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The mental model theory postulates that spatial reasoning relies on the 
construction, inspection, and the variation of mental models. Experiment 1 
shows that in reasoning problems with multiple solutions, reasoners 
construct only a single model that is preferred over others. Experiment 2 
shows that inferences conforming to these preferred mental models (PMM) 
are easier than inferences that are valid for alternatives. Experiments 3 and 
4 support the idea that model variation consists of a model revision 
process. The process usually starts with the PMM and then constructs 
alternative models by local transformations. Models which are difficult to 
reach are more likely to be neglected than models which are only minor 
revisions of the PMM.  
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Processing spatial information is essential to the survival of the species and of 
the individual. It can concern information from small scale and large scale 
space. Things get even more complicated if language comes into play and 
certain organisms have to process spatial information expressed in natural 
language and draw inferences from this. This will be the type of spatial 
problems dealt with in this article.  

Byrne and Johnson-Laird (1989) devised some ingenious spatial reasoning 
tasks having marked effects regarding ease of inference. Here is their problem I 
(Byrne & Johnson-Laird, 1989, p. 567): 

I.  A is on the right of B 
C is on the left of B  
 D is in front of C  
 E is in front of B  
 What is the relation between D and E? 

Most people correctly infer that D must be left of E. In Experiment 2 of Byrne 
and Johnson-Laird (1989), 70% of the participants drew this valid conclusion. 
Now, let’s turn to their problem II: 

II.  B is on the right of A  
C is on the left of B  
 D is in front of C  
 E is in front of B  
 What is the relation between D and E? 

Problem II differs from problem I only in the first sentence where both entities 
(A and B) swapped roles. This problem, however, is much harder than problem 
I, although it endorses the same conclusion, that is, that D must be left of E. 
Only 46% of the participants (Byrne & Johnson-Laird, 1989, exp. 2) drew this 
valid conclusion. 

According to Byrne and Johnson-Laird (1989) problem II is more difficult 
because the more models a problem supports, the harder the inference is. Byrne 
and Johnson-Laird, therefore, label problem I a one-model problem and problem 
II a two-model problem (see Figure 1), since description I determines one spatial 
layout, whereas description II allows for two spatial layouts.  

However, what makes problem I a one-model problem? This is difficult to 
say, because if a model was nothing other than a picture, then problem I 
describes many pictures, namely an infinite number of metrical variants of 
diagram 1 (see Figure 2a). 

If models were pictures, problem I would be a multiple-model problem, too, 
and the explanation for the easy-hard difference would be not applicable 
anymore. Things can get even more complicated. Why, given problem I, not 
construct the spatial layout like in Figure 2b? And, if so, would you then accept 
the inference that D is left of E? Probably not. This shows that even the validity 
of inferences strongly hinges on the meaning of such common relations like left-
of, right-of, in-front-of, and so on. In sum, this little example reveals that there 
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are many unsolved questions concerning the structure of a spatial mental model. 
And, investigations on how the human mind reasons on the basis of these spatial 
mental models depend on the representational format. Does this imply that the 
interesting questions of how we construct such a spatial mental model, or of how 
we construct more than one when we are faced with an indeterminate 
description, have to be postponed until the representational format of spatial 
mental models is definitely clarified? We do not think so!   
Johnson-Laird and Byrne (1991) saw the problems and stated that “[w]hen 
people understand spatial descriptions, they imagine symmetrical arrays in 
which adjacent objects have roughly equal distances between them ...” (p. 94). 
This assertion, however, does not resolve the difficulties mentioned above, but it 
acknowledges that ordering information is an essential feature for the 
specification of spatial mental models. 

We will now turn to the core of mental model theory, i.e., how humans draw 
inferences (Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991). In its general 
form, it states that human reasoning is a three-stage process: (1) In the first 

Figure 1. One-model and two-model problem according to Johnson-
Laird and Byrne (1991, p. 94ff.). 

A is on the right of B 
C is on the left of B 
D is in front of C 
E is in front of B 

B is on the right of A 
C is on the left of B 
D is in front of C 
E is in front of B 

One-model problem 

Two-model problem 

C  B  A 
D  E 

C A B 
D  E 

A C B 
 D E 
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stage—the phase of model construction—an integrated representation of the 
information the premises describe is constructed. (2) In order to get new 
information, this integrated representation has to be inspected (phase of model 
inspection). Some inferences can already be validly drawn at this stage, like the 
verification of implicit relationships in the inspected model. (3) The third 
stage—the phase of model variation—is called for when more complicated 
inferences have to be drawn. These more complicated inferences, for instance, 
include (i) deductions (as above) yielding conclusions that must be true given 
that the premises are true, (ii) modal inferences, i.e., reasoning about possible 
alternatives that are consistent with the premises (Bell & Johnson-Laird, 1998), 
and (iii) the search for counterexamples (a possibility that is consistent with the 
premises but inconsistent with the conclusion) in order to determine that an 
inference is invalid (Bucciarelli & Johnson-Laird, 1999). 

There is a substantial body of evidence that supports the three-stage account 
of human reasoning (e.g., Johnson-Laird, 2001). However, little is known about 
the processes within the three phases. The aim of the present paper is to fill this 
gap, especially for the essential stages of model construction and model 
variation.  

Figure 2. How to translate descriptions with natural spatial relations 
into (mental) models? 

A is on the right of B 
C is on the left of B 
D is in front of C 
E is in front of B 

One-model problem? D left of E? 

C  B  A 
D  E 

C  B  A 
 
D  E 
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In the first part of the paper we focus on the model construction phase. This 
part answers the question of which model is constructed first. It shows that there 
are preferences for certain spatial mental models and that the preferences are 
common for most reasoners. Johnson-Laird and his colleagues use the concept 
of initial mental models in the areas of propositional reasoning, conditional 
reasoning, and syllogistic reasoning. However, this concept was not elaborated 
for spatial reasoning and does not offer an explanation for determining which 
model is constructed first for problem II.  

To know which mental model is constructed in the first place is important 
since it influences the subsequent course of inference. For example, it is the first 
available basis to extract a putative conclusion that will be tested in the 
following search for counterexamples (see Johnson-Laird (2001) for a concise 
description of mental model theory and the search for counterexamples in 
deductive reasoning). And it can be an even more influential factor for the third 
phase—the phase of model variation. This is the topic of the second part of the 
paper. We report the results of four experiments. In part I, Experiment 1 and 2 
are concerned with the first phase of model construction and the question of 
whether or not some solutions to indeterminate inference problems are preferred 
over others. In part II, Experiment 3 and 4 deal with the third phase of model 
variation in order to answer the question of how the reasoner considers 
alternative solutions. Before, however, we explain how we deal with the 
difficulties that arise with spatial relations that are usually applied in the 
psychology of spatial reasoning. 

Part I: Model Construction and Preferred Mental Models 

To test the assumption of a general construction process, we need materials that 
do not suffer from the ambiguities of other spatial relations which are usually 
applied (Byrne & Johnson-Laird, 1989; Ehrlich & Johnson-Laird, 1982; Mani & 
Johnson-Laird, 1982). That also allows us to avoid the interpretation problem 
trap (Evans, 1972), i.e., that we would not be able to attribute the obtained 
results to the inference process, but merely to different interpretations of the 
premises on the side of the participants.  

Abstract Spatial Inference Tasks: Intervals In One Dimension 
Artificial Intelligence (AI) research on qualitative spatial reasoning has 
developed several sets of spatial relations (e.g., Cohn & Hazarika, 2001), and we 
chose the set of thirteen interval relations by Allen (1983) for the following 
reasons: The calculus is well investigated from a formal point of view (Ligozat, 
1990) and has some interesting computational properties (Nebel & Bürckert, 
1994). It is used in applications dealing with small-scale spaces like webpage 
design (Borning, Lin, & Marriott, 1997, 2000), as well as in applications with 
large-scale spaces like Geographic Information Systems (GIS, e.g., Longley, 
Goodchild, Maguire, & Rhind, 2001). 
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The set of interval relations was originally introduced by James Allen (1983) 
for temporal reasoning with intervals, but was soon transferred to the domain of 
one-dimensional spatial reasoning (e.g., Freksa, 1991). In Table 1, the 13 
interval relations are listed, together with the verbalizations that we used in our 
experiments. For convenience, a diagram is provided displaying the relationship 
between the two intervals X and Y, whereas the geometric semantics are given 
in the last column, where the ordering of start points and endpoints is given.  

Learning Interval Relations 
The aforementioned interpretation problem is resolved as follows: Before our 
participants solve reasoning problems, they have to read descriptions of the 
spatial relationship of a red and a blue interval using the 13 qualitative relations 
(in German) in the first phase of all our experiments—the definition phase. Each 
verbal description is presented with a short commentary about the location of the 
start point and endpoint of the two intervals, together with a diagram with a red 
and blue interval that match the description. In a subsequent phase—the 
learning phase—we test to see if the participants understand the relations: The 
learning phase consists of trial blocks, during which participants are presented 
with the one-sentence description of the red and blue interval (e.g., “The red 

Table 1 
The 13 qualitative interval relations, associated natural language verbalizations, a 
graphical realization, and ordering of start points and endpoints (adapted and 
augmented according to Allen, 1983). 
Allen’s 
temporal 
term 
 

Relation 
symbol 
 

Natural language  
verbalization 
 

Graph. 
ex. 
 

Point ordering 
s=start point 
e=endpoint 

before X < Y X lies to the left of Y 
 

sX<eX<sY<eY 

meets X m Y X touches Y at the left  sX<eX=sY<eY 

overlaps X o Y X overlaps Y from the left  sX<sY<eX<eY 

starts X s Y X lies left-justified in Y  sX=sY<eX<eY 

during X d Y X is completely in Y  sY<sX<eX<eY 

finishes X f Y X lies right-justified in Y  sY<sX<eX=eY 

equals X = Y X equals Y  sX=sY<eX=eY 

f-inverse X fi Y X contains Y right-justified  sX<sY<eX=eY 

d-inverse X di Y X surrounds Y  sX<sY<eY<eX 

s-inverse X si Y X contains Y left-justified  sX=sY<eY<eX 

o-inverse X oi Y X overlaps Y from the right  sY<sX<eY<eX 

m-inverse X mi Y X touches Y at the right  sY<eY=sX<eX 

after X > Y X lies to the right of Y  sY<eY<sX<eX 
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interval surrounds the blue interval”). They then have to indicate the start points 
and endpoints of the intervals by mouse clicks. After confirmation of the final 
choices, the participant is told whether the choices are right or wrong. If they are 
wrong, verbal information about the correct point ordering is given. Trials are 
presented in blocks of all 13 relations in random order. The learning criterion for 
one relation is accomplished if the participant gives correct answers in three 
consecutive blocks of the corresponding relation. The learning phase stops as 
soon as the participant reaches the learning criterion for all thirteen relations. 
Only after successful completion of the learning phase does the participant 
proceed to the actual inference phase of our experiments where we observe and 
record the types of inferences and response times. 

Using the interval relations, reasoning tasks known as three-term series 
problems (e.g., Johnson-Laird, 1972) can be constructed. One example is “X 
overlaps Y from the left. Y surrounds Z.” In the following, we will abbreviate 
interval-based three-term series problems with <interval relation in premise 1> – 
<interval relation in premise 2>. For the above example, the short-hand notation 
would be “o – di.”  

To evaluate participants’ inferences, it is necessary to know which 
relationships can hold between the end terms of an interval-based three-term 
series problem. These possible relationships can also be regarded as models in 
the usual logical sense. Therefore, we will use the terms solution and models in 
the following synonymously. In Table 2, the complete list of solutions/models 
for all three-term series problems that can be constructed with the 12 interval 
relations (omitting the trivial “=” relation) is given. In this composition table, 
one can read off the possible relationships of two intervals X and Z in the 
corresponding cell of the table, given the composition of interval relation of X 
and Y (rows) and the interval relation of Y and Z (column).  

The example above also shows that there are many three-term series problems 
that have more than one solution: For the three-term series problem “o - di,” 
there are five possible relationships between X and Z, namely “X < Z,” 
“X m Z,” “X o Z,” “X fi Z,” or “X di Z.” In total, there are 42 three-term 
series problems that have three solutions, 24 that have five solutions, 3 that have 
nine, and another 3 that have thirteen solutions. These indeterminate problems 
play a major role in the subsequent experiments. Note that the number of models 
can be unequivocally counted. 

Experiment 1: Existence of PMMs 

In this experiment, we explore whether people come up with the same spatial 
configuration to inference problems that have multiple solutions. If the 
construction of initial solutions in spatial configuration problems could be 
accomplished solely by an idiosyncratic procedure then there would be no 
reason to prefer one configuration over the other. As a consequence, for all 
indeterminate tasks, one should observe that the frequencies of generated 
solutions should follow an equal distribution. On the other hand, if a general 
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model construction process exists, people should come up with the same mental 
model. One should observe preferences for certain solutions for each task. 

Table 2 
Composition table for the 12 interval relations (omitting the trivial relation “=” from 
rows and columns) according to Allen (1983). Shaded cells correspond to multiple 
model problems. 
 
 

< m o fi di si s d f oi mi > 

< 
< < < < < < < <, m, 

o, s, d 
<, m, 
o, s, d 

<, m, 
o, s, d 

<, m, 
o, s, d 

<, …, 
>† 

m 
< < < < < m m o, s, d o, s, d o, s, d fi, =, f  di, si, 

oi, mi, 
> 

o 
< < <, m, o <, m, o <, m, 

o, fi, di
o, fi, di o o, s, d o, s, d o, fi, di 

si, =, s, 
d, f, oi 

di, si, 
oi 

di, si, 
oi, mi, 
> 

fi 
< m o fi di di o 

 
o, s, d fi, =, f di, si, 

oi 
di, si, 
oi 

di, si, 
oi, mi, 
> 

di 
<, m, 
o, fi, di 

o, fi, di o, fi, di di di di o, fi, di o, fi, di 
si, =, s, 
d, f, oi 

di, si, 
oi 

di, si, 
oi 

di, si, 
oi 

di, si, 
oi, mi, 
> 

si 
<, m, 
o, fi, di 

o, fi, di o, fi, di di di si si, =, s d, f, oi oi oi mi > 

s 
< < <, m, o <, m, o <, m, 

o, fi, di
si, =, s s d d d, f, oi mi > 

d 
< < <, m, 

o, s, d 
<, m, 
o, s, d 

<, …, 
>† 

d, f, oi, 
mi, >  

d d d d, f, oi, 
mi, > 

> > 

f 
< m o, s, d fi, =, f di, si, 

oi, mi, 
> 

oi, mi, 
> 

d d f oi, mi, 
> 

> > 

oi 
<, m, 
o, fi, di 

o, fi, di o, fi, di 
si, =, s, 
d, f, oi 

di, si, 
oi 

di, si, 
oi, mi, 
> 

oi, mi, 
> 

d, f, oi d, f, oi oi oi, mi, 
> 

> > 

mi 
<, m, 
o, fi, di 

si, =, s d, f, oi mi > > d, f, oi d, f, oi mi > > > 

> 
<, …, 
>† 

d, f, oi, 
mi, > 

d, f, oi, 
mi, > 

> > > d, f, oi, 
mi, > 

d, f, oi, 
mi, > 

> > > > 

† Note. These compositions are non-informative, meaning that all thirteen relations 
can hold between intervals X and Z. 
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Method 
Participants. Twenty-four students from the University of Freiburg (12 

female, 12 male), with an age range from 22 to 33 years (Mean: 25.9 years), 
voluntarily participated in the experiment, which lasted for about two hours. 
They had no formal training in logic, and they had not previously participated in 
an experiment on reasoning. 

Materials. The materials consisted of all three-term series problems that can 
be constructed by the 12 interval relations, if the trivial “=” relation is omitted. 
This results in 12 × 12 = 144 three-term series problems. In each three-term 
series problem, the spatial relationship between a red and a green interval is 
described in the first premise, and the relationship between the green interval 
and a blue one is given in the second premise.  

The inference tasks were divided into 12 blocks, each with 12 three-term 
series tasks. In each block, each interval relation was used exactly once in the 
first and in the second premise, respectively, in order to avoid immediate 
repetitions of verbally similar tasks. The order of presentation within blocks was 
randomized for each participant, and the presentation order of blocks was 
counterbalanced across participants according to a sequentially counterbalanced 
Latin square (Williams, 1949). This was done in order to avoid presentation-
order effects. 

Procedure. The definition phase and the learning phase were applied as 
described above. Participants needed about 15 to 30 minutes to accomplish the 
definition phase and the learning phase. For each trial in the learning phase, the 
participant's choices of start points and endpoints, type of answer (correct vs. 
incorrect) and response times were recorded. During the subsequent inference 
phase, the main part of the experiment, participants were instructed that they 
were able to give only one solution to the presented three-term series problems 
and to answer as soon and as precise as possible. After solving 24 practice trials 
with three-term series problems that used the “=” relation in the first or second 
premise, they then had to solve all 144 spatial three–term series problems. These 
were presented in the following way:  

The red interval lies left-justified in the green interval. 
The green interval overlaps the blue interval from the left. 
Which relationship can hold between the red and blue interval?  

Participants had to indicate the start point and endpoint of the blue interval by 
mouse clicks just as they had done in the preceding learning phase. The 
dependent variables in the inference phase were type of answer and error rates. 

Results and Discussion 
Learning phase. The learning phase should guarantee that participants acquire 

the relational concepts and associate them correctly with natural language 
expressions. In Table 3, the mean numbers of learning trials across participants 
are listed, showing how many trials our participants needed to accomplish the 
required three consecutive correct answers for each relation. Participants 
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understood the relation “=” at once (M = 3.00) whereas they needed the most 
learning trials for the relation “mi” (M = 3.83). As expected, the pattern was 
nearly the same for the related measure of the percentage of correct responses 
(see Table 3). From these results, we can conclude (i) that our learning phase 
was successful, (ii) that the interval relations can be acquired and associated 
with natural language expressions, and (iii) adoption is accomplished within a 
reasonable time scale. However, the most important point is that the following 
results of the inference phase are (almost) not affected by interpretational 
fluctuations of the inference tasks.  

Existence of PMMs. To test the global hypothesis that solutions for all three-
term series problems with multiple models (i.e., 72 out of 144 problems; see 
shaded cells in Table 2) are not equally distributed, a chi-square test was 
conducted that yielded a significant result, χ2(240) = 1583.82, p < .001. This 
corroborates the assumption that there are general preferred solutions in spatial 
reasoning with the interval relations. Testing the 72 multiple model problems 
separately, we obtained statistically significant chi-square values in 65 out of 72 
tests (see Table 4 for details). The most impressive example is the problem “s – 
oi” (The red interval lies left-justified in the green interval. The green interval 
overlaps the blue interval from the right.), where 83.3% of our participants 
chose the relation “oi” (The red interval overlaps the blue interval from the 
right.), whereas the other two correct relations “d” and “f” (see Table 4) were 
never produced.  

The findings replicate the results of Knauff, Rauh, and Schlieder (1995) who 
used a different drawing procedure. Again we found evidence for a general 
construction process for spatial configurations that operates the same way for 
the majority of people. The preferences in both studies revealed a concordance 
rate of 59 out of 72  (79.1%) problems with multiple solutions. 

How can PMMs be explained? The conceptual representation of the relations 
might be one reason for our findings. The spatial relations could be represented 
as prototypes that convey metrical information in order to construct typical 
situations. For instance, the metrical prototype of the “overlaps from the right” 
relation could incorporate a distance parameter that specifies the proportional 
length of two intervals in order to produce the prototypical “overlaps-from-the-
right” situation. Thus, several distance parameters could be specified and 
attached to each relation. That is the approach that Berendt (1996) accomplished 
for the interval relations, taking into account (i) that the set of parameters should 
generate only images that are actual models of the premises and (ii) reproduces  

Table 3 
Mean number of learning trials and percentage correct for all 13 interval relations 

 < m o fi di si = s d f oi mi > 
Mean 3.42 3.63 3.46 3.21 3.13 3.01 3.00 3.33 3.08 3.08 3.58 3.83 3.29 
Perc. 95.1 88.5 88.0 95.0 98.6 97.3 100 98.6 96.1 96.0 87.2 89.1 94.9 
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the (a-)symmetries found in the set of PMMs. For example, we found symmetry  
with respect to re-orientation (i.e., from left-to-right, and vice versa) but not with 
respect to transposition in Experiment 1 as well as in Rauh and Schlieder (1997) 
for four-term series problems. The following example explains these two types 
of potential symmetries: Consider task I “X lies to the left of Y; Y overlaps Z 
from the right.” The re-oriented twin task II is: “X lies to the right of Y; Y 
overlaps Z from the left.” Consulting Table 4, the PMM of task I is “X overlaps 
Z from the left” and the PMM of task II is “X overlaps Z from the right.” Thus, 
re-orienting the premises results in a re-oriented PMM. In contrast, note that 
Task III “X overlaps Y from the left; Y lies to the right of Z” is the transposed 
twin of task I (change order of relations and take its inverse). Here we can see 
that the PMM of task III is “X lies to the right of Z” which is not the inverse of 
“X overlaps Z from the left” which should be the case if we had symmetry also 
with respect to reflection in the vertical. The interesting point is that a model of 
metrical prototypes has to introduce at least one additional parameter in order to 
explain the asymmetries of transposition. Berendt (1996) introduces a correction 
parameter that slightly lengthens each new interval that enters a task. A further 
justification, however, is missing. In sum, the introduction of this new parameter 
provides a good fit to the data, but reduces the attractiveness of the conceptual 
account of metrical prototypes as an explanation for PMMs.  

A second explanation of our data emphasizes the representational economy 
and ease of processing of diagram-like representations in working memory. 
Schlieder and Berendt (1998; see also Schlieder, 1999) discuss the following 
two principles of PMMs: The first one is the principle of linearization, stating 
that preferred solutions nearly always follow a linear order of start points and 
endpoints; that is, if there is a spatial configuration where the start points of the 
interval are in a certain order, this order is also maintained for the endpoints, if 
possible. This principle is in accordance with the principle of cognitive economy 
since it allows for chunking: spatial configurations can be re-represented more 
economically by treating intervals as chunks, thus reducing the number of 
entities that have to be held and manipulated in working memory from six points 
to three intervals. The second principle is the principle of regularization, stating 
that mental configurations of intervals incorporate point incidences in only those 
cases where they are unavoidable. Scanning all PMMs in this experiment as well 
as those in the Knauff et al. study reveals that PMMs follow these two 
principles. Additionally, Rauh (2000) identifies a third general principle that 
applies in inverse reasoning and that could be termed the unification principle: 
In the case of using the inverse of the first-premise-relation in the second 
premise, people prefer to equalize the end terms (interval relation “=”) which 
also allows one to combine two entities in the mental model as a kind of 
chunking: if “X r Y” and “Y rinverse Z,” then “X = Z” is always a possible solu-
tion. For example, given the premises “X lies to the left of Y” and “Y lies to the 
right of Z,” most people initially infer that it is possible that “X equals Z.” 

These principles are also at the foundation of the cognitive modelling of the 
model  construction  process  developed  by Schlieder (1999).  The  basis  of  the 
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Table 4 

Percentage of correct answers and PMMs for all 144 three-term series tasks 

 < m o fi di si 
<  

<  : 100.0% 
 

< : 87.5% < : 95.8% < : 100.0% < : 91.7%
 

< : 95.8% 

m  
< : 79.2% 

 
< : 87.5% < : 75.0% < : 87.5% < : 79.2%

 
m : 91.7% 

o  
< : 87.5% < : 83.3%

< : 45.8%
(2) : 41.7%

Σ : 87.5%

< : 37.5%
(2) : 50.0%

Σ : 87.5%

o : 50.0%
(4) : 29.2%

Σ : 79.2%

o : 79.2% 
(2) : 16.7% 

Σ : 95.9% 

fi  
< : 87.5% 

 
m : 62.5% o : 91.7% fi : 100.0% di : 87.5%

 
di : 95.8% 

di < : 70.8% 
(4) : 29.2% 
Σ : 100.0% 

o : 62.5%
(2) : 20.8%

Σ : 83.3%

o : 70.8%
(2) : 29.2%
Σ : 100.0%

di : 79.2% di : 95.8%
 

di : 83.3% 

si < : 54.2% 
(4) : 41.7% 

Σ : 95.9% 

o : 62.5%
(2) : 12.5%

Σ : 75.0%

o : 54.2%
(2) : 37.5%

Σ : 91.7%
di : 87.5% di : 91.7%

 
si : 100.0% 

s  
< : 87.5% < : 70.8%

o : 54.2%
(2) : 33.3%

Σ : 87.5%

o : 58.3%
(2) : 37.5%

Σ : 95.8%

di : 45.8%
(4) : 37.5%

Σ : 83.3%

si : 45.8% 
(2) : 50.0% 

Σ : 95.8% 

d  
< : 95.8% < : 79.2%

o : 50.0%
(4) : 37.5%

Σ : 87.5%

o : 70.8%
(4) : 20.8%

Σ : 91.6%

= : 41.7%
(12) :58.3%
Σ : 100.0%

oi : 70.8% 
(4) : 25.0% 

Σ : 95.8% 

f  
< : 91.7% m : 83.3%

o : 75.0%
(2) : 4.2%
Σ : 79.2%

fi : 58.3%
(2) : 41.7%
Σ : 100.0%

oi : 45.8%
(4) : 45.8%

Σ : 91.6%

oi : 54.2% 
(2) : 33.3% 

Σ : 87.5% 

oi o : 41.7% 
(4) : 45.8% 

Σ : 87.5% 

o : 66.7%
(2) : 12.5%

Σ : 79.2%

= : 41.7%
(8) : 54.2%

Σ : 95.9%

oi : 83.3%
(2) : 16.7%
Σ : 100.0%

oi : 54.2%
(4) : 45.8%
Σ : 100.0%

> : 45.8% 
(2) : 54.2% 
Σ : 100.0% 

mi o : 45.8% 
(4) : 41.7% 

Σ : 87.5% 

si : 37.5%
(2) : 45.8%

Σ : 83.3%

oi : 66.7%
(2) : 8.3%
Σ : 75.0%

mi : 83.3% > : 87.5%
 

> : 66.7% 

> = : 37.5% 
(12) : 62.5% 

Σ : 100.0% 

oi : 45.8%
(4) : 41.7%

Σ : 87.5%

oi : 41.7%
(4) : 45.8%

Σ : 87.5%
> : 91.7% > : 95.8%

 
> : 100.0% 
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Table 4, Continued 
 

 s d f oi mi > 
<  

< : 95.8% 
< : 50.0%

(4) : 50.0%
Σ : 100.0%

< : 50.0%
(4) : 41.7%

Σ : 91.7%

o : 54.2%
(4) : 41.7%

Σ : 95.9%

o : 50.0%
(4) : 33.3%

Σ : 83.3%

= : 37.5% 
(12) : 62.5% 

Σ : 100.0% 

m  
m : 87.5% 

o : 75.0%
(2) : 8.3%
Σ : 83.3%

o : 70.8%
(2) : 4.2%
Σ : 75.0%

o : 70.8%
(2) : 12.5%

Σ : 83.3%

fi : 37.5%
(2) : 41.7%

Σ : 79.2%

> : 45.8% 
(4) : 45.8% 

Σ : 91.6% 

o  
o : 95.8% 

o : 58.3%
(2) : 25.0%
 Σ : 83.3%

o : 54.2%
(2) : 25.0%

Σ : 79.2%

= : 41.7%
(8) : 58.3%
Σ : 100.0%

oi : 62.5%
(2) : 16.7%

Σ : 79.2%

> : 41.7% 
(4) : 41.7% 

Σ : 83.4% 

fi  
o : 83.3% 

o : 45.8%
(2) : 33.3%

Σ : 79.1%

fi : 37.5%
(2) : 62.5%
Σ : 100.0%

oi : 58.3%
(2) : 33.3%

Σ : 91.6%

oi : 79.2%
(2) : 12.5%

Σ : 91.7%

> : 50.0% 
(4) : 45.8% 

Σ : 95.8% 

di o : 54.2% 
(2) : 33.3% 

Σ : 87.5% 

=. di : 66.7%
(7) : 33.3%
Σ : 100.0%

oi : 54.2%
(2) : 37.5%

Σ : 91.7%

oi : 75.0%
(2) : 16.7%

Σ : 91.7%

oi : 70.8%
(2) : 25.0%

Σ : 95.8%

> : 62.5% 
(4) : 37.5% 
Σ : 100.0% 

si s : 37.5% 
(2) : 62.5% 
Σ : 100.0% 

oi : 70.8%
(2) : 25.0%

Σ : 95.8%
oi : 83.3% oi : 91.7% mi : 75.0%

 
> : 91.7% 

s  
s : 91.7% d : 91.7% d : 70.8%

oi : 83.3%
(2) : 0.0%
Σ : 83.3%

mi : 83.3%
 

> : 100.0% 

d  
d : 87.5% d : 95.8% d : 75.0%

oi : 45.8%
(4) : 45.8%

Σ : 91.6%
> : 75.0%

 
> : 100.0% 

f  
d : 54.2% d : 75.0% f : 91.7%

> : 45.8%
(2) : 45.8%

Σ : 91.6%
> : 70.8%

 
> : 95.8% 

oi oi : 70.8% 
(2) : 20.8% 

Σ : 91.6% 

oi : 66.7%
(2) : 29.2%

Σ : 95.9%
oi : 95.8%

> : 87.5%
(2) : 8.3%
Σ : 95.8%

> : 79.2%
 

> : 87.5% 

mi oi : 83.3% 
(2) : 0.0% 
Σ : 83.3% 

oi : 75.0%
(2) : 8.3%
Σ : 83.3%

mi : 83.3% > : 87.5% > : 91.7%
 

> : 87.5% 

> > : 54.2% 
(4) : 45.8% 
Σ : 100.0% 

> : 37.5%
(4) : 62.5%
Σ : 100.0%

> : 87.5% > : 91.7% > : 83.3%
 

> : 95.8% 

Note. White cells: One model problems with percentage of correct answers;  Shaded cells: Multiple 
model problems with (1) percentage for PMM, (2) number and percentage for other correct 
solutions, (3) percentage of correct answers;  Light shading: Chi-square test not significant;  Dark 
shading: Chi-square test significant. 
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cognitive modelling is an ordinal representation of start points and endpoints. A 
spatial focus operates on this ordinal representation and inserts the points of new 
intervals according to special insertion schemes that are specified for each 
interval relation. A cognitive modelling of the model construction process is 
available as a JAVA applet (Schlieder et al., 2002) together with further 
information on the model construction process.  

Experiment 2: PMM-Verification Bias 

The existence of PMMs suggests that the verification of a relationship which 
holds in the PMM is easier, because the relevant information is available as soon 
as the PMM is constructed. In contrast, the verification of relationships being 
solely valid in alternative models of the premises should be harder, because the 
construction of the PMM demands working memory resources, causing a delay 
in the construction of alternative models, and may even cause a failure to build 
them. Experiment 2 tested this assumption using a verification paradigm. 

Method 
Participants. Twenty-six students from the University of Freiburg, 13 female 

and 13 male with an age range from 21 to 36 years, were paid for participating 
in the experiment, which lasted for about two hours. Again, they had no formal 
training in logic, and they had not previously participated in an experiment on 
reasoning. 

Materials. Out of the 144 compositions, we selected the following three-term 
series problems: “< – o,” “> – oi,” “fi – si” (1 model cases), “o – o,” “oi – 
oi,” “di – m” (3 model cases), “< – oi,” “oi – <,” “di – <” (5 model cases), 
and “o – oi,” “oi – o,” “di – d” (9 model cases). Each composition was 
combined with all 13 interval relations for verification, yielding 12 x 13 = 156 
verification tasks. One sample task is given below. 

Procedure. The definition phase and the learning phase were applied again as 
in Experiment 1. During the inference phase, participants had to solve 210 (15 
practice trials in the beginning, 39 filler problems with other interval relations 
mixed with the 156 relevant problems) spatial three–term series verification 
problems. The filler problems were selected in order to get an equal proportion 
of yes and no answers. Premises were presented in the following way on the first 
screen: 

The red interval overlaps the green interval from the left.  
The green interval overlaps the blue interval from the right.   

On the next screen, an assertion concerning the interval relation between the red 
and the blue interval was presented that the participant had to verify by pressing 
the corresponding key. 

Can the following relationship hold between the red and blue interval?  
The red interval lies to the left of the blue interval. YES/NO? 

 

Dependent measures were verification latencies and error rates.  
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Results and Discussion 
Again, all participants accomplished the learning phase successfully. To test the 
hypothesis that PMMs are more often correctly verified than other solutions, a 
Wilcoxon signed ranks test that reached significance, z = 2.070, p < .019, one-
tailed, was conducted. In Table 5, the error rates for three-term series problems 
combined with a to-be-verified relation corresponding to the PMM (15.0%) are 
displayed, compared to the error rates for three-term series problems that were 
combined with other valid relations (20.8%). Additionally, the corresponding 
verification latencies are listed. This difference is also statistically reliable, 
F(1,25) = 27.38, p < .0005, indicating that relations that are valid in the PMM 
are verified faster than relations that are valid in alternative models. 

The results corroborate our hypothesis that the PMM plays an important role 
in the course of reasoning because as an initial mental representation in working 
memory it (i) invites certain inferences, and (ii) puts load on working memory, 
making certain other inferences harder (e.g., other modal inferences concerning 
alternative solutions to indeterminate three-term series problems). In influencing 
the inference process they lead to predictable systematic deviations from the 
normative theory of the Interval Calculus of Allen (1983), leading to a bias for 
certain inferences. The increase of error rates may not seem very dramatic, but 
one should keep in mind that the problems were presented in the easiest way 
possible, namely stating two relationships of three objects in a referentially 
continuous description (Ehrlich & Johnson-Laird, 1982). Performance may 
rapidly get worse if problems become more complicated. 

In Experiments 1 and 2, we found evidence for a general construction 
process: It takes spatial relational descriptions as input: In the case of 
determinate descriptions, it comes up with a model of the premises, and—far 
more interestingly—shows preferences for certain solutions in the case of 
indeterminate descriptions. The outcomes of this model construction process—
the PMMs—have properties that optimize general features of a visuo-spatial 
subsystem of human working memory: It takes into account the limited 
resolution of such a system (regularization principle) and exploits the 
opportunities for chunking (via the linearization principle and the unification 
principle). 

Table 5 
Error rates and verification latencies for relations consistent/inconsistent with 
the PMM 

 Error rates [in %] Verification latencies  
Mean ± SD [in s] 

PMM-consistent  15.0  5.25 ± 2.25 
PMM-inconsistent  20.8  7.30 ± 3.03 
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Part II: Model Revision and Alternative Mental Models 

The phase of model variation, or the validation phase as Johnson-Laird and 
Byrne (1991) prefer to say in the case of deductive inference, is at the heart of 
the inference process: “Only in the third stage is any essential deductive work 
carried out: the first two stages are merely normal processes of comprehension 
and description” (Johnson-Laird & Byrne, 1991, p. 36). Much recent work has 
concentrated on this stage, especially in propositional and syllogistic reasoning. 
Again, for spatial reasoning no such studies exist.  

For all areas of reasoning, two general classes of processes/strategies of the 
phase of model variation are conceivable: Either there is an iteration of model 
construction and model inspection, in which each mental model is constructed 
from scratch (model iteration) accompanied with an mechanism to avoid endless 
loops of constructing the same model over and over again, or there is a model 
revision process that takes the previous mental model to revise it in order to 
come to the next one. Since from the psychology of thinking it is known that 
human cognition heavily relies on previous information, e.g., use of old 
solutions in case-based reasoning (Kolodner, 1993), set effects in problem-
solving (Anderson, 2000), or anchoring effects in judgment and decision making 
(Tversky & Kahneman, 1974), model revision seems the more plausible 
candidate. Again, the questions arise whether there is a general model revision 
process, and how the revision is accomplished. From AI research of Qualitative 
Spatial Reasoning (QSR) and Diagrammatic Reasoning (DR, see Schlieder, 
1998), we import the promising notion of local transformation as a method for 
mental model revision. We will describe the concept of local transformation in 
more detail in the following section. 

Generating the Sequence of Solutions via Local Transformations 
Since different models of a three-term series problem can be unequivocally 
distinguished by the relation between X and Z, we can treat models and relations 
equivalently. Thus, a transformation is a transition from one relation r1 to 
another relation r2. We will abbreviate this as r1 → r2 in the following. 

Freksa (1992) introduced the notion of a conceptual neighborhood between 
interval relations that has three variants that are the consequence of three distinct 
types of local transformations. The A-neighborhood is based on a transformation 
that can be described as the movement of one single boundary point of one 
interval, whereas the B-neighborhood relies on the movement of a complete 
interval of fixed length. The transformation defining the C-neighborhood 
consists of keeping the center of the changing interval fixed, and varying its 
length. The types of transformations defining the A(B, C)-neighborhoods will be 
called A(B, C)-transformations (see Figure 3a for some pictorial examples of 
local transformations).  
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Formally, the three conceptual neighborhoods are defined by the graphs in 

Figure 3b. Two relations are neighbors, if and only if, they are connected by an 
edge of the corresponding graph.  

The common principle underlying the three types of neighborhoods is: 
Interval relations r1 and r2 are conceptual neighbors if a model of intervals X and 
Y satisfying X r1 Y can be continuously transformed into a model of intervals X’ 
and Y’ satisfying X’ r2 Y’ such that during the transformation no model arises in 

Figure 3. Freksa’s (1992) conceptual A/B/C-neighborhoods with graphical 
examples. 
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which a relation different from r1 and r2 holds (see Schlieder & Hagen, 2000). 
Their peculiarities arise from different transformation processes (see Figure 3). 

Local Transformations: Steps between A-Neighbors 
For an empirical analysis of sequences of alternative models the conceptual 
framework of transformations needs formal refinement. We will do this in more 
detail for the A-transformation. In order to adequately describe the model 
revision process, the definition has to include the movement of boundary points 
and its direction. An A-transformation between intervals X and Y does not 
specify the moving boundary point, since it can always be accomplished in two 
ways, either by moving one boundary point of interval X in one direction or one 
of Y in the opposite direction (see Table 6 for some examples). We will call an 
A-transformation with specified moving point p a step (of boundary point p in 
direction d). 

 In the following experiments, the participants were asked to generate all 
solutions to an indeterminate problem. Note that tracking sequences does not 
permit the direct observation of steps because our participants drew every new 
solution to a given problem from scratch. The observation of sequences of 
constructed interval relations, however, provides restrictions about which steps 
may have been applied mentally. For example: If the participant drew a solution 
where X lies left of Y, and as the next solution, that X touches Y at the left, we 
do not know whether the reasoner moved the endpoint of X to the right or the 
start point of Y to the left. She could have done either, but we would count this 
little sequence as an instance of a local transformation. 

The concept of step-sequences (sequences of steps that refer to the same point 
p moving in constant direction d) is that they may account for systematic errors 
of omission or commission that cannot be explained on the level of A-
transformations. In order to show this, we need one more definition. A step-
sequence S1, ..., Sn is extendible at the beginning (or the end) if and only if there 
exists a step S0 (or Sn+1) such that S0, S1, ..., Sn (or S1, ..., Sn, Sn+1) is a step-
sequence. Therefore, errors of omission should be observed more frequently if 
the end of a step-sequence is reached but the solution set is not completely 
traversed. Errors of commission, in turn, are invited and should occur more 
frequently, if non-solutions are a continuation of a step-sequence. See Figure 5 

Table 6 
Some examples for the relation of A-transformations and steps 
A-transformation  step right  step left 
< → m eX  sY  
m → o eX  sY  

o → fi eX  eY  
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for an example where an error of commission is invited, and Figure 6 for a 5-
model problem that is prone to an error of omission. 

Experiment 3: Constructing Alternative Models 

Our general assumption is that moving along a step-sequence, i.e., keeping the 
moving point and its direction constant, is the easiest way to generate alternative 
solutions. More complicated processes would result from changing the moving 
point, changing direction, or even performing a non-local transformation. In the 
following, we present hypotheses specifying the implications of the above 
considerations in more detail. They are illustrated in Table 6 and Figure 4.  

3-model tasks. The relations determining the solution set of a 3-model task 
can be ordered in two ways by sequences of A-transformations (e.g., for solution 
set (3-1) as <→m→o or o→m→<). Each of these sequences can be 
accomplished in two ways as a step-sequence (e.g., <→m→o by steps to the 
right of the endpoint eX of interval X or by steps to the left of the start point sY of 
Y). Interestingly, one of these sequences is always extendible, except for the 
solution sets (3-7) and (3-8), where all sequences are non-extendible. Two 
interesting hypotheses concerning 3-model tasks are thus derivable: (i) 3-model 
tasks having extendible solution sequences are prone to errors of commission, 
and (ii) 3-model tasks with solution sets (3-7) and (3-8) should have 
significantly fewer errors of commission than the other 3-model tasks. See 
Figure 5 for an example of the three-term series task “f – oi,” where an error of 
commission is invited because the sequence is extendible.  

3-Model Tasks

5-Model Tasks 9- and 13-Model Tasks

3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8

5-1 5-2 5-3 5-4 9-1 13-1

Figure 4. The solution sets of three-term series problems with multiple 
models. The valid relations are displayed as points at corresponding 
positions of Figure 3. 
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5-model tasks. The solution set of a 5-model task can be ordered in two ways 
by sequences of A-transformations. Each of these sequences can also be 
accomplished in two ways, as a step-sequence that is non-extendible, or as a 
sequence S1, S2, S3, S4, where S1, S2 and S3, S4 are non-extendible step-sequences, 
having the same direction but referring to different boundary points of the same 
interval. Accordingly, we can formulate the hypothesis that errors of omission 
will most frequently occur between step 2 and step 3 (see Figure 6 for an 
example where the boundary point has to be changed in order to reach the 
remaining two solutions).  

9-model tasks and 13-model tasks. The solution set of a 9-model task or of a 
13-model task can be ordered in multiple ways by sequences of A-
transformations. Each of them falls into several step-sequences, including 
necessary changes of direction between them. Therefore, we expect a decreased 
number of correct and complete solution sequences for these tasks. 

Method 
Participants. A different set of twenty-four students from the University of 

Freiburg (12 female, 12 male) without formal training in logic were paid for 
their participation in the experiment that lasted for about 2 to 2.5 hours. 

Materials. The materials consisted of the 72 indeterminate three-term series 
problems that can be constructed by the 12 interval relations if the trivial “=” 
relation is omitted. In each three-term series problem, the spatial relationship 
between a red and a green interval is described in the first premise, and the 

Figure 5. Model revision inviting an error of commission for the 3-model 
task “f – oi.” Beginning with the PMM (“X lies to the left of Z”) the start 
point of the interval X is chosen for model revision. Then, there are two 
steps (S1 and S2) in order to obtain alternatives, namely that “X touches Z at 
the right” (“mi”) or that “X overlaps Z from the right” (“oi”). The step 
sequence, however, is extendible (S3 and S4) and might be followed if the 
reasoner overlooks the restriction that S3 violates the first premise. 

X lies right-justified in Y.
Y overlaps Z from the right.

S2S3S 4 S1
X

Y
Z
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relationship between the green interval and a blue one is given in the second 
premise. 

Procedure. The definition phase and the learning phase were administered 
like in the previous two experiments. For the learning phase, a minor 
modification was introduced in order to be consistent with the procedure of the 
inference phase: The participants had to indicate the spatial relationship of both 
intervals by mouse clicks.  

During the inference phase, participants were given 3 practice trials (without 
feedback on correctness of solutions), and then received the 72 indeterminate 
three-term series problems. After self-paced reading of the premises, the 
premises vanished, and the participants were asked to generate all possible 
relationships between the red and the blue interval. By clicking the mouse they 
specified the spatial relationships analogous to the interval-specifying procedure 
in the learning phase. After finishing the configuration, participants could either 
continue specifying other solutions, or stop working on the present task and go 
to the next three-term series problem. 

We recorded premise processing times, drawing times, and, most importantly, 
the sequence of solutions by pixel coordinates and by interval relations. 

Results and Discussion 
All participants passed the learning phase successfully. First, we tested the 
hypothesis that solution sequences followed the principles of the conceptual 

Figure 6. Model revision inviting an error of omission for the 5-model task 
“oi - <.” If the endpoint of the interval Z is chosen for model revision, then 
there are two steps (S1 and S2) until the end of the step sequence is reached. 
The residual alternatives can be found only if the moving point is changed. 
In the example above, the start point of the interval Z is chosen and the 
steps (S3 and S4) are applied. 

di - fi - oi

... m - <

S1

S3

S2

S4

X overlaps Y from the right.
Y lies to the left of Z.

X

X

Y 

Y 
Z

Z
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neighborhood. All transitions in the solution sequences were analyzed for the 
existence of A-, B-, and C-transformations. Because this analysis is very 
extensive and complex, a program (in CommonLisp) had to be written to 
accomplish it. We found that the significant majority of the transitions (3145 of 
4462 [= 70.48%]) conformed to A-transformations. Transitions conformed to B- 
or C-transformations in 64.95% and 64.34% of all the cases, respectively. The 
three values are rather similar, since most transitions are consistent with all three 
types of conceptual neighborhood. Only transitions involving the “=” relation 
discriminate between different types of conceptual neighborhoods (see 
Figure 3b). Therefore, we performed a special analysis of these transitions and 
found the frequencies listed in Table 7. The results clearly show that the critical 
transitions can be best explained by A-transformations (75.13%), indicating that 
participants were mentally moving one boundary point of an interval in order to 
come to the next solution. 

In Table 8, the results are displayed by exclusively analyzing correct and 
complete solution sequences of 3-, 5-, 9-, and 13-model tasks. The interesting 
fact is the nearly monotonic decrease in the number of correct and complete 
solution sequences, depending on the number of models. Furthermore, it is 
worth noting that correct and complete sequences of the 9- and 13-model 
problems (i) are rarely observed (as predicted by our hypothesis), but (ii) that 
none of these sequences conformed perfectly to any of the possible 
neighborhood transformations. We will return to the latter point below. 

Errors of omission. To test for the hypothesis of systematic errors of omission 
between step 2 and step 3, we looked at the solution generated last in the whole 
solution sequence for all 5-model tasks. In Table 9 the results for the six 5-
model tasks with solution set (5-2) (see Figure 4) are listed. As stated above, we 
expected an increasing number of solution sequences terminating after the 
second step, i.e., for relation “o.” 

As Table 9 shows, there are many solution sequences aborting ahead of time 
with the relation “o” (22 of 134). The differences to the immediate neighbors 
“fi” and “m” are both significant, binomial test, p=1/2, one-tailed, p < .004 and 
p < .008, respectively. This pattern of results was also obtained for the 5-model 
tasks with the other three solution sets. The result confirms our prediction of 
systematic errors of omission between steps 2 and 3. 

 

Table 7 
Number of “=”-transitions conforming to different types of conceptual 
neighborhood 
 Absolute Percent 
A-transformation  296  75.13% 
B-transformation  49  12.44% 
C-transformation  22  5.58% 
Other  27  6.85% 
Total  394  100% 
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Errors of commission.  According to our predictions of systematic errors of 

commission, the 3-model tasks with solution sets (3-1) to (3-6) (see Figure 4) 
were analyzed for transitions from relation “o” (“oi”) followed by an incorrect 
one. The number of such transitions was 57. It turned out that 26 of them were 
steps with the “o” (“oi”) relation as a precursor. Given that there are 8 other 
erroneous relations (3-model tasks have 13 − 3 = 10 impossible interval 
relationships between the end terms of which 2 are not A-neighbors) that are not 
A-transformations of “o” (“oi”), the transition from a correct solution to an 
erroneous one is about two to three times more probable if the erroneous 
solution is the next step in the step-sequence, binomial test, p = 2/10, one-tailed, 
p < .00005. The result corroborates our hypothesis of systematic errors of 
commission.  

The total number of errors for all 3-model tasks was 459. As predicted, the 3-
model tasks with solution sets (3-7) and (3-8) had the least commission errors (8 
and 19, respectively; 13.5 on the average), much less than the 72.0 commission 
errors that could be observed on the average for the 3-model tasks with solution 
sets (3-1) to (3-6), where errors of commission were invited by the possibility of 
local transformation. The difference is significant, binomial test, p = 6/8, one-
tailed, p < 10-26. 

Strategies in the 9- and 13-model cases. As shown in Table 8, none of the 
correct and complete solution sequences of the 9-model tasks and the 13-model 
tasks conformed perfectly to any of the conceptual neighborhood 

Table 8 
Number of correct and complete solution sequences 

 Correct and complete A-Transformation 
3-model tasks  52.88%  

(533 of 1008) 
 75.61% 
 (403 of 533) 

5-model tasks  34.20%  
 (197 of 576) 

 86.29% 
 (170 of 197) 

9-model tasks  13.89%  
 (10 of 72) 

 0% 
 (0 of 10) 

13-model tasks  16.67%  
 (12 of 72) 

 0% 
 (0 of 12) 

Total  43.52%  73.27% 

Table 9 
Frequencies of relations as last solution for 5-model tasks with solution set  
(5-2) 

(di)  fi o m (<) 
 10  7  22  8  87 
 7.46%  5.22%  16.42%  5.97%  64.93% 
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transformations. In an exploratory data analysis, we identified two classes of 
strategies for navigating through the solution set that guided the successful 
search for alternatives in solving 9- and 13-model tasks.  

Constant direction strategies. The first class of strategies consists of three 
sequences of A-transformations. The two transformations joining them are not 
A-transformations, but jumps in the graph of the A-neighborhood. 

The constant direction strategy can be accomplished in a simple way: All 
steps refer to points of the same interval and proceed in the same direction. For 
each step, the other boundary point of the interval is tested to see whether a step 
would also lead to a valid model, and the information determining this model is 
stored if necessary. The jumps only occur if it is not possible to proceed within a 
step-sequence. Then the stored information is retrieved in order to construct the 
corresponding model to begin the next step-sequence. 

The success of this kind of strategy depends to a large degree on the choice of 
the starting model, since the moving direction is constant and an omitted model 
will never be reached (see Figure 7 for an example of the constant-direction 
strategy).  

Symmetry-driven strategies. The second class of strategies is based on the use 
of symmetric transformations mapping relations to their inverses. People using 
this strategy were trying to build the symmetric solution from the previous one. 
Symmetries have also been shown to play a role in mental model construction 
itself (Rauh & Schlieder, 1997) and in the representation of spatial 
configurations in memory in recall and recognition experiments (Knauff, 1999). 
The drawback of symmetry-driven strategies is a higher load on working 
memory, because one has to store whether one already has constructed the 
symmetric solution and, in case of having given both symmetric solutions, how 
to proceed to the next solution. Interestingly, this strategy incorporates an 
element of local transformation as well: Most people perform a step to proceed 
to the next symmetric pair. Since this strategy was applied only by a few 
participants, with moderate success, we will refrain from going into detail here 
(see Rauh, Hagen, Schlieder, Strube, & Knauff, 2000). 

In summary, the presented results corroborate the assumption that searching 
for alternatives is based on a model revision process proceeding from a starting 
model to alternatives by local transformations. We demonstrated this for one-
dimensional spatial reasoning, where local transformations appear as 
movements of a point along a step-sequence. We were also able to show that 
local transformations have a logic of their own: They can systematically 
suppress certain inferences, but, on the other hand, invite fallacious ones. Thus, 
errors of omission and errors of commission were predicted precisely to occur 
within certain inference tasks at certain positions in the model revision 
sequence. Especially the findings concerning the errors of commission by local 
transformation establish another kind of illusions of possibility that have been 
found in sentential reasoning (Goldvarg & Johnson-Laird, 2000) and in 
quantified reasoning (Yang & Johnson-Laird, 2000a, 2000b). 
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Experiment 4: Availability of Alternative Models 

Experiment 3 shows that people generate a starting model of the premises and 
then generate alternatives by locally transforming it. To provide additional 
empirical support for this idea, there should also be effects in a verification task 
with indeterminate three-term series problems: There should be (i) increasing 
verification latencies for alternatives that have a higher rank in the generation 
order, and (ii) the number of errors should also increase with alternatives with 
higher generation rank. The following experiment tests these hypotheses.  

Method 
Participants. Fifty-two students from the University of Freiburg, 26 female 

and 26 male with an age range from 20 to 38 years, were paid for participation 
or fulfilled course requirements. They had no formal training in logic, and they 
had not previously participated in an experiment on reasoning. 

Materials. As already noted it is reasonable to only investigate the 3-model 
tasks and the 5-model tasks, respectively. With these tasks, one can expect a 
considerable number of observations along the generation sequence (no bottom 
effect), that are not affected by generation strategies as in the case of tasks with 
9 or 13 models. Out of these 66 3-model and 5-model tasks, we selected those 
three-term series problems where the generated sequences in Experiment 3 were 
most concordant: These were the three-term series problems “di – f” and “mi – 
s” (3 model cases), and “oi – <” and “> – d” (5 model cases). We also added 

Figure 7. Model revision with the constant direction strategy for the 13-
model task (> - <). Instead of changing the moving endpoint of interval Z in 
(5) to the start point and thus changing direction from (8) to (7), participants 
prefer to make a non-local transformation from (5) to (6), in order to keep 
the direction of moving points constant. Another non-local transformation 
has to be made between (8) and (9). 
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one 1-model task (“fi – si”), the two 9-model tasks (“oi – o,” “di – d”), and the 
two 13-model tasks (“> – <,” “d – di”), in order to get a balanced number of 
valid and invalid verifications and to avoid immediate repetitions of premises of 
the same task. Every three-term series task was combined with all 13 interval 
relations for verification, totaling 4 x 13 = 52 inference tasks. 

Procedure.  Again, the definition phase and the learning phase were applied 
as in all other experiments. During the inference phase, participants had to solve 
124 (7 practice trials and 65 filler problems, 52 relevant problems) spatial three–
term series verification problems. Premises were presented in the following way 
on the first screen as in Experiment 2: 

The red interval overlaps the green interval from the right.  
The green interval lies to the left of the blue interval.  

On the next screen, an interval relation was presented that the participant had to 
verify by pressing the corresponding key.  

Can the following relationship hold between the red and blue interval?  
The red interval lies to the left of the blue interval. YES/NO? 

Dependent measures were response times and error rates. 

Results and Discussion 
All participants accomplished the learning phase successfully. In Table 10, the 
percentages of misses for the 3-model tasks and the 5-model tasks, respectively, 
are displayed together with the verification latencies depending on the 
generation rank of the corresponding model. 

The percentage of misses increases with generation rank for the 3-model tasks 
and for the 5-model tasks. For the verification latencies, there seems to be a 
monotonically increasing relationship to the generation rank that is more 
pronounced for the 3-model tasks. The obtained main effects for generation rank 
reached statistical significance, F(2, 50) = 11.77, p < .0005 for 3-model tasks, 
F(4, 48) = 2.62, p < .05 for 5-model tasks. There was neither an interaction with 
the two tasks, F(2, 50) < 1 and F(4, 48) < 1, respectively, nor a main effect of 
the tasks, F(1, 51) < 1 for both. For both analyses of variance, there is a reliable 
linear trend, t(102) = 4.10, p < .00015 and t(204) = 2.17, p < .04, respectively, 
despite the decrease of verification latencies in 5-model tasks for alternatives 
with generation rank 2 and 5 in comparison to its direct predecessors. 

The results of Experiment 4 corroborated our predictions that there is a model 
revision process that takes a starting model that has to be modified in order to 
come to alternatives that allow for certain inferences. That means that inferences 
take longer if they are based on alternatives with final positions in the revision 
sequence. Since the model revision is also a fragile process, the number of 
fallacious inferences increases if relevant alternatives are out of reach. 
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General Discussion 

Our research is based on the assumption that spatial mental models underlie 
relational reasoning. These models do not convey visual features such as color, 
shape, etc., because such visual characteristics can impede the process of 
reasoning (Knauff & Johnson-Laird, 2002; Knauff, Fangmeier, Ruff, & 
Johnson-Laird, 2003; Knauff, Strube, Jola, Rauh, & Schlieder, 2004). Thus, 
reasoning—at least with the present materials—is a purely spatial process. What 
do our results tell us about the different phases of this process?  In the following 
we discuss our findings within the framework of the mental model theory of 
reasoning. We start with our findings concerning the PMMs. Then, we relate our 
findings to the concept of model variation.  

Experiment 1 found evidence for a general model construction process that 
shows preferences for certain configurations to indeterminate three-term series 
problems. These preferences entail some characteristics that can be related to 
two general properties of human working memory: First, the model construction 
process avoids building mental models with point incidences when possible, and 
builds them only when necessary. Thus, it is sensitive for the limited resolution 
of visuo-spatial working memory (e.g., Logie, 1995) and, thus, avoids 
unjustified inferences of point incidences. Second, the model construction 
process exploits the benefits of chunking: It tries to build mental models that are 
linearized such that a linear order can be constructed with higher-order entities 
(intervals instead of boundary points), or it tries to equalize intervals in order to 
reduce the number of spatial entities that have to be kept in mind. The findings 
of Experiment 2 suggest that inferences conforming to PMMs can be verified 
faster and more often correctly than other solutions. This leads to the conclusion 

Table 10 
Percentages of misses and verification latencies for 3-model tasks and 5-model 
tasks 
 Misses [in %] Latencies  

Mean ± SD [in s] 
3-model tasks   
  Starting Model 10.6 6.29 ± 5.45 
  Alternative 2 19.2 8.43 ± 5.74 
  Alternative 3 21.2 8.84 ± 9.44 
   
5-model tasks   
  Starting Model 12.5 6.50 ± 4.72 
  Alternative 2 15.4 6.39 ± 3.77 
  Alternative 3 18.3 7.81 ± 6.44 
  Alternative 4 22.1 7.93 ± 6.17 
  Alternative 5 23.1 7.36 ± 5.34 
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that in spatial relational inference, solutions to indeterminate three-term series 
problems are processed in a serial manner.  

In Part II, two further experiments were conducted to clarify the third phase 
of inference from mental model theory: Are alternatives constructed by an 
iterative construction process, or rather by model revision? The results of 
Experiment 3 support the assumption of a general revision process that takes the 
PMM as input and locally transforms it to come to the next alternative. An 
interesting fact arises from this process. Since the revision process operates on 
an integrated representation of the state of affairs the premises describe, it has a 
logic of its own. Two systematic inferential biases can be explained by this 
assumption: Errors of omission occur if local transformations are more 
demanding (change of direction, change of moving points). This is in 
accordance with the well-known effect from the mental models literature that 
reasoners make fallacious conclusions because they fail to consider all possible 
models. However, we can predict which models are more prone to be ignored: 
These are those mental models that rest beyond more demanding local 
transformations.  

The second type of inferential bias is even more interesting since according to 
mental model theory it should not occur, namely that reasoners build mental 
models that are no longer models of the premises. These errors of commission 
are provoked if local transformations supply an alternative that accidentally 
violates one or more premise. Additional information has to be provided if such 
non-solutions have to be barred from coming to mind. Mental model theory 
assumes a kind of mental footnote that could do this job and inform the model 
revision process if premise information gets violated. Unfortunately, mental 
footnotes may be quickly forgotten, as evidence from other studies of reasoning 
shows (Johnson-Laird & Savary, 1995). Thus, these errors of commission may 
occur more often than presumed. The notion of a model revision process could 
further be corroborated in Experiment 4: The verification of inferences is 
monotonically related to the position of a corresponding model in the revision 
sequence. This relationship was found with respect to accuracy data in a perfect 
manner, and to a lesser extent with verification latencies.  

The findings of all four experiments went into a process model that constructs 
PMMs and revises them in a manner similar to that used by our participants 
(Schlieder et al., 2002). Thus, it gives a detailed account for spatial reasoning 
and offers new theoretical concepts like model revision and local transformation 
that might be fruitful in other areas of reasoning as well.  
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