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Abstract

We develop a semiparametric model to track a large number of quantiles of a time series. The
model satisfies the condition of non crossing quantiles and the defining property of fixed quantiles.
A key feature of the specification is that the updating scheme for time varying quantiles at each
probability level is based on the gradient of the check loss function, that forms a martingale difference
sequence. Theoretical properties of the proposed model are derived, such as weak stationarity of the
quantile process and consistency and asymptotic normality of the estimators of the fixed parameters.
The model can be applied for filtering and prediction. We also illustrate a number of possible
applications such as: i) semiparametric estimation of dynamic moments of the observables, ii) density
prediction, and iii) quantile predictions.

Keywords: Dynamic quantiles, Score Driven models, Risk Management

1. Introduction

Modeling quantiles has traditionally been of much interest in econometrics. Since the seminal
contribution of Koenker and Bassett (1978), quantile regression has been successfully employed
to study, for example, the changes in the US wage structure, as in Buchinsky et al. (1994), the
household electricity demand in the Chicago metropolitan area, see Hendricks and Koenker (1992),
and the public decision making regarding hazardous waste cleanup, by Viscusi and Hamilton (1999).
In a time series context, the original quantile regression needs to be modified to account for the
dependence induced by the ordering of the observations (time). Quantile autoregression models can
be then estimated, as in Koenker and Xiao (2006). One of the most successful quantile autoregression
model has undoubtedly been the CAViaR specification by Engle and Manganelli (2004). The acronym
CAViaR stands for Conditional Autoregressive Value at Risk, where “Value at Risk” is the name given
to an extreme left quantile (usually associated with probability levels 1% or 5%) of financial returns,
used as a measure of risk in financial econometrics, see Jorion (1996). A quantile autoregressive
model delivers a sequence of filtered quantiles at a pre-specified probability confidence level, from
which predictions are usually computed. Differently from quantile regression, where the quantile
of the distribution of a random variable conditional on a set of exogenous explanatory variables is
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studied, in quantile autoregression the interest lies in the quantile of the distribution of Yt conditional
on Ft−1, say p(Yt|Ft−1), where Ft−1 incorporates all the past history of Yt, available up to time
t−1. Since no distributional assumption on p(Yt|Ft−1) is made, but only on the dynamic evolution of
the quantile of interest, then quantile autoregressions are semiparametric models. The specification
of the dynamic evolution of the quantile of interest is thus very important, as it characterizes the
whole model. For instance, Engle and Manganelli (2004) assume that the quantile at time t depends
on transformations of past realizations of Yt such as |yt−s|d, for d = 1, 2, 3, . . . and s > 1. As
an example, if qτt denotes the quantile of the distribution of Yt conditional on Ft−1 at probability
level τ , the CAViaR specification defines qτt = f(qτt−1, |yt−1|, y2

t−1, |yt−1|3) for an Ft−1–measurable
function f(·) to which we refer to as “the filter”. Note that the choice of which transformation of
past observations is to be included in f(·) is evidently a personal choice of the modeler and may be
selected ad hoc for the application at hand.

Beside the formulation of the filter and the choice of the forcing variables, a second main issue
of quantile autoregression models is that they are mainly designed for estimating one single quantile.
When turning the attention to joint modelling of multiple quantiles (i.e. associated with different
probability levels), the well-known quantile crossing problem arises, especially when predictions are
considered. The multivariate multiple quantile VAR for VaR models by White et al. (2015) satisfy
the non crossing condition only asymptotically and under the assumption of a correctly specified
model. A common solution is to rearrange the estimated quantiles based on monotonization methods
as in Dette and Volgushev (2008), Chernozhukov et al. (2009) and Chernozhukov et al. (2010) or by
constrained non linear optimisation methods as in Bondell et al. (2010). Multiple quantile models
that ensure monotonicity by construction are the dynamic additive quantile model by Gouriéroux
and Jasiak (2008), where quantile curves are modelled as mixtures of baseline quantile functions, and
the quantile regression by Schmidt and Zhu (2016), which is not developed in the times series context.
The relevance of estimating well a group of quantiles, with the aim of recovering the underlying time
varying distribution of the data, is emphasised by Granger (2010) and earlier discussed in Granger
and Sin (2000).

In this paper, we develop a semiparametric model to track a large number of quantiles of a
time series. Differently from available quantile autoregressive specifications, the model satisfies the
condition of non crossing quantiles by construction, and not as a by-product of constrained nonlinear
optimization procedures. The model also satisfies the defining property of fixed quantiles, which
means that the limiting distribution ensures that the empirical frequency of observations below the
unconditional τ–level quantile is τ . A key feature of our specification is that the updating scheme for
time varying quantiles at each probability level is based on the gradient of the check loss function,
that forms a martingale difference sequence. The check loss function used in quantile estimation is
the negative likelihood function of a density related to the family of asymmetric Laplace distributions,
see Poiraud-Casanova and Thomas-Agnan (2000) and Kotz et al. (2001), or, more generally, to the
family of tick exponential functions introduced by Komunjer (2005). Without a specific distribution
assumption on Yt|Ft−1, the check loss function plays the role of a quasi-likelihood. Hence, our
updating scheme provides a quasi-score driven model or a generalisation of the score driven approach
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to a wider set of loss functions. Score driven models, developed by Creal et al. (2013) and Harvey
(2013), are observation driven models where the dynamics of time varying parameters depend on the
score of the conditional likelihood function of the parameter of interest. This class of models strongly
relies on the distributional assumption made for the observables, which restricts their application to
a parametric framework. One of the first attempts to go beyond the parametric framework of score
driven models is the recent model by Patton et al. (2019) for joint filtering of VaR and Expected
Shortfall. However, this approach might not be optimal for the filtering of extreme quantiles due to
the little amount of information contained in the score in such cases. Our methodology overcomes
this limitation by exploiting the information coming from other regions of the distribution to update
extreme quantiles.

The novelty of the paper does not only lie on the gradient-based update of the quantiles dynamics,
but also in a specification that ensures that the set of estimated quantiles do not cross. Based upon
an idea of Granger (2010), that suggested to model differences, rather than, directly, quantiles, we
specify the dynamics of a reference quantile qτ∗t (typically, the median, τ∗ = 0.5) and then model
the differences q

τj
t − q

τj−1

t or q
τj
t − q

τj+1

t as a positive or negative process, according to the sign of
τj − τ∗ being positive or negative. With this respect, the paper is related with the work of Schmidt
and Zhu (2016), who refer to their method as “quantile spacings”. The dynamics of the reference
quantile, as well as those of the increments, are driven by the gradient of the multiple check loss
function. The paper is also related to the contribution by White et al. (2015) in that we share
the same quasi maximum likelihood estimation method. Besides, the very general multi-quantile
specification discussed in their paper nests our model for the median as a particular case. However,
neither the score driven dynamics nor the non crossing condition are dealt with in the work of White
et al. (2015).

Once specified the model, we derive its theoretical properties, such as: weak stationarity of the
quantile process, limiting quantile values, consistency and asymptotic normality of the estimators of
the fixed parameters. Along with asymptotic results, we also investigate the finite sample properties
of the proposed estimators. The model can be applied for filtering and prediction of quantiles of
a time series. We report an empirical illustration employing the time series of financial returns of
Microsoft corporations. Besides filtering of many quantiles, we also detail how conditional moments
can be recovered. A forecasting analysis illustrates the performance of the model in an out of sample
context. The model is proven to outperform competing parametric and semiparametric alternatives.

The paper is structured in the following manner. Section 2 details the Dynamic Multiple Quantile
model and Section 2.1 reports a general discussion on the forcing variable for updating the quantiles
in the time series context. Section 3 details the estimation procedure as well as the consistency
and asymptotic normality of the estimator. Finite sample properties are studied in Section 4. An
empirical illustration is reported in Section 5. Conclusions and directions for future research are in
Section 6.
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2. The dynamic multiple quantile model

Let Y = {Yt}t∈T be a stationary stochastic process defined on the probability space (Ω,F , P )
where F = {Ft}t∈T and Ft = σ(Yt−s, s ≥ 0) is the sigma-algebra generated by the random variables
Ys, s ≤ t. The process Y is adapted to the filtration F and E(|Yt|) < ∞ for all t ∈ T . Let
Ft|t−1(yt) = P (Yt ≤ yt|Ft−1) be the cumulative distribution function of Yt given Ft−1 and, for a fixed

j, let τj ∈ (0, 1) be a probability level such that P (Yt ≤ q
τj
t |Ft−1) = τj where |qτjt | <∞ is the quantile

level associated with τj at time t,

q
τj
t = inf{Ft|t−1(yt) ≥ τj}

and, if Ft|t−1(·) is strictly increasing,

q
τj
t = F−1

t|t−1(τj). (1)

As a matter of fact,

∂

∂q
τj
t

E
[
ρτj (Yt − q

τj
t )|Ft−1

]
= 0, ∀t ∈ T ⇐⇒ Ft|t−1(q

τj
t ) = τj , (2)

where ρτ (x) = x(τ − 1(x < 0)) is the quantile check function, and 1(·) is the indicator function. If
one considers the sequence of ordered probability levels τ = (τ1, . . . , τJ), τi > τj if i > j, and the
sequence of associated quantiles at time t, qt = (qτ1t , . . . , q

τJ
t )′, then (2) can be generalized to the

multiple case:

∂

∂qt
E

 J∑
j=1

ρτj (Yt − q
τj
t )|Ft−1

 = 0, ∀t ∈ T ⇐⇒ Ft|t−1(q
τj
t ) = τj , ∀j = 1, . . . , J. (3)

The sample analogue of (3) can then be used to build a filter for the vector of time–varying
quantiles qt. Specifically, the update qt → qt+1, after observing yt, can be driven by:

∂

∂qt

J∑
j=1

ρτj (yt − q
τj
t ) = zt, (4)

that is qt+1 = f(qt, zt), where zt = (zi,t, i = 1, . . . , J)′ and

zi,t = 1(yt ≤ qτit )− τi (5)

is the hit variable at time t for quantile qτit . Note that the quantile check function ρ(yt − qt) is not
differentiable in zero, i.e. when yt = qt, which holds with zero probability when Yt is a continuous
random variable. We next specify the filter f(qt, zt) and introduce the model.
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The Dynamic Multiple Quantile (DMQ) model is defined as follows,

q
τj
t =


q
τj+1

t − ηj,t, if τj < τj∗

q
τj∗
t , if τj = τj∗

q
τj−1

t + ηj,t, if τj > τj∗

(6)

where
q
τj∗
t = q̄τj∗ (1− β) + αu

τj∗
t−1 + βq

τj∗
t−1, (7)

is the reference quantile, according to which the other quantiles are defined,

ηj,t = exp(ξj,t)

is a positive stochastic process,

ξj,t = ξ̄j(1− φ) + γu
τj
t−1 + φξj,t−1, (8)

and

u
τj
t ∝

∂

∂qt

J∑
j=1

ρτj (yt − q
τj
t )

is the the martingale difference sequence which drives the dynamics of the time varying quantiles;
finally, θ = (α, β, φ, γ)′ are static parameters to be estimated, with |β| < 1, |φ| < 1; q̄τj∗ and ξ̄j are
defined such that E[q

τj∗
t ] = q̄τj∗ and E[ξj,t] = ξ̄j , i.e. they determine the unconditional levels of qτj∗

and ξj,t, respectively, see Section 2.2.1.
The definition of the forcing variables u

τj
t is crucial for the specification of the model and depends

on its parameterization. In the score driven framework, the forcing variable is set proportional to the
score of the likelihood of the observables conditional on the past, see Creal et al. (2013) and Harvey
(2013). In this paper, we adopt a similar approach and set u

τj
t as the derivative of the negative sample

analogue of (3) with respect to q
τj∗
t or ξj,t, normalised by a positive scale constant aj , such as it has

unit variance. In the case j 6= j∗, according to (6), (8) and (7) the model has been reparameterized
from f(qt, zt) to f((q

τj∗
t , ξt)), zt), where ξt = (ξj,t, j = 1, . . . , J, j 6= j∗), this quantity is proportional

to:

∂

∂ξj,t

J∑
j=1

ρτj (yt − q
τj
t ) ∝ a−1

j

(
∂qt
∂ξj,t

)′
zt,

the same reasoning applies to the case j = j∗ which yelds:

u
τj
t =


bja
−1
j

∑j
i=1 zi,t, if j < j∗

a−1
j

∑J
i=1 zi,t, if j = j∗

bja
−1
j

∑J
i=j zi,t, if j > j∗

, (9)
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where bj = 1(τj < τj∗)− 1(τj > τj∗). Note that the sequence of hit variables {zt}t∈T is independent
and identically distributed (iid) since Et−1[1(yt < q

τj
t )] = Ft|t−1(q

τj
t ) = τj , see also Christoffersen

(1998). As a consequence {uτjt }t∈T is also an iid sequence of zero mean random variables with
constant variance

Et−1[(u
τj
t )2] = $j/a

2
j ,

where

$j =


∑j

i=1 τi(1− τi) +
∑J

l1=j

∑
l2 6=l1 m(τl1 , τl2), if j < j∗∑J

i=1 τi(1− τi) +
∑J

l1=j

∑
l2 6=l1 m(τl1 , τl2), if j = j∗∑J

i=j τi(1− τi) +
∑J

l1=j

∑
l2 6=l1 m(τl1 , τl2), if j > j∗

,

with m(a.b) = min(a, b)(1−max(a, b)). Thus, Et−1[(u
τj
t )2] = 1 is achieved by setting aj =

√
ωj .

1 For
the rest of the paper we will employ this normalizing mechanism.

2.1. The shape of the forcing variables

In a parametric framework, score driven filters provide updates for the time–varying parameters
which are consistent with the shape of the conditional distribution of the data. This is also true
in our case, where a discretization of the conditional cumulative density function (cdf) of Yt|Ft−1 is
used. To see this, consider the driving force of the reference quantile, set to the median, i.e. u

τj∗
t ,

with τj∗ = 0.5. This quantity is proportional to

u
τj∗
t ∝

J∑
j=1

1(yt < q
τj
t ) ∝ F̂ Jt|t−1(yt),

where F̂ Jt|t−1(yt) is the discretized cdf computed using J quantiles. It follows that the number J of
chosen quantiles plays an important role in the DMQ model, because it determines the strength of
the signal delivered by the score driven type filter. In the case when J = 1, the forcing variable is
proportional to the step function, uτ1t ∝ 1(yt < q0.5

t ) − 0.5, and we obtain a model which is similar
to the specifications detailed in De Rossi and Harvey (2006) and Patton et al. (2019). As a matter
of fact, in such case, the signal provided by the score driven filter is very weak and, as shown in our
empirical application (Section 5), performs in an unsatisfactory way with real data. As long as J
increases, more structure is stored in the model and the amount of information used in the forcing
variable increases accordingly.

Figure 1 reports the values of the forcing variable u0.5
t for different choices of J , where quantiles

have been computed according to a standardized skew Student’s t distribution with skewness
parameter equal to 1.5 and shape parameter equal to 3.5. The forcing variable for other quantiles is
proportional to

1Other choices such as aj = $j and aj = 1 are plausible and report good results. In principle, one can set aj = ($j)
g

and estimate g in order to find the optimal way of scaling the signal using the g–power of its variance.
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Figure 1: Values of u0.5
t for different values of J against quantiles of a skew Student t distribution

u
τj
t ∝

{
1(q

τj
t > yt)F̂

J
t|t−1(yt), if j < j∗

1(q
τj
t < yt)F̂

J
t|t−1(yt), if j > j∗,

(10)

which is the discretization of a truncated cdf updating the quantile differences in one direction only.

2.2. Statistical properties

Prediction

The one-step-ahead prediction of all quantiles Et[qt+1] = E[qt+1|Ft] is immediately available from
the filter since qt+1 is Ft–measurable.

The multi-step prediction for the reference quantile, q̂
τj∗

t+h|t = Et[q
τj∗
t+h] for h > 1, is given by

q̂
τj∗

t+h|t = q̄τj∗ (1− β)

h−2∑
s=0

βs + βh−1q
τj∗
t+1

and the predictive variance of q̂
τj∗

t+h|t is given by

Et[(q
τj∗
t+h − q̂

τj∗

t+h|t)
2] = α2

h−2∑
s=0

β2s.

For h→∞ we recover the unconditional reference quantile

lim
h→∞

Et[q
τj∗
t+h] = q̄τj∗

with variance

lim
h→∞

Et[(q
τj∗
t+h − Et[q

τj∗
t+h])2] =

α2

1− β2
.
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The multistep ahead prediction for other quantiles is given by

q̂
τj
t+h|t =

{
q̂
τj+1

t+h|t − Et[ηj,t+h], if τj < τj∗

q̂
τj−1

t+h|t + Et[ηj,t+h] if τj > τj∗

where

Et[ηj,t+h] =

{
ωj,t+h

∏h−2
s=0 exp{−a−1

j γφs
∑j

l=1 τl}
∑j

l=0 h(τl) exp{a−1
j γφs(j − l)}, if τj < τj∗

ωj,t+h
∏h−2
s=0 exp{a−1

j γφs
∑J

l=j τl}
∑J

l=j−1 g(τl) exp{−a−1
j γφs(J − l)}, if τj > τj∗

(11)
with ωj,t+h = exp{ξj(1− φ)

∑h−2
s=0 φ

s} exp{φh−2ξj,t+1} and

h(τl) =


τ1, if l = 0

τl+1 − τl, if 0 < l < j

1− τj , if l = j

, g(τl) =


τj , if l = j − 1

τj+1 − τj , if j − 1 < l < J

1− τJ , if l = J.

The closed form expression of the unconditional moments of ηj,t+h is rather complicate to derive.
However, we are able to prove that the limiting quantile differences have bounded moments, i.e.

lim
h→∞

Et[ηj,t+h] <∞

and so are their higher order moments

lim
h→∞

Et[η
m
j,t+h] <∞.

The above results are obtained by direct calculations, that we outline here in the following.
First observe that, for j < j∗, ηj,t+h = ωj,t+h exp{γ

∑h−1
s=0 φ

suj,t+(h−1)+s} = ωj,t+h∏h−1
s=0 exp{γφh−1−suj,t+s}, i.e. ηj,t+h is a transformation of sums of j independent variables zj,t+s,

see equation (9). Taking the expectation conditional to Ft then gives the first line of equation (14).
An analogous reasoning, applied to the case j > j∗, holds for the second line.

The proof of boundedness of the first unconditional moment of ηj,t+h is carried out by
induction on j. For j = 1, j < j∗, the limit of equation (14) reduces to limh→∞Et[η1,t+h] ∝∏∞
s=0 exp{−γφh−1−sτ1}(exp{γφh−1−s}τ1+(1−τ1)) <∞ if

∑∞
s=0 log((1−τ1)+τ1 exp{γφh−1−s}) <∞.

One has that
∑∞

s=0 log((1 − τ1) + τ1 exp{γφh−1−s}) ≤
∑∞

s=0 | log((1 − τ1) + τ1 exp{γφh−1−s})| ≤∑∞
s=0 | log exp{γφh−1−s}| < ∞, as follows for |φ| < 1 from the limit comparison test. For

j > 1, repeating the same steps leads to expressions where the term of interest is dominated by∑∞
s=0 | log exp{jγφh−1−s}|, which is a convergent series. As ηj,t+h is the product of exponential

functions, the proof of boundedness of its unconditional moments of order m > 1 is identical to the
proof for m = 1.
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2.2.1. Quantile targeting

Quantile targeting can be used to select the intercept parameters ξ̄j and q̄
τ∗j
t in order to target

a reference distribution. Specifically, we can estimate the unconditional quantiles q̂τj from the time
series (y1, . . . , yT )′, and set q̄τj∗ = q̂τj∗ and:

ξ̄j = log(∆̂j) +
τjbjγ

1− φ
+ κj

where

∆̂j =

{
q̂τj − q̂τj−1 , if τj > τj∗

q̂τj+1 − q̂τj , if τj < τj∗ ,

and

κj =


∑∞

s=0 log
(∑j

l=0 g(τl) exp{−a−1
j γφs(J − l)}

)
, if τj > τj∗∑∞

s=0 log
(∑j

l=0 h(τl) exp{a−1
j γφs(j − l)}

)
, if τj < τj∗ .

3. Estimation and inference

Let θ = (α, β, φ, γ)′ and {yt}t=1,...,T be an observed time series. Parameter estimates are obtained
by minimizing the function,

θ̂ = arg min
θ∈Θ

T∑
t=1

J∑
j=1

ρτj (yt − q
τj
t (θ)). (12)

where Θ ⊆ Rd, d = 4. We may refer to the multiple check loss function
∑J

j=1 ρτj (yt − q
τj
t (θ)) as to

the Hogg function, mentioned in Koenker (2005), section 5.5, referring to a private correspondence
between Robert Hogg and himself in 1979. We now establish consistency (Theorem 1) and
asymptotic normality (Theorem 2) of θ̂, for a correctly specified model where the true parameter
θ0 = (α0, β0, φ0, γ0)′ belongs to the parameter space Θ and it is such that q

τj
t (θ0) is equal to q

τj
t in

equation (1).

Theorem 1. Let (i) Y = {Yt}t∈T be a stationary and ergodic stochastic process on the complete
probability space (Ω,F , P ) and (ii) q

τj
t (θ0) be specified as in equations (6), (7), (8) and (9), with

θ0 ∈ Θ, a compact subset of Rd. (iii) Let θ̂ be the estimator of θ0 defined in equation (12). (iv) Let
E|Yt| < ∞ and |α| < ∞, |γ| < ∞, |β| < 1, |φ| < 1. (v) Let the conditional density of Yt, ft|t−1, be
continuous and bounded away from zero. For every υ > 0, there exists δυ > 0 such that ∀θ ∈ Θ with
‖θ − θ0‖ > υ, P

(
∪j=1,...,J |q

τj
t (θ)− qτjt (θ0)| > δυ

)
> 0. Then θ̂ →a.s. θ0.

The proof is in the Appendix and consists in verifying that the assumptions of Corollary 5.11
of White (1994) are satisfied. The corollary establishes the strong consistency of quasi maximum
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likelihood estimators (QMLE) in correctly specified models. Indeed, the (negative Hogg) function
ϕ(yt, q

τj
t (θ)) = −

∑J
j=1 ρτj (yt−q

τj
t (θ)) is the log-likelihood of J independent variables whose density is

related to the family of asymmetric Laplace distributions, see Poiraud-Casanova and Thomas-Agnan
(2000) and Kotz et al. (2001), or, more generally, to the family of tick exponential functions introduced
by Komunjer (2005), as is also recognised by White et al. (2015). The estimator θ̂ in equation (12) can
therefore be interpreted as a QMLE. As detailed in the Appendix, the five assumptions for Corollary
5.11 in White (1994) to be satisfied consist of three standard regularity conditions on (i) the process,
(ii) the model and (iii) the objective function, plus a uniform law of large number, which requires a
dominance condition implied by (iv) and a condition for unique identifiability (v) that follows from
Powell (1984). The proof is actually very similar to the proof of consistency of the VAR for VaR
estimator by White et al. (2015), as the log-likelihood that we maximise is the same for the two
models, which on the other hand differ in the specification of the quantiles dynamics.

As far as asymptotic normality is concerned, the proof is non standard, in that neither the
likelihood function nor the filter satisfy the regularity conditions required for the usual first order
Taylor expansions to apply. Indeed, the likelihood function is continuous in θ but a.e. differentiable
and the forcing variable u

τj
t , is a.e. continuous in θ. Almost everywhere differentiability of the

objective function has been dealt with in several contributions, including Engle and Manganelli (2004),
Komunjer (2005), White et al. (2015), Patton et al. (2019). All these papers rely on Powell (1984) and
Weiss (1991) extension to the time series setting of Huber (1967) results for least absolute deviation
estimators for iid data, see also Newey and McFadden (1994). The basic idea is to approximate the
a.e. differentiable loss function with its smooth expectation. Strong consistency of the estimator is
usually required. We apply this method as well. However, all the above mentioned papers (including
Patton et al. (2019)) are grounded on the assumption that the estimator is a twice continuously
differentiable function of the parameter, which is clearly not the case of our filter. Specifically, the
derivative ∂q

τj
t (θ)/∂θi, i = 1, . . . , d is not defined when yt = q

τj
t (θ), although both the left and right

derivatives exist. One could resort, as in Chan and Tsay (1998) in the context of threshold models, to
write symbolically the gradient which results by adding the left and right derivatives in their domain
of existence. Alternatively, as in Patton et al. (2019), one can write symbolically the gradient of the
a.s. twice differentiable function whose points of discontinuity of q

τj
t (θ) are of zero P -measure for all

j = 1, . . . , J . We prefer to adopt a solution which belongs to a different stream of methods for dealing
with the non smoothness of the objective function of an estimator, considered in Amemiya (1982),
Pollard (1985) and Phillips (1991), following Daniels (1961). The idea there consists in approximating
the discontinuous function of interest with a continuous one (or with a generalised function) and then
proving that the size of the approximation is negligible. The same approach is used by Engle and
Manganelli (2004) to derive the asymptotic distribution of the dynamic quantile test statistic defined
in their Theorem 4.

In the following, we shall consider the twice continuously differentiable approximation q̃
τj
t (θ) of

q
τj
t (θ) and its gradient ∇q̃τjt (θ), both defined in the Appendix, whose expectation, in the limit, is

equal to the expectation of their a.e. or symbolic equivalent counterparts. We shall also introduce a
deterministic sequence {cT } and a sequence of probabilities {πT }, better detailed in the Appendix,
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who play a role in the smoothing of the filter and in its invertibility, respectively.

Theorem 2. Let assumptions (i)-(v) of Theorem 1 hold. In addition, (vi) let the conditional
density of yt be Lipschitz continuous, (vii) D1t = maxj=1,...,J maxi=1,...,d supθ∈Θ |(∂/∂θi)q̃

τj
t (θ)| and

D2t = maxj=1,...,J maxi,l=1,...,d supθ∈Θ |(∂2/∂θi∂θl)q̃
τj
t (θ)| with E(Dh

kt) <∞ for h, k = 1, 2 (viii) θ0 is
an interior point of Θ and (ix) the matrices Q0 and V0 defined below are positive definite. Also let

(x) cT = o(T
1
2 ) and (xi) πT = op(T

2). Then

√
T (θ̂ − θ0)→d N(0, Q−1

0 V Q−1
0 )

where

Q0 =

J∑
j=1

E
[
ft|t−1(q

τj
t (θ0))∇q̃τjt (θ0)∇q̃τjt (θ0)′

]
(13)

and
V0 = E(ηt(θ0)η′t(θ0))

with

ηt(θ0) =

J∑
j=1

∇q̃τjt (θ0)(τj − 1(yt ≤ q
τj
t (θ0))). (14)

The proof, in the Appendix, consists in applying Theorem 2 in White et al. (2015) to the
QMLE that maximises ϕ(yt, q̃

τj
t (θ)) and then showing that supθ∈Θ |q̃

τj
t (θ) − qτjt (θ)| = op(1), i.e. the

invertibility of the filter, which is implied by the strong condition (xi).
Consistent estimators of V0 and Q0 are obtained as in Theorems 3 and 4 White et al. (2010),

respectively, to which we refer for the proofs. Specifically, a consistent estimator of V0 is V̂0 =
1
T

∑T
t=1 ηt(θ̂)ηt(θ̂)

′, where ηt(θ) is defined in equation (14). A consistent estimator of Q0 is obtained
under the additional assumption that E(D3

1t) <∞ as

Q̂0 =
1

T

T∑
t=1

J∑
j=1

[
f̂t|t−1(q

τj
t (θ̂))∇q̃τjt (θ̂)∇q̃τjt (θ̂)′

]
where the conditional density is directly recovered from the set of quantiles,

f̂t|t−1(q
τj−1

t (θ̂)) =
τj − τj−1

q
τj
t (θ̂)− qτj−1

t (θ̂)
, j = 1, . . . , J

with τ1 = 0 and the gradients are in Appendix. Note that, in our setting: estimation of the conditional
density is direct, calculation of the gradient is straightforward and non crossing of quantiles is ensured
even in finite samples.
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4. Simulation study

In this section we report a simulation study to asses the finite sample properties of the estimator
detailed in Section 3. The analysis proceeds by iterating B = 500 times the following procedure: i)
simulate a time series of T observations from the true model, and ii) estimate the model parameters
using equation (12). Concerning i), simulation from our Dynamic Multiple Quantile (DMQ) model
is not straightforward, since the conditional distribution of the data is not known. However, if the
number of available quantiles is large, the conditional cumulative distribution function can be well
approximated such that random draws can be obtained by the inverse cdf method. In this experiment
we choose J = 99 quantile levels τj = {0.01, 0.02, . . . , 0.99}. Clearly, this choice will have an impact
on the results of our analysis since it affects the simulation from the true data generating process. If
the conditional distribution if wrongly approximated we expect to observe bias in the estimation of
model parameters. We consider five sample sizes: small T = 250, medium-small T = 500, medium
T = 1000, medium-large T = 2500, and large T = 5000. True parameters are fixed at β = 0.2,
α = 0.05, γ = 0.1, and φ = 0.95. Results are robust to different values of the parameters.
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Figure 2: Gaussian kernel estimates based on B = 500 estimates from the DMQ model. True values are β = 0.2,
α = 0.05, γ = 0.1, and φ = 0.95. Results are reported for five sample sizes: small T = 250 (black), medium-small
T = 500 (red), medium T = 1000 (purple), medium-large T = 2500 (gray), and large T = 5000 (orange)
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Figure 2 depicts the estimates of the parameters with the use of a Gaussian kernel with bandwidth
selected according to the Silverman’s rule of thumb. Results are very good and indicate that the
Hogg estimator for the DMQ model has good finite sample properties. When the sample size is small
(T = 250), we see that there is some bias in the estimate of β and that the estimates of γ are quite
dispersed around the true value. However, for the medium-small and larger sample sizes (T ≥ 500),
estimates are good. The β parameter seems to the most difficult to estimate with a (small) bias that
vanishes only when the sample size is large (T = 5000).

T = 250 T = 500 T = 1000 T = 2500 T = 5000

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

β 0.224 0.024 0.090 0.215 0.015 0.062 0.218 0.018 0.058 0.213 0.013 0.050 0.210 0.010 0.041
α 0.049 −0.001 0.063 0.050 0.000 0.043 0.051 0.001 0.027 0.049 −0.001 0.018 0.051 0.001 0.013
γ 0.100 0.000 0.038 0.099 −0.001 0.026 0.099 −0.001 0.018 0.099 −0.001 0.012 0.100 0.000 0.008
φ 0.938 −0.012 0.063 0.946 −0.004 0.027 0.949 −0.001 0.017 0.951 0.001 0.010 0.952 0.002 0.006

Table 1: This table reports the mean of the estimated parameters, and the bias and root mean squared error (RMSE)
between the estimated parameters and their true value. True values are β = 0.2, α = 0.05, γ = 0.1, and φ = 0.95.
Results are reported for five sample sizes: small T = 250, medium-small T = 500, medium T = 1000, medium-large
T = 2500, and large T = 5000.

To further investigate the finite sample properties of the estimator we compute the mean of the
estimated parameters as well as their bias and root mean squared error (RMSE) with respect to their
true values. Results are summarized in Table 1. We see that for all parameters the bias and the
RMSE reduce when the sample size increases. Overall, we conclude that the Hogg estimator reports
remarkable results in finite sample.

5. Empirical Illustration

We illustrate the DMQ model using the series of daily logarithmic returns, in percentage points, of
Microsoft Corporation spanning from 8 December 2010 to 15 November 2018 for a total of T = 2000
observations. Observations are reported in Figure 5a from which we clearly observe the typical
stylized facts that characterize financial returns such as heteroscedasticity and presence of extreme
observations, see for example McNeil et al. (2015) for a textbook treatment of financial time series.
Presence of heteroscedasticity is also supported by the ARCH-LM test of Engle (1982) computed
with 12 lags that reports a statistic of 184.48 which is far from the critical value of 3.57 at the 5%
confidence level. Gaussianity of the unconditional distribution is rejected according to the Jarque
and Bera test which reports a statistics of 200. The empirical skewness and kurtosis coefficients are
-0.42 and 4.31, respectively, indicating that the empirical distribution is left skewed and heavy tailed.

The illustration is divided in two parts. The first part reports full sample results regarding the
estimation and goodness of fit of the DMQ model. The second part reports a forecasting exercise. For
both parts we concentrate on J = 99 quantiles according to the series of equally spaced probability
levels from τ1 = 0.01 to τJ = 0.99. The reference quantile is set to the median and it is assumed to
be constant over time (α = β = 0). Throughout the analysis we will employ two benchmark models:

13

 Electronic copy available at: https://ssrn.com/abstract=3494995 



i) the Conditional Autoregressive Value–at–Risk (CAViaR) model detailed in Engle and Manganelli
(2004), and ii) the ARMA(P,Q)–GARCH(p,q) model of Bollerslev (1986) with skew Student’s t
distributed errors.

We implement the “asymmetric slope” CAViaR specification defined as:

q
τj
t = βj,1 + βj,2q

τj
t−1 + βj,3yt−11(yt−1 < 0) + βj,4yt−11(yt−1 > 0), (15)

for j = 1, . . . , J . CAViaR is thus a quantile autoregression where each quantile at time t linearly
depends on its previous value at time t − 1 and on past observations. Given its linear structure,
CAViaR cannot guarantee the monotonicity of the filtered quantiles. Indeed, as long as the number
of quantiles increases, the frequency of crossing quantiles will increase as well. The parameters β1,j ,
β2,j , β3,j , and β4,j for j = 1, . . . , J are estimated by minimizing the loss function defined in equation
(12). Since there are no constraints among the parameters for different quantile levels, estimation is
divided in J independent minimization problems.

The ARMA(P,Q)–GARCH(p,q) is instead a location scale parametric model which assumes that:

yt = µt + εt, (16)

where

µt = $ +

P∑
i=1

φiyt−j +

Q∑
l=1

θiεt−l (17)

and εt = σtzt with

σ2
t = ω +

p∑
m=1

αmε
2
t−m +

q∑
n=1

ζnσ
2
t−n, (18)

and zt is assumed to be independently and identically distributed according to the standardized
skew Student’s t distribution built with the two–pieces method of Fernández and Steel (1998),
with skewness and shape parameters υ > 0 and ν > 2, respectively. In the following we set
P = Q = p = q = 1 which are the values that minimize the Bayesian information criterion for
our sample of observations. The quantile at level τj and time t is then given by q

τj
t = µt + σtqz(τj),

where qz(τj) is the time invariant τj–level quantile of zt. The ARMA–GARCH specification ensures
monotonicity of the quantiles at each point in time, however quantiles are constrained to follow a
location-scale dynamic. Estimation of the ARMA-GARCH model is done by standard Maximum
Likelihood, see Francq and Zakoian (2004).

We also consider the Dynamic Quantile (DQ) model defined as:

q
τj
t = q̄τj (1− βj) + βjq

τj
t−1 + αja

−1
j zj,t−1, (19)
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for j = 1, . . . , J , which is obtained by modelling each quantile separately within the DMQ model.
In this case, all quantiles are set to the reference quantile and the forcing variable reduces to the
step function zj,t = 1(yt < q

τj
t ) − τj , normalized by its standard deviation aj =

√
τj(1− τj). Note

that the DQ model is an EWMA in zj,t, and resembles the specification adopted by De Rossi and
Harvey (2006). Similar to CAViaR, the DQ model cannot guarantee the monotonicity of the filtered
quantiles. Also, note that the DQ model provides an updating mechanism which is proportional to
that used by Patton et al. (2019) in their joint model for the Value at Risk and Expected Shortfall.

5.1. Full sample results

We estimate the DMQ, CAViaR, ARMA-GARCH, and DQ models on the full sample of
observations.2 Filtered quantiles for the subset of probability levels 5%, 10%, . . . , 95% are reported in
Figure 3. The graphical investigation suggests that DMQ quantiles are smoother than those reported
by CAViaR and ARMA-GARCH. Indeed, it is evident from the picture that ARMA-GARCH filtered
quantiles incorporate the rigidities of the underlying location-scale representation. Due to the very
low signal in the conditional mean, all quantiles are basically driven by the filtered volatility. CAViaR
filtered quantiles often cross: for the subset of quantiles {q5,t, q10,t, . . . , q95,t}, we observe a frequency
of crossing of 11.5%. This frequency increases to 83.1% if the whole set of 99 quantiles is considered.
Interestingly, the ARMA–GARCH quantiles at levels τ50 and τ55 are very similar. Filtered quantiles
obtained by the DQ model (panel, d) are not satisfactory from a graphical point of view. Indeed,
since in the DQ model each quantile update is only based on the hit variable zi,t, the signal turns out
to be rather weak.

To asses the goodness of fit of DMQ we compute the unconditional coverage (UC) and conditional
coverage (CC) tests of Kupiec (1995) and Christoffersen (1998), respectively. Tests are computed
independently for each of the 99 probability levels. Both tests are based on the requirement that,
under the correct model specification, the j–th quantile violations are iid Bernoulli distributed with
success rate equal to τj . Specifically, the null hypothesis of the UC test assumes the correct coverage of
the unconditional distribution, which means that the observed relative frequency of the j–th quantile
violations is equal to τj . The null hypothesis of the CC test assumes unconditional converage and
independence of the quantile violations. See Kupiec (1995) and Christoffersen (1998) for further
details on the UC and CC tests, respectively. Figure 4 reports the p-values of the UC (panel a) and
CC (panel b) tests for each quantile level of the four models. It is not surprising that CAViaR reports
the best results according to UC. Indeed, the independent estimation of each quantile level is made
explicitly to target this result. Results for DMQ and GARCH are similar. The only case when the
null hypothesis is rejected are the median in the ARMA-GARCH case, and the 88% quantile for the
DQ model. Looking at the CC results in panel (b) we observe that p–values are similar across the

2Estimation of DMQ, CAViaR, and DQ requires the minimization of the Hogg function (12) which is not differentiable
when yt = q

τj
t . We minimize the objective function employing the derivative free global optimization by differential

evolution algorithm available in the DEoptim R package of Mullen et al. (2011).
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four specifications. Interestingly, we note that all models fail to provide correct conditional coverage
of the right tail of the conditional distribution above the 85% probability level. We find that ARMA-
GARCH and DMQ reject the null hypothesis for the levels 86%–90%, and ARMA-GARCH rejects it
for the 85% level. Overall, we find that quantiles of the right tail of the conditional distribution of
Microsoft returns are more difficult to model compared to those from the left tail.

5.2. Conditional moments

A nice consequence of having many quantiles is that the conditional cumulative distribution
function and associated moments can be well approximated. Indeed, we apply the following
approximation:

E[Y p
t |Ft−1] =

∫
R
ypdFt|t−1(y)

≈
J∑
j=1

qpj,t(τj − τj−1)

where τ0 = 0. We compute the first four moments at each point in time and, from these, we recover
the conditional mean and variance of the data, as well as the coefficients of skewness and kurtosis.
Results are reported in Figure 5. Specifically, Figure 5a reports the filtered mean along with the
observations. As expected, the mean is fairly constant around zero throughout the whole sample.
Lower values of the time varying mean are generally associated with higher volatility levels, such
as those registred during the periods of market instability associated with the European sovereign
debt crisis of 2010–2011. The filtered variance is reported in Figure 5b and it is compared with the
absolute returns, a common proxy of volatility. We observe that the filtered variance closely resembles
the dynamic of the absolute returns indicating that the model is well adapting to periods of higher
volatility. Figures 5c and 5d report the filtered skewness and kurtosis coefficients along with their
unconditional value, respectively. Results indicate that their value oscillates around the empirical
one. Skewness ranges between −1.5 and 0.5 indicating that the distribution has moved from negative
to positive skewness over the sample period. Again, negative skewness is usually associated with
periods of higher volatility. Kurtosis moves, on average, in the range 4–5 with the lowest and highest
values close to 3 and 8, respectively. Overall, these results indicate that, beside the conditional mean,
the shape of the conditional distribution is remarkably changing over the sample period.

5.3. Forecasting results

We now illustrate the performance of DMQ in an out of sample analysis. For this purpose,
we divide our sample of 2000 observations in two parts of 1000 observations each. The first 1000
observations belong to the in sample period, which ranges from the beginning of the sample until
26 November 2014. Models parameters are estimated in sample and quantiles predictions are made
over the following 1000 observations, that belong to the out of sample period. Predictions are made
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in a rolling-window way, i.e. each time a new observation becomes available, it is incorporated into
the models before making new predictions. Predictions are made for one day ahead (h = 1) up to
two weeks (h = 10) ahead. Among the four specifications considered, only DMQ and DQ provide
closed form solutions for the h-step ahead predictions, with h > 1, see Section 2. The parametric
formulation of ARMA–GARCH allows us to employ simulation techniques to draw observations from
the predictive distribution, and thus to approximate the associated quantiles. In order to have a
good coverage of the extreme left and right tails we employ 10’000 simulations. In the CAViaR model
defined in equation (15), there are no ways for producing multistep quantiles predictions if a model for
|Yt| is not in place. Thus, we resort to direct prediction which means that the model is reformulated
as follows:

q
τj
t+h = β

(h)
j,1 + β

(h)
j,2 q

τj
t+h−1 + β

(h)
j,3 yt1(yt < 0) + β

(h)
j,4 yt1(yt > 0), (20)

for h = 1, . . . , 10 and j = 1, . . . , J . Thus, direct prediction allows us to specify the h-step ahead
quantile as a function of observations which are available at the end of the sample, see Marcellino
et al. (2006) for a comparison of direct and iterate prediction in the linear autoregressive context.
This solution comes at the cost of estimating J × 10 single quantile CAViaR specifications, which
is even more computational expensive than approximating the multistep ahead distribution of the
ARMA–GARCH specification.

We report our results in the forms of aggregated quantile losses over the out of sample period
and for different quantile levels. Table 2 reports the aggregated losses for subsets of quantile levels
for h = 1, h = 5, and h = 10. Results are reported relative to the ARMA–GARCH specification
which acts as a benchmark. Values lower than one indicate outperformance of the benchmark and
viceversa. The results indicate that DMQ is the top performer among the considered specifications.
Indeed, DMQ average losses are on average lower than the CAViaR, ARMA–GARCH, and DQ ones,
irrespectively on the area of the predictive distribution and the forecast horizon. We statistically
assess the magnitude of the differences between the considered specifications by employing the Model
Confidence Set (MCS) procedure of Hansen et al. (2011) on each series of aggregated loss differentials.
Results indicate that DMQ always belongs to the superior set of models at the 75% confidence level.
Results are stronger for h = 5. Table 3 leads to similar considerations, but for all the forecast
horizons and for the three subsets of the predictive distribution, namely: left tail (τj ≤ 0.5), right tail
(τj ≥ 0.5), center (0.25 ≤ τj ≤ 0.75), as well as for the whole distribution (0.01 ≤ τj ≤ 0.99). Also
in this case, results indicate that DMQ losses are on average lower than CAViaR, ARMA–GARCH,
and DQ, irrespectively of the distribution region and the forecast horizon. The MCS procedure also
supports these findings.

To conclude our illustration, we compute the UC and CC tests as in the full sample analysis,
but considering one step ahead predictions. P-values for all quantile levels are reported in Figure 6.
Interestingly, p-values associated with CAViaR, ARMA–GARCH, and DQ predictions are lower than
in the full sample analysis, while those of DMQ are higher. This is remarkably true when looking
at the right tail of the predictive distribution. Indeed, while DMQ is always able to provide correct
conditional and unconditional coverage, p–values of the ARMA–GARCH, CAViaR, and DQ indicate
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rejection of the null hypothesis of both tests in the range 0.55 ≤ τj ≤ 0.90. Note that DQ provides the
worst results, thus suggesting that a joint modelling of multiple quantiles in a score driven framework
is required.
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Figure 3: Filtered quantiles from the DMQ (a), CAViaR (b), ARMA-GARCH (c), and DQ (d) models at levels 5%,
10%,. . . , 95% for Microsoft Corporation from 8 December 2010 to 15 November 2018 for a total of T = 2000 observations.
Rugs in panel (b) indicate points in time when CAViaR quantiles cross.
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(b) CC p-values

Figure 4: P-values of the UC (panel a) and CC (panel b) tests over the in sample period for τ1 = 1%, τ2 = 2%, . . . ,
τ99 = 99% quantile levels of DMQ (black circles), CAViaR (blue triangles), ARMA-GARCH (red crosses), and DQ
(purple diamonds). The horizontal red dashed line represents the 5% probability level.

h = 1 h = 5 h = 10

DMQ DQ CAViaR A–G DMQ DQ CAViaR A–G DMQ DQ CAViaR A–G

0.01 ≤ τj < 0.10 1.003 1.059 1.029 1.000 0.987 1.021 1.039 1.000 0.994 1.034 1.030 1.000
0.10 ≤ τj < 0.20 1.000 1.036 1.023 1.000 0.990 1.018 1.014 1.000 1.001 1.024 1.015 1.000
0.20 ≤ τj < 0.30 0.997 1.014 0.995 1.000 0.993 1.006 0.992 1.000 1.004 1.012 0.998 1.000
0.30 ≤ τj < 0.40 0.999 0.998 0.996 1.000 0.996 0.996 0.996 1.000 1.002 1.002 0.999 1.000
0.40 ≤ τj < 0.50 0.997 0.995 1.001 1.000 0.998 0.997 1.002 1.000 1.000 0.999 0.999 1.000
0.50 ≤ τj < 0.60 0.997 0.997 0.999 1.000 0.999 0.999 1.005 1.000 0.998 0.998 1.001 1.000
0.60 ≤ τj < 0.70 1.000 1.000 1.001 1.000 1.001 1.002 1.011 1.000 0.998 0.999 1.015 1.000
0.70 ≤ τj < 0.80 1.004 1.001 1.005 1.000 1.007 1.004 1.017 1.000 0.998 0.997 1.022 1.000
0.80 ≤ τj < 0.90 1.001 0.994 1.005 1.000 1.004 0.995 1.018 1.000 0.996 0.990 1.022 1.000
0.90 ≤ τj ≤ 0.99 0.992 1.025 0.986 1.000 0.988 1.016 0.986 1.000 0.981 1.008 0.977 1.000
0.01 ≤ τj ≤ 0.99 0.999 1.007 1.002 1.000 0.998 1.003 1.007 1.000 1.000 1.005 1.008 1.000

Table 2: Average quantile loss over the out of sample period. Losses are aggregated over subset of quantiles. For example,
the first row reports the aggregated losses for quantiles associated with probability levels in the range [0.01, 0.1). Results
are reported for one (h = 1), five (h = 5), and ten (h = 10) steps ahead predictions and are relative to the ARMA–
GARCH model indicated with “A–G”. Values lower than one indicate outperformance with respect to ARMA–GARCH
and viceversa. Gray cells indicate models that belongs to the Superior Set of Models computed according to the Model
Confidence Set procedure of Hansen et al. (2011) at the 75% confidence level.

5.4. The choice of J

We conclude the empirical analysis by investigating how the choice of J , the dimension of
the multiple quantile, affects quantile prediction. To this end, we make predictions of the nine
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Figure 5: The figure reports the filtered conditional mean (red line) along with the values of the Microsoft Corporation
returns in panel (a). Panel (b) reports the filtered variance (red line) along with the absolute value of the returns.
Panels (c) and (d) report the filtered skewness and kurtosis coefficients, respectively. The horizontal dashed red lines
in panels (c) and (d) indicate the empirical values of the coefficients over the sample.

deciles q10%
t , . . . , q90%

t with the DMQ model estimated with different choices of J . Specifically,
we consider (a) the case when J = 1, which corresponds to the DQ model where all quantiles
are independently filtered, (b) the case when J = 9, with τ1 = 10%, . . . , τ9 = 90%, and, in
general, (c) the case when J = 10S − 1, for S = 1, . . . , 10, with associated probability levels
τ1 = ξS , τ2 = 2ξS , . . . , τ10S−1 = (10S − 1)ξS , where ξS = 10%

S . Note that, for all the choices of J , the
probability levels corresponding to the nine deciles of interest are always included. The experiment
proceeds like the forecasting analysis reported in the previous section: the first half of the sample is
used for model estimation, the second half is used for predictions. Quantile losses are subsequently
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Left tail Right tail Center

DMQ DQ CAViaR A–G DMQ DQ CAViaR A–G DMQ DQ CAViaR A–G

h = 1 0.997 1.015 1.001 1.000 1.001 1.002 1.001 1.000 0.999 1.000 1.000 1.000
h = 2 0.993 1.010 0.997 1.000 0.999 1.001 1.003 1.000 0.998 0.998 0.998 1.000
h = 3 0.993 1.008 1.001 1.000 1.000 1.000 1.006 1.000 0.998 0.998 1.003 1.000
h = 4 0.993 1.007 0.997 1.000 1.003 1.002 1.001 1.000 0.999 0.999 0.998 1.000
h = 5 0.994 1.007 1.001 1.000 1.004 1.003 1.009 1.000 0.999 1.000 1.004 1.000
h = 6 0.994 1.007 1.000 1.000 1.004 1.003 1.009 1.000 0.999 0.999 1.003 1.000
h = 7 0.995 1.008 1.001 1.000 1.002 1.001 1.011 1.000 1.000 1.001 1.007 1.000
h = 8 0.996 1.009 1.002 1.000 1.002 1.000 1.009 1.000 0.999 1.000 1.006 1.000
h = 9 1.000 1.013 1.004 1.000 1.001 1.000 1.010 1.000 1.001 1.001 1.007 1.000
h = 10 0.999 1.010 1.001 1.000 1.000 1.000 1.012 1.000 1.000 1.001 1.005 1.000

Table 3: Average quantile loss over the out of sample period for different forecast horizons h. Losses are aggregated over
the left tail (τj ≤ 0.5), right tail (τj ≥ 0.5), center (0.25 ≤ τj ≤ 0.75), and all (0.01 ≤ τj ≤ 0.99) distribution. Results are
reported relative to the ARMA–GARCH model indicated with “A–G”. Values lower than one indicate outperformance
with respect to ARMA–GARCH and viceversa. Gray cells indicate models that belongs to the Superior Set of Models
computed according to the Model Confidence Set procedure of Hansen et al. (2011) at the 75% confidence level.
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(b) CC p-values

Figure 6: P-values of the UC (panel a) and CC (panel b) tests over the out of sample period for τ1 = 1%, τ2 = 2%,
. . . , τ99 = 99% quantile levels of DMQ (black circles), CAViaR (blue triangles), ARMA-GARCH (red crosses), and DQ
(purple diamonds). The horizontal red dashed line represents the 5% probability level.

computed and averaged over the evaluation period. Results are reported in Table 4 relative to the
case J = 1. As expected, we see that the jointly modelling of multiple quantiles is a better strategy
compared to individual quantile filtering. Indeed, as detailed in Section 2.1, the choice of J determines
the amount of discretization of the cdf used in the quantiles forcing variable. Interestingly, we find
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J = 1 J = 9 J = 19 J = 29 J = 39 J = 49 J = 59 J = 69 J = 79 J = 89 J = 99

τ = 0.1 1.000 0.986 0.984 0.989 0.985 0.986 0.986 0.986 0.986 0.986 0.986
τ = 0.2 1.000 0.998 0.995 0.995 0.996 0.995 0.996 0.996 0.995 0.995 0.996
τ = 0.3 1.000 1.000 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999
τ = 0.4 1.000 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002
τ = 0.6 1.000 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
τ = 0.7 1.000 0.999 0.998 0.997 0.997 0.998 0.998 0.997 0.997 0.997 0.997
τ = 0.8 1.000 0.998 0.996 0.994 0.996 0.996 0.996 0.996 0.995 0.995 0.995
τ = 0.9 1.000 1.011 1.003 1.001 1.003 1.003 1.004 1.003 1.002 1.002 1.003

Table 4: Average quantile loss over the out of sample period for one step ahead quantile predictions from the DMQ
model with different choices of J . Results are reported relative to the case J = 1, which is the DQ model. Values lower
than one indicate outperformance with respect to DQ and viceversa. Gray cells indicate models that belongs to the
Superior Set of Models computed according to the Model Confidence Set procedure of Hansen et al. (2011) at the 75%
confidence level.

that the results are not very much affected by the choice of J when this is greater or equal than 9.
Indeed, in all the cases, the results are very similar and do not seem to improve by increasing J .
However, we must stress that if the goal of the analysis is to recover some quantity that involves the
cdf, like the predictive moments of the predictive density, better results are most likely obtained by
increasing J .

6. Conclusions

The paper poses the basis for a new way of modelling the conditional distribution of time–
series. The specification of a semiparametric dynamic multiple quantile model has been shown to be
convenient for a number of reasons such as: i) simple estimation, ii) closed form solutions for quantile
predictions and their limiting values, iii) asymptotic results, iv) good finite sample properties of the
estimators, and v) very promising empirical results. Many aspects have still to be further investigated,
some of these are: i) the changes in the fixed parameters according to the number of selected quantiles,
ii) different specifications of the forcing variable uj,t, and mostly , iii) the case when uj,t is not Ft−1–
measurable.

In the empirical illustration, we analysed the series of financial returns of Microsoft Corporation
which is characterized by very low persistence in the conditional mean. During the preparation of the
paper we have also investigated the performance of DMQ in modelling US inflation, which is known
to be a very persistent process. Also in that case the results have been found very promising. Future
research can consider studying the performance of DMQ also in economic time series.
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Appendix

Proof of Theorem 1 (Consistency) We apply Corollary 5.11 of White (1994). Assumptions
(i)-(v) of Theorem 1 satisfy assumptions 2.1, 5.1, 5.4, 3.1, 3.2 of White (1994), which are required for
the corollary to hold, as follows. Assumptions 2.1, 5.1, 5.4 are standard regularity conditions on the
the process, on the model and on the objective function, that correspond to our assumptions (i), (ii),
and (iii), respectively. White’s condition 3.1 requires that E[ϕ(yt, q

τj
t (θ))] is finite, continuous on Θ

and that ϕ(yt, q
τj
t (θ)) obeys a uniform law of large numbers (ULLN). Here we apply Theorem A.2.2

of White (1994), that is a ULLN for stationary and ergodic processes, as is our process by assumption
(i), which follows from Ranga Rao (1962). Condition (iv) implies the dominance condition

max
j=1,...,J

sup
θ∈Θ
|qτjt (θ)| = D <∞ (21)

with E(D) < ∞, as follows. Let us consider the reference quantile. From equation (7), combined
with (9) and with |β| < 1,

|qτj∗t | ≤ |q̄τj∗ (1−β)|+|α|
∞∑
s=0

J∑
j=1

|βs||zj,t−1−s| ≤ |q̄τj∗ (1−β)|+|α|Jυ
∞∑
s=0

|βs| = |q̄τj∗ (1−β)|+ |α|Jυ
1− |β|

<∞

where we have set maxj=1,...,J supθ∈Θ zj,t = maxj=1,...,J(|τj |, |1−τj |) = υ. The same reasoning extends
to the other quantiles provided that |γ| < ∞ and |φ| < 1. Condition (21) allows one to prove that
|ϕ(yt, q

τj
t (θ))| <∞, as follows:

|ϕ(yt, q
τj
t (θ))| = |

J∑
j=1

ρτj (yt, q
τj
t (θ))| ≤

J∑
j=1

|(yt − q
τj
t (θ))(τj − 1(yt ≤ q

τj
t (θ)))| <

J∑
j=1

|yt − q
τj
t (θ)|.

As
J∑
j=1

|yt − q
τj
t (θ)| ≤

J∑
j=1

|yt|+
J∑
j=1

|qτjt (θ)| ≤ J |yt|+ J |D|

then, by (iv), E(|ϕ(yt, q
τj
t (θ))|) < ∞ and the conditions for theorem A.2.2 of White (1994) to hold

are satisfied. Clearly, E(|ϕ(yt, q
τj
t (θ))|) <∞⇒ E(ϕ(yt, q

τj
t (θ))) <∞. Also, continuity of ϕ(yt, q

τj
t (θ))

in Θ follows by continuity of the check function in q
τj
t (θ) and by almost everywhere continuity (with

respect to P ) of qt(θ) on Θ. We have then verified assumption 3.1 of White (1994). To prove the
validity of assumption 3.2 of Corollary 5.11 by White (1994) (unique identifiability), it is sufficient to
prove that the following strict inequality holds, E(ϕ(yt, q

τj
t (θ))) < E(ϕ(yt, q

τj
t (θ0))) for θ 6= θ0. Under

assumption (v), the proof follows exactly the same steps as the proof by White et al. (2015), which,
on its turn, follows closely by Powell (1984), in the multivariate (n variables) case, except that we
are here in the univariate case (n = 1), and thus we omit it �
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Proof of Theorem 2 (Asymptotic normality) The proof of theorem 2 is divided in two parts.
The first part consists in approximating the a.e. continuous function q

τj
t (θ) by a twice continuously

differentiable function denoted as q̃
τj
t (θ) and then applying Theorem 2 in White et al. (2015) to

prove the asymptotic normality of the QMLE obtained by maximising ϕ(yt, q̃
τj
t (θ)). The second part

consists in showing that the difference between the approximating function q̃
τj
t and the estimator q

τj
t

is negligible, i.e. that supθ∈Θ |q̃
τj
t (θ)− qτjt (θ)| = op(1), an invertibility condition for our filter.

Let us approximate the hit variable zj,t, defined in equation (5), with a twice continuously
differentiable function, also used in Engle and Manganelli (2004). Based on y1 (first observation)
and q

τj
1 (given initial condition), we construct the sequence of variables

z̃j,t =

(
1 + exp

{
yt − q̃

τj
t (θ)

cT

})−1

− τj (22)

where {cT } is a sequence of deterministic variables satisfying limT→∞ cT = 0, see assumption (x).
For t ≥ 1, q̃

τj
t+1 and ũtj are smooth counterparts of q

τj
t+1 and utj in equations (6) and (9), respectively,

constructed, accordingly, as functions of z̃jt. Note that

lim
T→∞

z̃
τj
t = 1(yt ≤ q̃

τj
t (θ))− τj . (23)

Under assumptions (i)-(ix), the conditions for applying Theorem 2 in White et al. (2015) hold
and √

T (θ̃ − θ0)→d N(0, Q̃−1
0 Ṽ Q̃−1

0 )

where θ̃ = arg maxθ∈Θ ϕ(yt, q̃
τj
t (θ)),

Ṽ0 = E(η̃t(θ0)η̃′t(θ0))

with

η̃t(θ) =

J∑
j=1

∇q̃τjt (θ)(τj − 1(yt ≤ q̃
τj
t (θ))) (24)

and

Q̃0 =

J∑
j=1

E[ft|t−1(q̃
τj
t (θ0)∇q̃τjt (θ0)∇′q̃τjt (θ0)]. (25)

In essence, the proof of this first part is developed by applying the mean value theorem around θ0 to
the smooth expectation of the first derivative of the a.e. differentiable quasi-likelihood of q̃

τj
t (θ)and

applying Theorem 5.24 of White (2001), a CLT for martingale difference sequences (mds), to η̃t(θ0).
We summarise the main steps here in the following and refer the reader to White et al. (2015) for
further details.

Assumption (vii), along with twice differentiability of q̃
τj
t (θ), ensures the existence of λ(θ) =

E[η̃t(θ)], where η̃t = ∇ϕ(yt, q̃
τj
t (θ)) is computed in equation (24) and its expansion as

λ(θ) = λ(θ0) +Qs(θ − θ0), (26)
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where Qs = ∇λ(θ)|θ=θs and θs lies between θ and θ0 (assumption (viii)). By assumptions (v)-(vii)

one has Qs = −Q̃0 +O(||θ − θ0||) where Q̃0 is as in equation (25). Correct specification and the fact
that the filter is measurable imply that λ(θ0) = 0. Assumptions (v), (vii) and (ix) allow one to verify
Weiss (1991) conditions for getting

√
Tλ(θ̃) = − 1

T

∑T
t=1 η̃(θ0) + op(1). Combining these results with

the expansion in equation (26) gives

− 1

T

T∑
t=1

η̃(θ0) + op(1) = −Q̃0

√
T (θ̃ − θ0) +O(||θ̃ − θ0||2).

As η̃t(θ0) is mds and Ṽ0 is finite by (vii) and positive definite by (ix) and as 1
T

∑T
t=1 η̃t(θ0)η̃′t(θ0)+op(1)

(by the ergodic theorem), Theorem 5.24 in White (2001) can be applied and one has

Ṽ
− 1

2
0 Q̃0

√
T (θ̃ − θ0)→d N(0, Id).

The crucial condition 1√
T

∑T
t=1 η(θ̃) = op(1) follows from twice continuous differentiability of q̃t and

from assumptions (v) and (vii).
The second part of the proof consists in showing that condition (xi) implies that the filter is

invertible, and that the difference between θ̃ and θ̂ is asymptotically negligible. When this is the
case, the limit in equation (23) is almost surely equal to zjt as, in the limit, the variables z̃jt and zjt
differ only for a set of points of zero measure. Analogously, q̃

τj
t →as q

τj
t and the claim of Theorem 2

is valid. For clarity of exposition, we shall consider the case when J = 1. Generalisations to different
and multiple quantiles follow with similar arguments.

Let us consider a time point T0 after which cT → 0. We shall reset the origin at t = T0 = 0, where
the filters qt and q̃t become the same, i.e. belong to the same model and finite sample misspecification
vanishes (ensuring consistency of θ̃ for θ0)

qt+1 ∝ α(1(yt ≤ qt)− τ) + βqt

q̃t+1 ∝ α(1(yt ≤ q̃t)− τ) + βq̃t.

Define δt = qt − q̃t, with δ0 = q0 − q̃0 and assume that δ0 > 0 (the case δ0 < 0 is analog). One has

δt+1 = αXt + βδt

= α

t∑
s=0

βsXt−s + βt+1δ0

where Xt = 1(yt ≤ qt)− 1(yt ≤ q̃t), a Bernoulli r.v. with success probability

πt = P (q̃t ≤ yt ≤ qt) = Ft|t−1(qt)− Ft|t−1(q̃t) < τ.

Let us consider the sequence of events yt ∈ et, where et = [q̃t, qt]. One can envisage the following
cases: P (yt ∈ et) = πt if et > 0 and P (yt ∈ et) = 0 if et = 0; conversely, P (yt /∈ et) = 1− πt if et > 0
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and P (yt /∈ et) = 1 if et = 0. By assumption (xi),
∑∞

t=1 P (yt ∈ et) =
∑∞

t=1 πt < ∞. By the first
Borel-Cantelli lemma, as

∑∞
t=1 P (yt ∈ et) <∞, then P (yt ∈ et i.o.) = 0 almost surely and this may

occur only if et is a (zero P -measure) point, i.e. if qt = q̃t �

Gradients The variables z̃j,t, considered also in Engle and Manganelli (2004), are bounded
between −τj and 1− τj and

∂

∂θi
z̃j,t = kt,T

∂

∂θi
q̃
τj
t (θ)

where

kt,T =

1
cT

exp
{
yt−q̃

τi
t (θ)
cT

}
(

1 + exp
{
yt−q̃

τi
t (θ)
cT

})2

is the pdf of a logistic r.v. yt with mean equal to q̃
τj
t and variance equal to (c2

Tπ
2)/3.

One can write

q̃
τj
t = q̃

τ∗j
t −

r∑
i=l

biη̃it

where the pair {l, r} is equal to {1, j} for j < j∗, to {j, J} for j > j∗ and is empty for j = j∗, while
bi was previously defined as bi = 1(τi < τi∗)− 1(τi > τi∗). Then

∂

∂θi
q̃
τj
t (θ) =

∂

∂θi
q̃
τ∗j
t (θ)−

r∑
i=l

biη̃it(θ)
∂

∂θi
ξit(θ),

where the i−th derivative of the reference quantile is

∂

∂θi
q̃
τ∗j
t (θ) =

∂

∂θi
(q̄τj∗ (1− β)) +

∂

∂θi
(αũ

τj∗
t−1) +

∂

∂θi
(βq̃

τj∗
t−1)

that is, writing ũ
τ∗j
t as in equation (9) as a function of z̃tj and then differentiating,

∂

∂θi
q̃
τ∗j
t (θ) =

∂

∂θi
(q̄τj∗ (1−β)) +

(
∂

∂θi
α

) J∑
j=1

z̃t−1,i +α

J∑
i=1

kt,T (θ)
∂

∂θi
q̃
τj
t (θ) +

(
∂

∂θi
β

)
q
τj∗
t−1 +β

∂

∂θi
q
τj∗
t−1.

The derivative of ξ̃j,t is obtained analogously, except that the summations that involve the variables
zt,j are truncated,

∂

∂θi
ξ̃tj(θ) =

∂

∂θi
(ξ̄τj∗ (1−φ))+

(
∂

∂θi
γ

)∑
l

z̃t−1,l+γ
∑
l

kt,T (θ)
∂

∂θi
q̃τlt (θ)+

(
∂

∂θi
φ

)
ξt−1,j+φ

∂

∂θi
ξt−1,j .
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Taking, for instance, θi = α, one has, for the reference quantile

∂

∂α
q̃
τ∗j
t = ũ

τj∗
t−1 + α

∂

∂α
ũ
τj∗
t−1 + β

∂

∂α
q̃
τj∗
t−1

that is

∂

∂α
q̃
τ∗j
t =

J∑
j=1

z̃j,t−1 + α
J∑
j=1

∂

∂α
z̃j,t−1 + β

∂

∂α
q̃
τj∗
t−1

and replacing the derivative of z̃it

∂

∂α
q̃
τ∗j
t =

J∑
j=i

z̃j,t−1 + α

J∑
j=1

kj,t−1
∂

∂α
q̃
τj
t−1 + β

∂

∂α
q̃
τj∗
t−1

and for the remaining quantiles

∂

∂α
ξ̃tj = γ

∑
l

kt,T
∂

∂α
q̃τlt + φ

∂

∂θi
ξt−1,j .
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