation in maize yield. This

observation has an important consequence on the func-

tional modeling of complex traits like grain yield. If

models are set up with genetic material in which only a part
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of the genes underlying the trait are varying, then these

models may have a high explanatory value for the data set

under consideration, as demonstrated by the high predic-

tion accuracy of MLR with type 2 hybrids. However,

drawing general conclusions on the mechanisms underly-

ing a trait from such a study could be difficult, because

only a part of the actual genetic architecture of the trait can

be assessed and modeled.

Application in breeding programs

For the possible application of transcriptome-based pre-

diction models in breeding programs, the prediction of type

0 and type 2 hybrids needs to be considered separately. For

prediction of type 2 hybrids, the MLR approach combines

several favorable properties. It assures a high prediction

accuracy with standard statistical methods that are imple-

mented in any statistical software and does not need

advanced programs or software packages. The approach is

very robust with respect to the number of genes employed

for prediction and also the set of genes of which transcript

abundance was assessed. Hence, application could be

possible even with only a few hundred genes. To determine

such a set of genes, preliminary experiments seem to be

suitable in which the expression of a large number of genes

is assessed and the genes related to the trait under con-

sideration are determined. From those a small subset is

selected. While it needs to be assured that the genes of this

subset are related to the trait under consideration, high

efforts for selecting the best among them seems not

necessary.

For prediction of type 0 hybrids, transcriptome-based

distances provide a sufficient prediction accuracy, whereas

the regression-based methods lack the transferability of

models from one set of genetic material to another. The

approach requires expression profiling of considerably

more genes than for prediction of type 2 hybrids with MLR

and, moreover, the selection of a suitable set of genes is

important for a high prediction accuracy. This suggests that

the estimation set should be genetically related to the new

set of hybrids, which should be predicted. The inbred lines

of a previous cycle of a breeding program seem to be a

suitable choice.

Our results confirmed that transcriptome-based approa-

ches have a high potential for prediction of hybrid per-

formance. However, it is questionable whether microarray

technology can be used to generate sufficient information

on the transcriptome economically. Analysis of gene

expression by next generation RNA sequencing approaches

is expected to replace microarray experiments and the costs

per sequence read of these technologies are dropping rap-

idly. This might provide the possibility to implement

transcriptome-based prediction and exploit the additional

information that is present in transcriptome data in plant

breeding programs.
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