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This online appendix accompanies the article “The Value of Collusion with Endogenous Capacity and

Demand Uncertainty” by Johannes Paha.

 A.I . Comments on Section III “The Model”

This section comments on the assumptions made to establish the model presented in Section III of the

main text. 

Costs and Capacity

The model assumes soft capacity constraints (see equation (5)). From a modeling point of view, this is

convenient because it allows us to concentrate on Nash equilibria in pure strategies in the product

market game. To see this, consider a situation with hard capacity constraints where demand exceeds a

firm's production capacity. This would require to specify a rationing rule (Besanko and Doraszelski

[2004]),  which  may  result  in  a  profit  function  that  is  not  quasi-concave  such  that  pure-strategy

equilibria often fail to exist. This is different with soft capacity constraints, where it is not necessary to

ration consumers.  This  results  in  profit  functions  that  are  continuous and quasi-concave.  Hence,  a

unique pure strategy equilibrium exists (Maggi [1996]).

Collusive Conduct

In line with Fershtman and Pakes [2000] the model assumes Nash [1950, 1953] bargaining. The model

was  also  implemented  under  the  assumption  of  joint  profit  maximization  yielding  results  that  are

numerically similar and qualitatively identical in both cases. The assumption of Nash bargaining may

however be preferable because it solves certain issues related to price setting and the distribution of

collusive profits. As was argued in the main text, it avoids ambiguity by concentrating on a scheme

without side payments. It also distributes profits according to the  earnings follows output principle

(Bain  [1948])  with firm  j's  share of  collusive outputs  under  Nash bargaining roughly equaling its
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capacity-share (i.e.,  qk,j/(qk,j+qk,-j)≈sj/(sj+s-j)). This is because every colluding firm receives at least its

competitive profit, and firms with a higher threat point gain more from collusion.

The assumption of a reversion to competitive prices  pc when at least one firm would want to

deviate from collusion at Nash bargaining prices is attributed to the uniqueness of pc. In some cases,

deviations could also be prevented if the cartel firms chose a set of prices below Nash bargaining prices

but above competitive prices. Determining such a pricing vector is difficult for at least two reasons.

First, there is a continuum of constrained semi-collusive equilibria at supra-competitive prices, and the

firms  have  to  coordinate  on  one  of  them.  Especially  in  industries  with  asymmetric  firms  and

differentiated products, this poses a selection problem not only to the researcher but also to the firms.

Second, this set of prices would have to be calculated within the optimization process. This is a highly

complex task. To see this, consider that this set of prices would depend on the deviation incentive of the

firm, which is a function of its investment strategy, which, again, is a function of prices. 

Therefore, assuming collusion at Nash bargaining prices and reversions to competitive prices

provides unique pricing strategies that can be calculated independently from the policy functions and

the  value  functions  of  the  firms.  This  greatly  simplifies  the  task  of  determining  firms'  optimal

investment policies.

Incremental Value of Collusion

The model assumes the explicit costs of collusion to be zero. It does not specify an explicit rule either

that  would  determine  in  what  capacity  and  demand  states  the  firms  switch  from  competition  to

collusion.  Alternatively, one might assume that collusion is established once the incremental value of

both firms is above the present value of the expected costs of collusion. This section demonstrates that

the assumptions that were made in the main text are advantageous when it comes to the computation of

the policy and the value functions, and that these assumptions do not impair  the main conclusions

drawn from the paper.
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Not specifying a rule for cartel formation allows calculating the competitive policy and value

functions independently from their collusive counterparts. This is done using the algorithm proposed by

Pakes and McGuire [1994] whose properties are well-known. Otherwise, if competing firms took into

account that collusion will be established once they move in a certain state of capacities and demand,

one would have to consider this prospect when determining their competitive investment policies. The

collusive value function would have to be treated as an input when calculating the competitive value

function, just as the competitive value function is an input when calculating the collusive one. This is

because the colluding firms condition their investment policies on the possibility of collusion breaking

down in some states, with competition being re-established thereafter. This mutual dependence of the

competitive and the collusive policy and value functions would call for a new / modified version of the

Pakes and McGuire [1994] algorithm that would have to be capable of determining all four functions at

the same time. Such a technical innovation is left for future research because the main conclusion of the

article is the same both with or without specifying a rule for cartel formation.

The article shows in line with established literature that, on the one hand, collusive strategies

can only be sustained when the firms discount  profits  at  a low rate and when their  capacities are

sufficiently symmetric. On the other hand and as a new result, a low value of the discount rate induces

competing firms to go for a preemption race strategy that yields fairly asymmetric capacities. Hence,

collusion can only be sustained when firms' discount rate is sufficiently low, but not so low that the

firms  would  invest  in  fairly  asymmetric  capacities  prior  to  the  establishment  of  collusion.  This

challenges the common notion that a low value of the discount rate always facilitates collusion.

This conclusion can be made as long as a firm's investment policy in competition is independent

of the costs of collusion.  These costs may affect firms' investment policies in  collusion.  The firms

would  likely  invest  in  lower  collusive  capacities  because  of  the  diminished  return  of  collusive

investments.  As  these  costs  are  incurred  only  in  collusion  they  do  not  affect  firms'  competitive

investment strategies and, thus, they do not affect the main result of this article.
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This  conclusion  would  neither  be  challenged  if  one  specified  an  explicit  rule  for  cartel

formation. In this case, the prospect of colluding might motivate the competing firms to choose an

investment  policy  that  generates  symmetric  capacities  more  frequently,  where  collusion  can  be

sustained and will  be established in the future.  However,  given the small  firms'  incentive to make

higher investments in semi-collusion (Property 9) a dominant firm may still find it value-maximizing to

defend its  dominant  position  rather  than  entering  a  collusive  agreement.  Hence,  firms  with  a  low

discount  rate  may still  have  an  incentive  to  engage in  preemption  races  and become dominant  in

competition. Endogenizing cartel formation would only have an effect on the exact values of d and r

where preemption races can be observed without invalidating the economic rationale presented in this

article.  Not specifying a rule for cartel  formation thus keeps the model parsimonious and helps to

establish its main results most transparently, while using algorithms whose properties are well-known.

 A.II . Comments on Section IV “The Stage Game”

The main text states Property 1. 

Property 1: Δπc , j /Δ s− j<0

Δπc , j /Δ s j{≥0 for s j≤sc , j *
<0 for s j>sc , j *

To explain this property, when firm -j moves in a state with higher capacity s-j it reduces its marginal

costs c-j and, thus, optimally lowers its price pc,-j. This causes a business stealing effect which decreases

the competitive profit of firm  j (i.e.,  ∆pc,j/∆s-j<0). The inverse u-shape of profits  pc,j in firm  j's own

capacity state  sj has been discussed in Besanko et al. [2010.2] and can also be shown in models of

product  market  competition  with  homogeneous  goods  and  hard  capacity  constraints  (Kreps  and

Scheinkman [1983], Deneckere and Kovenock [1996], Allen et al. [2000]). Here, it results from the

assumption of soft capacity constraints that have both a direct and an indirect impact on pc,j. As to the

direct impact, an expansion of sj reduces firm j's marginal costs cj, resulting in lower equilibrium prices
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pc,j, and a higher output qc,j. As to the indirect impact, setting lower prices pc,j causes business stealing

from firm -j, lowering both the rival's output qc,-j and (by reversing the effect of decreasing returns to

scale) also its marginal costs c-j. This makes the rival -j a fiercer competitor resulting in lower prices.

For  sj<sc,j*, the direct impact dominates the indirect impact and causes  ∆pc,j/∆sj>0. For  sj>sc,j*, the

indirect impact dominates the direct one implying ∆pc,j/∆sj<0. The inverse u-shape vanishes when sc,j*

exceeds the maximum number M of capacity states. This is the case, first, when business stealing is less

pronounced (e.g., when demand d is high, or when products are more differentiated, i.e., lower q), or,

second, when changes in output  qc,-j have a small impact on firm  -j's marginal costs (e.g., when its

capacity s-j is large, or when capacity constraints are soft, i.e., lower h). This is shown by (A24).

sc , j *(s− j)<sc , j*(s '− j) if s− j<s '− j

sc , j *(θ)<sc , j*(θ ' ) if θ>θ '
sc , j*(η)<sc , j*(η' ) if η>η '

sc , j *(d )<sc , j *(d+1)

 (A24)

The main text also states Property 2.

Property 2: Δπk , j /Δ s− j<0

Δπk , j /Δ s j{≥0 for s j≤sk , j*
<0 for s j>sk , j *

sk , j *>sc , j *

The collusive profits  pk,j of firm j fall in  s-j because the higher capacity  s-j enables firm -j to claim a

larger share of aggregate profits and puts firm j at a bargaining disadvantage. Collusive profits hardly

exhibit an inverse u-shape (sk,j*>sc,j*) for two reasons. First, because of the lower collusive output the

firms are affected by diminishing returns to scale to a lesser extent than in competition: Costs that are

already  low  cannot  be  lowered  much  more  by  building  further  capacity.  Second,  the  collusive

agreement implies that for given marginal costs the firms keep prices constant when capacity changes.
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 A.III . Comments on Section V(i) “Technical Details” – The Algorithms

Pseudocode  1  presents  the  implementation  of  the  Pakes-McGuire  [1994]  algorithm  used  for  the

optimization in the competitive model. The main characteristics of the algorithm are the use of a Gauss-

Jacobi scheme (14:) (i.e., the policy function in iteration l is calculated by use of information from the

value and policy function obtained in iteration l-1 only). Moreover, the value function (15:) is updated

using a policy iteration scheme (i.e., the algorithm iterates on the value function for (typically) 3 steps

while using the same candidate policy function). The optimization is stopped when both sup norm

distance measures tolV and tolx fall below a tolerance of tol=5e-8 (13:), i.e., when the modification in

the entries of the value function and the policy function between any two iterations is very small.

The policy function  x0c is  initialized  (4:)  by multiplying  the  profits  pc,j(s,d)  of  firm  j that

correspond to the entries in the policy function by a pseudo-random number  z(s,d,j) drawn from a

uniform distribution in the interval [0,1]. The value function V0c is initialized (7:) in a similar fashion

by multiplying a naïve estimate of firm j's value (i.e., pc,j(s,d)·(1+r)/r) with a pseudo-random number.

A dampening scheme prevents  the  algorithm from visiting  a  sequence  of  policy and value

functions all over again. Hence, the value and policy functions used in iteration l+1 are generated as

weighted  averages  of  the  functions  from  iterations  l and  l-1  (25:  and  26:).  When  using  a  fixed

dampening factor l, the circling behavior of the algorithm is not always avoided completely. Therefore,

a new value of  l  [0,1] is drawn from a uniform distribution in every iteration.  This dampening

scheme is  only applied in iterations where one of the distance measures,  tolV or  tolx,  exceeds  its

respective value from the previous iteration (22:). Otherwise, a value of l=1 (23:) is used. This helps

the algorithm to stay on a convergence path while avoiding jumps away from the previous candidate

solutions. Such jumps often indicate that the algorithm oscillates between different types of candidate

solutions rather than converging to an equilibrium of the game. The occasional use of undampened
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updating (l=1) results in a faster convergence than in the case of continuously employed dampening.

The randomness in the initialization of the value function  V0c and the policy function  x0c as

well as the randomness in the choice of the dampening factor l ensures that the algorithm generates a

unique sequence of candidate solutions in every restart with otherwise identical industry parameter

values. When a game has multiple equilibria, the algorithm possesses the ability to converge towards

them. This multiplicity is explored by running the algorithm several times on the same set of parameter

values.

Pseudocode 2 presents the implementation of the Pakes and McGuire algorithm [1994] used for

the collusive model.  Its  main structure mimics that  for the optimization of the competitive model.

However, it is in some instances more complex. One needs to calculate (or load) the product market

equilibria in competition, collusion and deviation periods (3: to 6:).  The collusive policy and value

functions  x0k and  V0k are  initialized  (8:  to  14:)  by  multiplying  each  entry  of  their  competitive

counterparts by a number z(s,d,j) drawn pseudo-randomly from a uniform distribution in the interval

[0.5,1.5]. The algorithm assesses in every iteration whether some firm would want to deviate from a

collusive  equilibrium  at  Nash  bargaining  prices  and,  if  yes,  set  prices,  quantities  and  profits  at

competitive, (i.e., price war) levels or at Nash bargaining levels otherwise (21: to 22:). Additionally

(24:), if for some combination of s and d the algorithm finds V0
k
(s,d)<V1

c
(s,d), i.e., collusion cannot be

stabilized even at competitive prices, the collusive agreement would be terminated and the algorithm

sets V0
k
(s,d)=V1

c
(s,d). The stopping criterion of the algorithm (19:) is determined by the convergence

of the collusive policy function and value function (x0k and  V0k) only. This is because the deviation

policy function and value function (x0d and  V0d) closely resemble their competitive versions, so that

convergence of x0d and V0d is achieved more quickly than convergence of x0k and V0k.

The  competitive  and  collusive  equilibria  of  the  dynamic  game  were  calculated  for  3,600

combinations of the discount rate r  {0.01, 0.02, ..., 0.1}, the depreciation probability d  {0.01, 0.02,
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..., 0.1}, the persistence of demand r  {0.5, 0.7, 0.9}, the hardness of capacity constraints h  {2.5,

10, 40}, the product differentiation parameter q  {0.75, 0.85, 0.90, 0.95}, and the investment success

a=0.0625. Selected parameter combinations were also evaluated for  r  {0.1, 0.3, 0.35, 0.40, 0.45}

and a  {0.09375, 0.125, 0.25. 0.375, 0.5, 0.625, 6.25}.

Pseudocode 1: Competitive optimization

1: Initialization

2:  Calculate competitive equilibrium pc(s,d), qc(s,d), pc(s,d)  s, d
3:  Policy and value function

4:  Policy function: x0c,j(s,d) = z(s,d,j)·pc,j(s,d)  s, d, j
5:  x1c,j(s,d) = x0c,j(s,d)

6:  Value function: V0c,j(s,d) = z(s,d,j)·pc,j(s,d)·(1+r)/r  s, d, j
7:  V1c,j(s,d) = V0c,j(s,d)

8:   With values of z(s,d,j) being drawn pseudo-randomly from a uniform distribution  [0,1]
9:  Program controls
10:  tolV = tolV-1 = tolx = tolx-1 = 20

11:  l = 1
12: Optimization
13:  while (tolV > tol=5e-8) and (tolx > tol==5e-8)
14:  Use x0c and V0c (Gauss-Jacobi scheme) to calculate optimal policy function x1c

according to equations (11) and (12)
15:  Update value function V1c with values of x1c and perform a policy iteration on V1c

16:  Update distance measures
17:  tolV-1 = tolV 
18:  tolx-1 = tolx
19:  tolV = max | (V1c-V0c)/(1+|V0c|) | 
20:  tolx = max | (x1c-x0c)/(1+|x0c|) |

21:  Determine dampening factor l
22:  if (tolV > tolV-1) or (tolx > tolx-1), 

draw l pseudo-randomly from a uniform distribution  [0,1]

23:  else, set l = 1
24:  Update value and policy function with dampening
25:  V0c = V1c

26:  x0c = l·x1c + (1-l)·x0c

27:  end
28:  Return V1c and x1c
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Pseudocode 2: Collusive optimization

1: Initialization
2:  Product market equilibria

3:  Load competitive equilibrium pc(s,d), qc(s,d), pc(s,d)  s, d, V1c and x1c

4:  Calculate Nash bargaining equilibrium pNBS(s,d), qNBS(s,d), pNBS(s,d)  s, d

5:  Calculate deviation equilibrium pd(s,d), qd(s,d), pd(s,d)  s, d

6:  Initialize collusive equilibrium pk(s,d)=pNBS(s,d), qk(s,d)=qNBS(s,d), pk(s,d)=pNBS(s,d)  s, d
7:  Policy and value function

8:  Policy function: x0k,j(s,d) = z(s,d,j)·x1c,j(s,d)  s, d, j
9:  x1k,j(s,d) = x0k,j(s,d)
10:  x1d,j(s,d) = x0d,j(s,d) = x0c,j(s,d)

11:  Value function: V0k,j(s,d) = z(s,d,j)·V1c,j(s,d)  s, d, j
12:  V1k,j(s,d) = V0k,j(s,d)
13:  V1d,j(s,d) = V0d,j(s,d) = V0c,j(s,d)

14:   With values of z(s,d,j) being drawn pseudo-randomly from a uniform distribution  [0.5,1.5]
15:  Program controls
16:  tolV = tolV-1 = tolx = tolx-1 = 20

17:  l = 1
18: Optimization
19:  while (tolV > tol) and (tolx > tol)
20:  Price war assessment
21:  If for some combination of s and d a deviation is profitable for at least one firm, 

set pk(s,d)=pc(s,d), qk(s,d)=qc(s,d), pk(s,d)=pc(s,d) 

22:  Otherwise set pk(s,d)=pNBS(s,d), qk(s,d)=qNBS(s,d), pk(s,d)=pNBS(s,d)
23:  Profitability assessment
24:  If for some combination of s and d collusion is not value-maximizing for at least one 

firm (i.e., V0k(s,d)<V1c(s,d)), set V0k(s,d)=V1c(s,d)
25:  Use x0k and V0k (Gauss-Jacobi scheme) to calculate optimal collusive policy function x1k

26:  Use x0d and V0d (Gauss-Jacobi scheme) to calculate optimal deviant policy function x1d

27:  Update value function V1k with values of x1k and perform a policy iteration on V1k

28:  Update value function V1d with values of x1d and perform a policy iteration on V1d

29:  Update distance measures
30:  tolV-1 = tolV 
31:  tolx-1 = tolx
32:  tolV = max | (V1k-V0k)/(1+|V0k|) | 
33:  tolx = max | (x1k-x0k)/(1+|x0k|) |

34:  Determine dampening factor l
35:  if (tolV > tolV-1) or (tolx > tolx-1), 

draw l pseudo-randomly from a uniform distribution  [0,1]

36:  else, set l = 1
37:  Update value and policy function with dampening

38:  V0k = l·V1k + (1-l)·V0k and x0k = l·x1k + (1-l)·x0k

39:  V0d = l·V1d + (1-l)·V0d and x0d = l·x1d + (1-l)·x0d

40:  end
41:  Return V1k, x1k, V1d and x1d
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 A.IV . Comments on Section V(i) “Technical Details” – Limiting Distributions

Given the policy function xj(s,d) of optimal investments the limiting distribution prob(s,d) is simulated

as follows. The algorithm chooses a random starting state (s,d) and lets the industry evolve over 107

periods with firms investing in capacities according to their policy functions. Recording the frequency

with which each state was visited provides the unconditional limiting distribution prob(s,d).

Section V of the article shows that collusion cannot always be sustained despite the reversion to

competitive pricing. In this case, the cartel is assumed to dissolve and there is a permanent transition to

the competitive regime. This suggests that competition is an absorbing state and that – over infinitely

many periods – the collusive limiting distribution would equal the competitive limiting distribution. To

avoid  this  and  identify  the  purely  collusive  limiting  distribution  the  algorithm chooses  a  random

starting state and lets the industry evolve until it reaches a state where collusion cannot be supported

any more. Then, it draws a new state and repeats the simulation until 107 states have been evaluated.

 A.V . Comments on Table III – The Number of Capacity States M

The assumption of an upper bound for capacity (M=6) impacts  the economic interpretation of the

results  when the firms are fairly patient  r<0.04 and engage in  a preemption race strategy.  As was

explained in Section V, fairly symmetric firms may invest in capacities far beyond market demand until

an asymmetry emerges that is sufficiently strong to establish one firm as dominant and the other as

dominated. This strategy of overshooting investments is curtailed by the assumption of an upper bound

for capacity (M=6). Hence, the firms invest in capacity until both hit the upper bound M. Evaluations of

the model indicate that choosing a higher maximum number for capacity states M can solve this issue.

However, this results in drastically increased computation times because of the curse of dimensionality.
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To provide an example, with M=9 the effect of hitting the upper bound is less pronounced but

still present. However, the computation time is approximately three times as high as in the case of M=6.

This is especially relevant for parameter combinations with several equilibria where convergence may

take several 10,000 iterations that – because of their consecutive nature – cannot be parallelized easily.

Raising M to a level where the effect of the upper bound on M vanishes and repeating all calculations

would  require  several  months  of  CPU  time.  Additionally,  the  calculation  would  also  be  more

burdensome for the simulation of the limiting distributions with 107 draws. Consequently, I continue

with the assumption of M=6 and resort to two remedies. First,  Table III reports no results for r=0.01

where the effect of hitting the upper bound of capacity is most pronounced. Second, I emphasize that

the model may overstate the stability of collusion when asymmetric capacity distributions result from

preemption races. Especially when the discount rate is low (r<0.04) both firms may hit the upper bound

of capacity, symmetric capacity states receive a high weight in the competitive limiting distribution.

This symmetry stabilizes collusion. This effect vanishes for r≥0.04.

 A.VI . Comments on Table III – Multiplicity of Equilibria

The numeric and, to some extent, stochastic nature of the algorithm causes some slight variation in the

policy and value functions that are obtained in different runs of the algorithm. As a consequence, one

requires a method for distinguishing this normal variation attributable to the numeric nature of the

algorithm from the variation caused by the existence of multiple equilibria. This distinction is made

using the  sup  norm distance  measure  (A25) that  is  calculated  for  every  pair  of  policy  functions

(indexed by u and y) that are obtained in all runs of the algorithm for the same set of parameter values.

tolxu , y=max
s ,d ∣xu(s , d )−x y (s , d )

1+∣xu(s , d )∣ ∣  (A25)

An analogous measure tolVu,y is calculated for the value function. 
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Two solutions are considered (imperfect) representations of the same equilibrium if the values

of the distance measures  tolxu,y and  tolVu,y are sufficiently small (i.e., differences in the values of the

policy and value functions  are  attributed  to  the  numeric  nature  of  the search).  When the distance

measures are above the thresholds tolxu,y≤5e-5 and tolVu,y≤5e-6 the respective equilibria are defined to

be distinct.

One unique equilibrium exists for each of the parameter combinations evaluated in the main

text (i.e.,  d=0.08 and  r=0.02,  d=0.08 and  r=0.08, as well as  d=0.02  and r=0.09). This is checked by

restarting the algorithm 100 times for every combination of parameter values. The maximum tolerances

between these solutions obtained in different restarts for the same set of parameters are as follows.

max(tolxu,y) max(tolVu,y)

d=0.08, r=0.08, r=0.5 6e-7 1e-7

d=0.02, r=0.09, r=0.5 6e-6 1e-6

d=0.08, r=0.02, r=0.5 7e-7 9e-7

There is no evidence of a further collusive equilibrium than the one presented in the main text

for  d=0.08,  r=0.08, and  r=0.5. This is also true for  r=0.7 and  r=0.9. Moreover, one does not find

evidence of further collusive equilibria than the ones of type kA and kB presented for d=0.02, r=0.09,

and r=0.5. This is because the maximum distances of policy or value functions of the same type are

very small.  The two equilibria are distinct from each other because distances between equilibria of

different types are no smaller than  tolVu,y=0.027 and  tolxu,y=0.24. The following distances are found

between the collusive value or policy functions obtained in the 100 different restarts of the algorithm.

max(tolxu,y) max(tolVu,y)

d=0.08, r=0.08, r=0.5 3e-7 1e-6

d=0.02, r=0.09, r=0.5 2e-6 5e-7 eq. of same type kA or kB
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 A.VII . Robustness Checks – The Persistence Parameter r

The article presents results for a persistence of demand r=0.5. In the following, I show that the level of

demand persistence has a small effect on the strategic patterns in the present model. The most visible

effect of more persistent demand is the emergence of a greater number of equilibria.

This is shown based on a calculation of the competitive and collusive policy and value functions

of the firms for all parameter combinations  r   {0.01, 0.02, ..., 0.1}, d   {0.01, 0.02, ..., 0.1}, and

r  {0.5, 0.7, 0.9} given a=4, b=0.1, q=0.9, D=9, M=6, and h=10. The sample parameter combinations

r=0.02 and d=0.08, r=0.08 and d=0.08, and r=0.09 and d=0.02 that were presented and discussed in the

main text are also evaluated for r  {0.1, 0.3, 0.35, 0.4, 0.45}.

Tables IA and IIA show that the results presented in the article are robust to changes in r. The

tables show the values of the asymmetry measure Dsc9 across the parameter space (spanned by d and r)

when assuming  r=0.7  or  r=0.9.  The  existence  of  multiple  equilibria  deteriorates  the  convergence

properties of the algorithm and may result  in lengthy computation times.  Therefore,  for  r=0.7 and

r=0.9, I do not analyze parameter combinations with d<0.05 and r<0.06, where multiple equilibria are

most  likely. To detect  multiple  equilibria,  the  algorithm is  run 10  times on  every combination  of

parameters. Tables IA and IIA suggest the following findings:

1. Changes  in  the  persistence  of  demand  only  have  a  small  impact  on  the  distribution  of

equilibrium types across the parameter space spanned by d and r. One merely observes a faint

effect  that  somewhat  asymmetric  capacity distributions  (Dsc9=1) spread out  into the regions

where quite asymmetric (Dsc9>1) or symmetric (Dsc9=0) capacities had been found previously. 

2. A higher persistence of demand r results in a greater number of equilibria (typically with the

same value  of  Dsc9)  for  some combinations  of  parameter  values.  For  example,  for  d=0.08,

r=0.08, one finds one competitive equilibrium for r=0.5 and one for r=0.7. However, one finds
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two competitive equilibria for  r=0.9 as is indicated by an asterisk. The longer time spent in

every demand state allows the firms to choose from a greater variety of similar policies. There

are  two  equilibria  for  r=0.9.  The  competitive  limiting  distributions  of  these  equilibria  are

shown in Figure 1A.

3. Figure 1A shows that all four competitive equilibria are very similar. A higher persistence of

demand only somewhat alters the characteristics of the equilibrium. The longer time that a firm

expects to stay in any demand state makes the firms adjust their capacities more closely to the

state of demand. However, these differences are minor. The collusive equilibria that are found

for  different  values  of  r share  an  even  greater  degree  of  similarity  than  the  competitive

equilibria. Therefore, the incremental value of collusion is very similar for the evaluated values

of r, as can be seen from Figure 2A.

These results also apply for  r  {0.1, 0.3, 0.35, 0.4, 0.45}. With these values of  r it is more

likely that demand moves in a different state  d in period  t+1 than to remain in the same state as in

period  t. Assuming such volatile demand does not affect the main characteristics of the competitive

equilibria much. However, more volatile demand implies that capacities cannot be adjusted to current

demand conditions well.  Therefore,  one finds somewhat higher capacities in demand state  d=1 for

r=0.1 than for r=0.5. Capacities are targeted to a greater degree at average demand. This also implies

that in case of fairly asymmetric capacities the number of capacity states s increases where a drop in

demand raises the incremental value of collusion. This is because competition in states of low demand

is particularly intense when capacities are high.
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d – r 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 1 0 1 0 1 0 0 0

0.02 1 0 1 0 1 0 0 0

0.03 1 1 0 1 0 1 0 0

0.04 1 1 1 1 0 0

0.05 >1 >1 >1 >1* 1 1 1 1 1 1 0

0.06 >1 >1 >1 >1 >1* 1 1 1 1 1

0.07 >1 >1 >1 >1* >1* 1 1 1 1 1 1

0.08 >1 >1 >1 >1 >1 >1 1 1 1 1

0.09 >1 >1 >1 >1 >1 >1 1 1 1 1

0.1 >1 >1 >1 >1 >1 >1 1 1 1 1

Table IA: Values of Dsc9(r,d) for r=0.7

d – r 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 1 0 1 0 1 0 1 0 0*

0.02 1 0 1 0 1 0 1 0 0*

0.03 1 1 1 0 1 0 1 0

0.04 1* 1 1 1 0 1 0

0.05 >1* >1 >1 >1 1* 1 1 1 1 1

0.06 >1 >1 >1 >1 >1 1 1* 1 1 1

0.07 >1 >1 >1 >1 >1 1 1* 1 1 1

0.08 >1 >1 >1 >1 >1 >1 1 1 1* 1 1

0.09 >1* >1 >1 >1 >1 >1 1 1 1* 1 1

0.1 >1* >1 >1 >1 >1 >1 >1 1 1 1 1

Table IIA: Values of Dsc9(r,d) for r=0.9
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Notes: There are two equilibria for r=0.9 labeled type 1 and type 2.

Figure 1A: Competitive limiting distributions with d=0.08, r=0.08, and h=10

Figure 2A: Incremental value of collusion with d=0.08, r=0.08, and h=10
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 A.VIII . Robustness Checks – The Investment Parameter a

The  results  of  the  model  are  only somewhat  sensitive  to  changes  in  the  value  of  the  investment

parameter  a as can be seen when evaluating the model for  a  {0.09375, 0.125, 0.25. 0.375, 0.5,

0.625, 6.25}. Given the parameterization of the model (and average investment expenditures per period

of about xj=5 monetary units) a=0.0625 implies an average time to build of about four periods per unit

of capacity. With  a=6.25 average investment expenditure of 5 monetary units results in an average

construction period of about one period per unit of capacity. Therefore, an increase in  a lowers the

price of one unit of capacity. These lower investment costs induce the firms to choose higher and, thus,

somewhat more symmetric capacities both in the competitive and in the collusive equilibria. However,

the different competitive equilibrium types can still be distinguished. The choice of higher capacities is

especially  pronounced  in  collusion.  Everything  else  equal,  this  lowers  the  incremental  value  of

collusion.  This  is  particularly true  for  a  small  firm while  the  incremental  value  of  collusion  of  a

dominant firm may even rise. This is because of the somewhat greater symmetry in competition, i.e.,

the low investment costs would make it difficult for this firm to retain its dominant position even in

competition.

 A.IX . Robustness Checks – The Product Differentiation Parameter q

Besanko and Doraszelski [2004] and Besanko et al. [2010.1] show that greater product differentiation

(i.e.,  a lower value of  q)  makes firms more symmetric,  i.e.,  Dsc9(q)<Dsc9(q')   if  q<q'. The greater

symmetry emerges because the softening of competition reduces the importance of capacities as a

competitive advantage and,  thus,  eliminates  preemption races.  The observation of more symmetric

capacities can be inferred from Figure 3A that shows competitive limiting distributions for q=0.75 and

compares to Figure 3 in the main text with q=0.9. The greater symmetry of capacities also makes the

incremental value of collusion of a small and a large firm more symmetric and prevents situations with
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Wj<0.  Therefore,  by  making  the  firms  more  symmetric  greater  product  differentiation  removes

obstacles to collusion. Insofar this model  also contributes to the theoretical literature challenging the

common notion that collusion can most frequently be observed in markets for fairly homogeneous

goods (e.g., Ross [1992]).

 A.X . Robustness Checks – The Hardness of Capacity Constraints h

The properties of the model were established under the assumption of close to hard capacity constraints

(h=10). The same properties apply when assuming even harder capacity constraints (e.g., h=40). This

is different when capacity constraints are fairly soft (e.g., h=2.5). This alters Property 8: When higher

output can be produced without causing a (considerable) increase of marginal costs the firms decide to

keep  capacity  more  stable  across  demand  states  than  would  be  the  case  with  harder  capacity

constraints, i.e.,  Dqc,j,avg(h)<Dqc,j,avg(h') if  h<h'. At the same time, the intensification of competition in

response to a decline in demand is relatively moderate, i.e., Dpc,j,avg(h)<Dpc,j,avg(h') if h<h'. This changes

Property 5: Without capacity constraints the additional profits from collusion fall along with demand in

Figure 3A: Competitive, unconditional limiting distributions (r=0.5, h=10, q=0.75)
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all capacity states (i.e., pk,j(s,d)-pc,j(s,d)<pk,j(s,d+1)-pc,j(s,d+1)  s) as has been shown by Fabra [2006].

With very soft capacity constraints (e.g., h=2.5) one finds an increase only for very low capacities. 

A similar finding applies for the incremental value of collusion Wj. This can be seen in Figure

4A showing the incremental value of collusion of firm 1 in the sample industry with d=0.08, r=0.08,

and r=0.5 for h  {2.5, 10, 40}. With fairly soft capacity-constraints (h=2.5) the incremental value of

collusion moves counter-cyclically only in few capacity states (see the white bars). This makes cartel

formation in response to a decline in demand less likely and underlines the importance of capacity

constraints for the observable patterns of cartel formation.

Notes: Gray bars indicate the capacity states where W1(s,d)≤W1(s,d+1) applies.

Figure 4A: Incremental value of collusion of firm 1 (W1) with d=0.08, r=0.08, and r=0.5
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 A.XI . Case Evidence

Both the structure and the results of the model are in line with case evidence. Case studies (e.g., Grout

and Sonderegger [2005], Herold and Paha [2015]) suggest the hypothesis that changes in demand were

causal for cartel formation in more than 50% of the cases prosecuted by the European Commission

between 2001 and 2010. However, this evidence alone does not suggest a conclusive pattern.  Some

cartels were formed in times of rising demand while others were established in times of falling demand.

Some demand shocks preceding cartel formation were quite persistent, others supposedly temporary.

They occurred abruptly or slowly.

The  inconclusive  effect  of  demand  on  cartel  formation  suggests  that  demand  affects  the

establishment  of  collusion  through  its  interaction  with  other  factors.  The  European  Commission

attributes a role to excess capacities in 13 of the 41 cases analyzed by Herold and Paha [2015] and

reports  an  increase  in  the  intensity  of  competition  prior  to  the  establishment  of  28  of  the  41

conspiracies. These are the factors that also raise the incremental value of collusion in the present

model that helps to explain the puzzling effect of demand on cartel formation.

The model predicts that falling demand raises firms' incremental value of collusion if the lower

demand  softens  capacity  constraints  (Property  5),  which  is  particularly  likely when  capacities  are

durable (Property 12) and/or the decline in demand was sudden and perceptible (Property 13). This

may explain certain features of, for example, the Norwegian cement cartel that was established in 1923

after a recession had contributed to the emergence of excess capacities (Steen and Sørgard [1999],

Röller and Steen [2006]). Similar conditions were observed prior to the establishment of the more

recent European steel beams conspiracy (DG Comp Case No COMP/F/38.907). 

The predictions of the model depend on the assumptions of semi-collusion (i.e., coordination on

prices but not on investments) and Nash bargaining. Semi-collusion has been reported, for example, for

the  Norwegian cement cartel (Steen and Sørgard [1999]), the steel beams conspiracy, as well as the
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conspiracies in nitrogenous fertilizer, synthetic fibers, plastics and aluminum (Davidson and Deneckere

[1990]). The assumption of Nash [1950, 1953] bargaining allows avoiding ambiguity by concentrating

on a scheme without side payments. Profits are distributed according to the  earnings follows output

principle (Bain [1948]), i.e., “each firm receives revenue only from the output it produces and sells

itself.” The numerical evaluations of the model show that firm j's share of collusive outputs under Nash

bargaining roughly equals its capacity-share (i.e.,  qk,j/(qk,j+qk,-j)≈sj/(sj+s-j)). One case where “the cartel

[decided] to reward domestic market shares based on the members' share of total capacity” was the

Norwegian cement cartel (Röller and Steen [2006]). They (ibid.) also suggest that this form of output-

allocation caused the capacity-expansion observable in the Norwegian cement industry in the period

1956-1967, which is also predicted by the present model. Output allocation in the form of quotas could

also be observed in the steel beams conspiracy.

The model also predicts that declining demand lowers firms' incremental value of collusion

when the effect of capacity on the intensity of competition is small, for example, when the firms had

already  produced  at  excess  capacity  and  thus  had  competed  fiercely  prior  to  the  demand  shock

(Property 5). Then, the firms would rather establish collusion after a positive demand shock.  These

results may possibly explain why five firms in the animal-feed phosphates industry (DG Comp Case

No COMP/38866), who had already produced at  excess capacity,  sat  together in 1969 to share an

increase in demand.

The model is in line with case evidence suggesting that cartels are often observed when firms

had similar market shares in competition (Properties 10 and 11). One would conclude that symmetric

firms have a higher tendency to self-select into collusion. Given that, first, symmetric capacities (i.e.,

symmetric  market  shares  in  competition)  facilitate  cartel  formation  and that,  second,  capacities  in

collusion remain symmetric, the model predicts that market shares will remain fairly stable over time as

has been observed in many cartels (Harrington [2006]).
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