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Abstract

Deductive reasoning is an essential part of complex cognition. It occurs whenever human beings (or machines) draw conclusions that
go beyond what is explicitly provided. Reasoning about spatial relations is an excellent testbed for the assessment of competing reasoning
theories. In the present paper we show that such competing theories are often less diverse than one might think. We introduce an
approach for how relational reasoning can be conceived as verbal reasoning. We describe a theory of how humans construct a one-
dimensional mental representation given spatial relations. In this construction process objects are inserted in a dynamic structure called
a “queue” which provides an implicit direction. The spatial interpretation of this direction can theoretically be chosen freely. This implies
that choices in the process of constructing a mental representation influence the result of deductive spatial reasoning. To derive the pre-
cise rules for the construction process we employ the assumption that humans try to minimize their cognitive effort, and two cost mea-
sures are compared to judge the efficiency of the construction process. From this we deduce how the queue should be constructed. We
discuss empirical evidence for this approach and provide algorithms for a computational implementation of the construction and reason-
ing process.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Imagine you are reading a newspaper. In an article
about the financial crisis you read that the stock price of
bank A is higher than the stock price of bank B. Later in
the article you learn that the stock price of B is higher than
that of bank C. For most people, it is quite easy to mentally
rank the three banks into one single order and to read off
from this order that the stock price of bank A is higher
than that of bank C. The task is rather easy, but, imagine
that you receive the information in a different order e.g., B
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higher than C, A higher than B, or with other relational
expressions, e.g., A higher than B, C lower than B. Or
imagine that you have information not just about three
banks but many others A, B, C, D, E, etc.? And now imag-
ine that this is not a study in the psychological lab, but you
are an actual stock broker and you can really lose a lot of
money in just a few milliseconds.

Our example demonstrates that the cognitive process of
inferring new information from information that is explic-
itly provided is a vital and indispensable part of problem-
solving and decision-making. Understanding how humans
draw inferences is an important field in the area of complex
cognition research (Sternberg & Ben-Zeev, 2001) and stud-
ies in this field can even help to understand actual problems
of our daily life (for a reasoning study on the cognitive
aspects of the financial crisis see Knauff, Budeck, Wolf,
and Hamburger, 2010). Another point is that relational
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expressions seem to be one of the most essential mental
entities (Goodwin & Johnson-Laird, 2005; Halford,
Wilson, & Phillips, 1998; Hummel & Holyoak, 2005). In
a recent article entitled “Relational knowledge: the founda-
tion of higher cognition” Halford, Wilson, and Phillips
(2010) reported accumulating evidence on the nature, func-
tion and acquisition of relations and their crucial role in
higher cognitive processes. In their review the authors show
that relations play a vital role in reasoning, categorization,
planning, and language. Relations are omnipresent in our
daily life: in the stock prices example, for instance, differ-
ences between the banks are represented by spatial rela-
tions such as higher and lower. Other examples are:
Person A is smarter than Person B, X loves Y, City A has
more citizens than City B, marriage is before divorce, global
warming is more dangerous than most people think; com-
puter scientists are as smart as psychologists, the earth-
quake came earlier than the Tsunami; Barack Obama is
more popular than George W. Bush was, Wolfgang Ama-
deus Mozart was the son of the bookbinder Johann Georg
Mozart. From a formal point of view, a relation can have
many arguments, but in our daily life, they seldom take
more than three arguments (“The professor gave the book
to the student”), and most often even just two entities
(Goodwin & Johnson-Laird, 2005). The important point,
however, is that relations are around almost everywhere
and that it is difficult to see how we could solve complex
daily-life problem, without the use of relations and the
comparison of different alternatives. Such relational infer-
ences seem to be quite easy, but, firstly, they often are
not, and, secondly, even when they are easy to perform that
does not mean that the underlying cognitive processes are
easy to understand.

In the following paper we explore human reasoning with
binary relations and how the underlying cognitive processes
can be algorithmically reconstructed. All of our relations
have in common that they are linear ordering relations,
which means in particular that they are transitive. This fact
allows us to create the underlying linear order between the
objects featured in relational expressions. We demonstrate
our approach by means of spatial relations between fruits
(imagine them lying on a table). This is done just for the sake
of easy illustration, but it should be clear, that the postu-
lated mechanisms are much more universal. They are not
limited to specific entities or to a specific subset of linear
(transitive) relations. The bank stock prices, for instance,
can be easily modeled in the framework, too!

So, consider the following two sentences, also called
premises.

Example 1:

1. The apple is to the left of the mango.
2. The mango is to the left of the pear.

These premises allow us to create a linear order of the
objects named in the premises, apple–mango–pear. This
order enables us to draw conclusions about information
not directly given in the premises: we can infer that the
apple is to the left of the pear. The ability to infer informa-
tion about relations between objects not explicitly
expressed by the premises is the subject of theories about
relational reasoning (cf. Goodwin & Johnson-Laird,
2005; Johnson-Laird & Byrne, 1991, chap. 5). The bases
of such inferences are mental representations that reflect
information conveyed verbally by the premises. There are
several theories on how this is accomplished (cf. Goodwin
& Johnson-Laird, 2005; Johnson-Laird & Byrne, 1991,
chap. 5; Knauff, 2009a,b). They differ in the postulated
underlying mental representations and the computational
processes that work on these representations. In one the-
ory, it is believed that people think deductively by applying
mental rules which are basically similar to rules in com-
puter programs. In the other theory, deductive reasoning
is conceived as a process in which the reasoner constructs,
inspects, and manipulates mental models. The rule-based
theory is usually described as a syntactic theory of reason-
ing, as it is based on the form of the argument only,
whereas the mental models theory is seen as a semantic the-
ory, because it is based on the meaning (the interpretation)
of the premises. The rule-based theories are primarily rep-
resented by the work of Rips (1994) and Braine and
O’Brien (1998). Relational versions of the account have
been developed, for instance, by Hagert (1984) and van
der Henst (2002). The main claim of this account is that
reasoners rely on formal rules of inference akin to those
of formal logic, and that inference is a process of proof
in which the rules are applied to mental sentences. The for-
mal rules govern sentential connectives such as “if” and
quantifiers such as “any”, and they can account for rela-
tional inferences when they are supplemented with axioms
governing transitivity, such as: for any x, y, and z, if x is
taller than y and y is taller than z, then x is taller than z.
The rules are represented in long-term memory and the
sequence of applied rules results in a mental proof or der-
ivation that is seen as analogous to the proofs of formal
logic (Rips, 1994).

The theory of mental models has been developed by
Johnson-Laird and colleagues (Johnson-Laird, 1983,
2001, 2006; Johnson-Laird & Byrne, 1991). The latest ver-
sion of the theory of relational reasoning based on mental
models has been explicated in Goodwin and Johnson-Laird
(2005). According to the mental model theory, human rea-
soning relies on the construction of integrated mental rep-
resentations of the information that is given in the
reasoning problem’s premises. These integrated representa-
tions are models in the strict logical sense. It is a mental
representation that captures what is common to all the dif-
ferent ways in which the premises can be interpreted. It is a
“small scale” representation of how “reality” could be –
according to what is stated in the premises of a reasoning
problem. Based on the MMT, Knauff, Rauh, Schlieder,
and Strube (1998) propose three stages involved in the rela-
tional reasoning process: a construction phase, during
which reasoners construct a mental model, reflecting the
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information of the premises, an inspection phase, during
which the model is inspected for implicit information of
the premises, and a variation phase, during which alterna-
tive models are constructed and investigated concerning
their compatibility with the information given by the pre-
mises, if necessary, resulting into falsification of the preli-
minary mental model, constructed during the first phase.

The starting point of our paper is that the long-lasting
dispute between rule-based and model-based theories is
quite unproductive, because no single account can explain
all of the experimental findings in reasoning research (e.g.,
Goel, 2007; Knauff, 2009a, 2009b; Oberauer, 2006; Sten-
ning & van Lambalgen, 2008). Another reason for our
research is that the seemingly helpful distinction between
models as semantic and rules as syntactic approaches also
cannot be upheld from a formal point of view, because
Stenning and collaborators have shown the abstract equiv-
alence of all the main psychological competence theories
of human reasoning (Stenning, 1998; Stenning &
Oberlander, 1995). Their apparently contrasting represen-
tations are computationally equivalent for the kind of
data presented in the literature (Stenning & van Lambal-
gen, 2008). In a similar vein we interpret the work by Polk
and Newell (1995), who point out that the model-based
deduction process, does not necessarily require deduc-
tion-specific, non-linguistic mechanisms to operate on
internal representations. Especially in reasoners that are
not specifically trained on deductive reasoning more gen-
eral cognitive mechanisms might guide the reasoning pro-
cess. They introduced an approach, called verbal reasoning
that assumes the cognitive processes in deductive reason-
ing to be based upon the same processes as language com-
prehension and generation. Verbal reasoning describes
reasoning as transformation of verbal information pro-
vided by the premises of an inference problem. Linguistic
skills operate in order to encode and re-encode a reason-
ing problem until the conclusion becomes obvious or until
the reasoner gives up. Polk and Newell (1995) hypothesize
that when task-relevant information is provided verbally,
the crucial role in reasoning is played by the verbal pro-
cesses of encoding and re-encoding accordingly and that
inferences follow immediately from the encoded informa-
tion. The computational approach presented by Polk
and Newell accounts for many experimental findings in
a number of deductive reasoning tasks, among them
reasoning with relations.

In the following, we sketch how relational reasoning can
be conceived in Polk and Newell’s framework of verbal
reasoning. In particular, we propose new theoretical
assumptions for the special case of reasoning with spatial
relations. The key assumption is that the process of con-
structing a mental representation – a mental model – from
the premises influences deductive spatial reasoning. This
implies that the process of encoding information is critical
for the result of the reasoning process. We discuss empirical
evidence as well as a computational implementation of the
encoding and reasoning process.
2. A cognitive model

We are proposing a theory on how humans create a
mental model from a set of (spatial) relations. The theory
consists of two parts: the general structure of models and
the most efficient process of constructing these models.
The first part lists basic assumptions of what properties
the mental model is supposed to have, thereby defining
the general structure of the model. The second part is based
on the idea of cognitive efficiency. The idea is that humans
try to minimize their cognitive effort and thus a computa-
tional cost measure can help to estimate the efficiency of
an inference. From this approach we derive how a mental
model should be constructed within the framework laid
out in the first part. This mental model can then be used
to reason about (spatial) relations and its properties imply
consequences for the reasoning process.

2.1. Basic structural assumptions for the cognitive model

Since we consider arbitrary transitive relations as the
basis for the model we assume that models consist of a
“queue” of objects and an interpretation what this queue
represents. The queue describes in which order the objects
are aligned but what this order represents depends on the
relation that is considered. It can range from stock prices
arranged from highest to lowest, over the population of cit-
ies from smallest to largest, to alignments of objects in
space from left to right. So while the order of a queue is
implicit the interpretation of the order is not. The queue
is constructed by forming links between objects. The links
signify which objects follow each other in that ordered
arrangement. These links between the objects are one direc-
tional which means that when inspecting the queue we can
move from one object to the next object in the queue but
not to the preceding object. To access the queue one needs
to access the first element of the queue. Therefore the
beginning of the queue is marked by a start pointer, mark-
ing the starting point.

The queue can be accessed from this starting point
which is directed at the first object. From there all other
objects in the mental model can be reached by following
the links between objects.

This amounts to the following assumptions about the
queue

1qu There exists a starting point or first object.
2qu Each object is linked to the next object in the linear

order. Only the last object is not linked to other
objects.

3qu While this structure has an implicit direction, the
interpretation of this direction depends on the
context.

The starting point can also be considered a link. This is
due to the fact that one has to know how the queue starts
in order to access it. Therefore knowing which object is the
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first constitutes a link, connecting the start of the queue to
that object.

This structure is not limited to portraying spatial rela-
tions but a model constructed this way can be used to
describe any linear order.
2.2. Construction of a queue from spatial information

The question now is how a mental model is constructed
from the premises of a reasoning problem. How are objects
featured in the premises inserted in the queue? In this pro-
cess the first premise that is considered has a special func-
tion and dominating effect on the construction of the rest
of the arrangement. We consider the first premise indepen-
dently of the following premises and postulate the follow-
ing two rules for the construction process.

1fp The first object inserted in the queue is the starting
point of the queue.

2fp The second object is linked to the first object. The
relation between the first and the second object
thereby creates the interpretation of the link and
the implicit direction of all the following objects in
the queue.

If we know, for example, that the object which has been
inserted secondly is supposed to be to the right of the first
(starting) object, then the link is interpreted as “to the
right”.

When we look at our example again from the introduc-
tion this results in two options for the first premise: “The
apple is to the left of the mango.”

We can choose the apple as the starting point (marked
by the asterisk) and insert the mango thereafter

apple� ! mango ð1Þ
The implicit direction of the queue is interpreted as mov-

ing from the leftmost object to the right. Theoretically we
could also use the mango as a starting point (marked by
the asterisk) inserting the apple thereafter. The correspond-
ing model could be depicted as follows:

apple mango� ð2Þ
In this case the implicit direction of the queue is inter-

preted as moving from the rightmost object to the left.
So even though the premise describes only one arrange-
ment of fruits there are two options for representing this
arrangement in our queue.

However, with a sentence like: “The apple is to the left of
the mango.” we can assume that only model (1) will be used
with the choice putatively influenced by cultural and/or bio-
logical aspects. There is vast evidence for a left to right bias
on spatial routines (Chatterjee, Southwood, & Basilico,
1999; Dobel, Diesendruck, & Bölte, 2007; Maass & Russo,
2003; Tversky, Kugelmass, & Winter, 1991). Cross-cultural
studies suggest that this bias arises from the scanning habit
induced by reading and writing direction predominantly
used within a certain culture (e.g., Chan & Bergen, 2005;
Dobel et al., 2007; Spalek & Hammad, 2005) and that this
cultural bias influences spatial representations of objects.
Another view is that the left to right bias arises from aspects
fundamentally implemented in the functional architecture
of our brains (e.g., Beaumont, 1985; Chatterjee, 2001;
Chatterjee et al., 1999; Levy, 1976; for some culture-indepen-
dent preferences in spatial reasoning, see for instance, Knauff
& Ragni, in press).

The results of an early study by De Soto, London, and
Handel (1965) indicate that the left end of a linear order is
the preferred starting point (in our example the apple).
Given a statement about a relation between two people,
participants were asked to write down the names in two
of four boxes and the results reflect a preference for work-
ing from left to right (De Soto et al., 1965).

In a recent experiment conducted in our lab, we asked par-
ticipants to arrange colored wooden blocks (red, green, blue,
yellow) according to a description given by two premises
with colors (red, green, blue, yellow) mentioned in the pre-
mises representing respective blocks. We found that subjects
tended to start with the block first named in the (first) pre-
mise. So for both sentences “Red is to the left of blue” and
“Red is to the right of blue” the red block was inserted first
and then the blue block was placed accordingly. The experi-
ment will be reported in detail elsewhere (Bucher,
Krumnack, Nejasmic, & Knauff, in preparation).

For a sentence like: “The apple is to the left of the mango.”
the order of the objects in the sentence and their left-to-right
order in the described spatial arrangement coincide. There-
fore, starting with the first object in the sentence, reasoners
would presumably build the model from the left to the right
meaning model (1) would be constructed.

However, with a sentence such as: “The mango is to the
right of the apple.” the situation is less clear. Here the
object which is named first is supposed to be on the right
side of the arrangement while the second object is on the
left. Reasoners could either insert the objects in the order
in which they appear in the sentence, that is from the right
as in model (2) or they could arrange the objects from left
to right as in model (1). In both cases they follow a left to
right preference.

Once the interpretation of the implicit direction of the
queue is fixed by inserting the second object the rest of
the objects are inserted according to this interpretation.
This amounts to the following options for inserting objects
in an existing queue from the second premise:

1ins One object (the reference object) of the premise has
to be found in the queue.

2ins(a) If the new object is to be placed behind this object
(with regard to the implicit direction of the queue)
it can be either inserted into the queue directly
behind the object or at any point further to the
end of the queue.

(b) If the new object is to be placed in front of the
object (with regard to the implicit direction of
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the queue) it can be either inserted into the queue
directly in front of the object or at any point fur-
ther to the beginning of the queue.

The question is which of the options outlined in 2ins is
used when inserting an object into the queue. Where
exactly is the object inserted? To determine this we use
the idea of cognitive efficiency which suggests, that humans
try to minimize their mental effort. Given e.g., working
memory capacity limitations, a reasonable goal would be
to minimize usage of available resources in order to maxi-
mize performance (e.g., Süß, Oberauer, Wittmann,
Wilhelm, & Schulze, 2002).
3. Insertion into the model

There are two kinds of operations to be performed when
inserting an object into an existing queue (after the refer-
ence object is found):

1. Movement through the queue.
2. Creation of new links.

The cost of the movement through the queue can be cal-
culated as the number of objects that were passed. Also,
accessing the starting point from any other object than
the first object in the queue counts as movement. For the
creation of links we can count the number of new links that
need to be created when an object is inserted into the
queue.

Let us consider the computational cost that results from
inserting a new object into the queue between two objects
that are linked. Say, for example, we want to insert pear
between apple and mango in the following queue:

. . .! apple! mango! . . .

To insert a new object between two existing objects in
the queue the first object, which was linked to the second
object before, now has to be linked to the new object.
The new object has to be linked to the second object. In
our example apple needs to be linked to pear and pear to
mango resulting in the following queue:

. . .! apple! pear! mango! . . .

This process of inserting an object between two objects
in a queue requires forming two new links. If the object
is inserted at the beginning of the queue the starting point
needs to be redefined which we will consider as creating a
new link. So the process of inserting an object at the begin-
ning of an existing queue also requires forming two new
links. Inserting an object at the very end of the queue, fol-
lowing the last object in the queue, only requires creating
one new link, no existing links have to be changed. But
we have to move through the entire queue to get to the last
object.

We assume that the queue is constructed in the most effi-
cient way. So the question to answer is: what is efficient?
We will look at two different cost measures that allow us
to judge how to create the queue efficiently, that is, where
to insert an object into an existing queue and compare
the predictions that can be derived from the two cost func-
tions. Firstly we will consider what happens if both kinds
of operations are treated the same way, that is, both are
assigned the same cost. This amounts to a complexity mea-
sure that is used as a standard in computational complexity
estimation. Secondly we introduce a cost measure where we
assign a higher cost to creating a link than to moving
through the queue.

3.1. Computational complexity estimation

In Computer Science the efficiency of algorithms is usu-
ally assessed by adding the costs of operations necessary to
execute the algorithm. In this context, one often uses a uni-
form cost measure since the real costs are often not known
nor are they important in an asymptotic analysis. We adopt
here a similar strategy. In this specific case that implies cre-
ating one link and moving one object through the queue
produce the same cost. A similar complexity measure has
been used by Ragni, Knauff, and Nebel (2005).

We do not imply that this is necessarily a cognitively
adequate cost measure but it seems a good default compar-
ison since it does not make any assumptions about different
cognitive costs of operations. By comparing measures that
make such assumptions with this standardized default it
can be seen whether those measures perform better or
worse. This should give an indication of how reasonable
those assumptions are.

Using this standard computer science cost measures we
look at the possibilities from above, 2ins(a) and (b), for
insertion into an existing queue. Which of these options
is the most cost efficient? When inserting a new object
behind an object of the queue as in 2ins(a), and we insert
it directly behind the object, we have the cost of creating
two links (see above) unless we are at the end of the queue
in which case only one new link is required. If we want to
insert the object further down the queue we have to move
to that point within the queue and the cost of moving
through the queue have to be added to the cost of creating
new links. And moving one object down the queue costs as
much as creating a link. So inserting a new object after an
object further down the queue is always at least as expen-
sive as inserting it right behind the reference object even
when inserting it at the end of the queue. If the end of
the queue is more than one object away, the cost of moving
through the queue and creating the link will be even higher
than the cost of just inserting the new object right behind
the reference object. And since there is no way of knowing
how far away the last object is, the cost efficient solution is
to insert the new object right behind the reference object.

When inserting a new object in front of an object as in
2ins(b), the same cost results with respect to the links being
formed for inserting the new object right in front of the ref-
erence object and for inserting it at the beginning of the
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queue. In both cases two new links need to be created, if we
insert the object at the beginning of the queue one of the
new links that need to be created is the starting point.
However, when we insert the object at the very beginning
the starting point of the queue has to be accessed, so we
have a movement which means one extra step.

If the object is inserted at any other point of the queue
the cost is higher since we first have to move to that point
from the beginning of the queue. So using this cost analysis
it would be most efficient to insert the object directly in
front of the reference object.

Based on this analysis we derive cost efficient rules for
inserting nodes into a list:

1CC If the new object has to be placed behind an object
of the list it should be inserted into the list directly

behind the object.
2CC If the new object has to be placed in front of an

object of the list it should be inserted into the list
directly in front of this object.

If we apply these rules to the second premise of example
1 from the introduction (starting with model (1), (2),
respectively, from Section 2) we create one of the following
two models depending on the direction of the queue.1

apple� ! mango! pear ð3Þ
apple mango pear� ð4Þ

While the results look similar, the costs for building
these models differ. The cost for inserting the two objects
from the first premise into a new queue are always the same
and therefore do not need to be considered. But what are
the costs for including the information of the second pre-
mise into the model? In case (3) we use rule 1CC but since
we insert the object at the end of the list, only one more
link needs to be created. In case (4) however, we use rule
2CC which in this case amounts to inserting the object
(pear) at the beginning of the queue. So we need to redefine
the starting point and create a new link. This results in cre-
ating two new links. So the cognitive cost for building the
first model is lower. Note that in both cases no movement
through the queue is necessary.

Let us look at another example that is not quite as
simple:

Example 2:

1 The apple is to the left of the mango.
2 The apple is to the left of the pear.

Here the premises describe an indeterminate order: there
are two possible orders of these three fruits:
1 As discussed in Section 2, we assume that the queue would generally be
constructed from left to right for this specific case. The other direction is
included to allow a comparison of cost and a complete theoretical
evaluation. Both directions will therefore be covered in this section about
cost estimation.
apple–mango–pear and apple–pear–mango:

So the question is, whether one of these orders is pre-
ferred over the other? Knauff, Rauh, and Schlieder
(1995), Rauh et al. (2005), Jahn, Knauff, and Johnson-
Laird (2007) have empirically shown that such preferences
exist in human reasoners.

Since the first premise is identical to the one in example
(1) with the determinate order we receive the same two
options for models when applying the rules for the first pre-
mise. If we apply the rules of insertion to the second pre-
mise we get one of the following models, using rule 1CC

and rule 2CC respectively.

apple� ! pear! mango ð5Þ
apple pear mango� ð6Þ

Again we see no difference between the models even
though the arrangement is indeterminate, so more than
one model could be created. However, model (5) was built
using rule 1CC, model (6) following rule 2CC. Nevertheless,
the insertion of the last object has the same computational
cost in both of these models as in both cases two links have
to be created.
3.2. Alternative cost measure

We now introduce an alternative cost measure for which
the main assumption is that as few new links as possible
should be formed to minimize cognitive work. This implies
that if it can be avoided, an existing link should not be bro-
ken. As a cost measure we therefore use primarily the num-
ber of links that need to be formed. If this does not show
any difference between the options the required movement
through the queue is used as a secondary cost measure.
This reflects that forming a link is supposed to require
more cognitive effort than moving through the queue, no
matter how far we have to move through the queue.

Because of the structure of a model laid out in the
assumptions 1qu and 2qu above, at the end of the construc-
tion process the complete mental model has as many links
as there are objects in the model (including the start pointer
as a link). Since the final number of links in a mental model
is fixed, costs can only be reduced by altering as few links
as possible during the construction process. Therefore
when inserting new objects it is most cost efficient to create
just one new link and to not change any existing links.

Inserting an object at the very end of the queue, follow-
ing the last object in the queue, only requires creating one
new link, no existing links have to be changed. We have to
move through the entire queue to get to the last object but
in this cost measure the cost of moving through the queue
can be disregarded in this estimation.

Using this information we will now estimate the cost cre-
ated by the insertion options described in 2ins(a) and (b). As
stated before cost will be measured primarily as the number
of links that need to be formed. Only if two options require
the same number of links to be formed will we use the
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number of steps moved through the queue as a secondary
cost measure.

Let us first look at option 2ins(a): if the object is inserted
between two objects of the queue two new links need to be
formed. If the object is inserted at the end of the queue,
only one new link needs to be formed. So in case 2ins(a)
it is most cost efficient to insert the object at the very end
of the queue. Now we consider 2ins(b): the new object
can only be inserted between two objects or at the starting
point of the queue. Since we consider the starting point a
link to the beginning of the queue both options require
two new links to be formed. So it is more cost efficient to
not move around the queue but to insert the object directly
in front of the found object. Using this analysis we postu-
late the following rules:

1AC If the new object is to be placed behind an object of
the queue it will be inserted at the end of the queue.

2AC If the new object is to be placed in front of an object
of the queue it will be inserted into the queue
directly in front of this object.

If we apply these alternative rules of insertion to the sec-
ond premise from example 2 we get the following models:

apple� ! mango! pear ð7Þ
apple pear mango� ð8Þ

Here we see a difference between the models constructed
from the indeterminate description depending on the impli-
cit direction of the queue and on the place of insertion.
Because the two queues have opposite interpretations of
the implicit direction different rules are applied to form
the queues. There is also a difference in the cost for building
these models. In (7) we were able to apply rule 1AC, again
creating only one new link. In (8) we needed to apply rule
2AC, redefining the starting point, creating two new links.
So the costs for creating the last model (8) are higher than
the ones for creating model (7).

The models illustrate that rules based on a classic com-
putational cost measure produce partly different results
than our rules based on the alternative cost measure.
Model (7) differs from model (5) above while model (6) is
similar to model (8). So if the queue is constructed from left
to right, we have different predictions on how the model
should be constructed.

For completeness we could also consider assigning
higher cost to movement through the queue than to creat-
ing a new link. However, this would lead to the same pre-
dictions and models as the classical computer science cost
measure, which makes it redundant to discuss this case in
detail.
Fig. 1. Top: A determinate item and with the two possible conclusions C1

and C2. Bottom: An indeterminate item with the two possible conclusions
C1 and C2.
3.3. Empirical evidence

Since the two cost measures lead to different rules which
result in different models to be constructed the question is
which rules predict human behavior better. Or differently
phrased: is it justified to assume that forming a link is more
cost intensive than moving through the queue? If not, the
traditional computational complexity measure should lead
to better predictions than our alternative cost measure.

To answer these questions we report an experiment that
implies that rules derived from our alternative cost measure
predict human behavior better than the rules derived from
the traditional computer science cost measure. In this
experiment we investigated what kind of mental model par-
ticipants construct when they are faced with indeterminate
problems as in example (2) that allowed more than one
model to be constructed. The problems were designed to
differentiate between the two discussed options for con-
struction rules.

We only use the relation “left of” because, as discussed
in Section 2, we can be relatively certain that the subjects
will actually construct the queue from left to right for this
relation.

3.3.1. Material and method

Thirty-five participants (three male; age: M = 22.4;
SD = 3.2) from the University of Giessen had to solve 16
determinate (like in example 1) and sixteen indeterminate
problems (like in example 2). The three-term problems
had two premises each and we used only the relation “left
of”. The problems were presented to the participants in a
random order on a computer screen. Each premise was pre-
sented sequentially (in a self-paced manner). Subsequently,
after participants had read the premises, a conclusion was
presented and the participants were asked if this conclusion
was correct or not by indicating their choice by pressing the
respective response button (“yes” or “no”) with the left or
right hand, accordingly. Locations of “yes” and “no” but-
tons were counterbalanced across participants. For deter-
minate problems the conclusion was either true or false,
thus the correct answers were “yes” for determinate/valid
items and “no” for determinate/invalid items. For indeter-
minate problems we used two different types of conclusions
which could either hold in a model constructed according
to rule 1AC or in a model constructed according to rule
1CC (see Fig. 1 for examples). Please note that indeed both
types of conclusions from indeterminate descriptions were
valid in a logical sense. However, due to constructing the
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model by applying a preferred rule (1AC or 1CC), partici-
pants were expected to accept conclusions that hold in
models constructed by the preferred rule and (mistakenly
from a logical point of view) reject conclusions that hold
in models as would have been constructed by the not pre-
ferred rule. The purpose was to gain insight whether rule
1AC or rule 1CC was preferably applied for constructing
the model. The correct answer was “yes” for both, indeter-
minate/1AC and indeterminate/1CC items. Percentage of
correct answers and corresponding decision times were
recorded. All stimuli were generated and presented using
Superlab 4.0 (Cedrus Corporation, San Pedro, CA, 1999)
with an RB-530 response pad running on a standard per-
sonal computer (2.80 GHz) with a 19‘‘ monitor.

3.3.2. Results and discussion

Separate ANOVAs for the percentage of correct
responses and decision times for correct responses (deter-
minate/valid, determinate/invalid, indeterminate/1AC/valid
and indeterminate/1CC/valid) were calculated. Level of sig-
nificance was 5%.

ANOVA of the percentage of correct responses yielded a
significant main effect [F(2, 32) = 54.79, p < .01]. Percent-
age of correct responses of determinate/valid and determi-
nate/invalid items did not differ (p > .75). The high
percentage of correct responses for the determinate items
(M = 92.19; SD = 11.14) indicate that the participants
understood the task and were able to perform well. Because
of the reasons discussed in Section 2 and because the deter-
minate items are more efficiently constructed from the left
to the right for both cost functions we assume that they
were indeed constructed from left to right. We also assume
that the indeterminate items were constructed from left to
right as well, since the decision has to be made directly after
reading the first premise before knowing whether the item
is determinate or indeterminate. We find a higher percent-
age of correct responses for indeterminate/1AC items com-
pared to indeterminate/1CC items (see Fig. 2). Conclusions
that held in models constructed according to rule 1AC were
significantly more often correctly accepted (M = 60.22%;
SD = 37.40; t(34) = 5.49; p < .01) than conclusions that
Fig. 2. The left two bars show the percentage of correct responses. For the dete
(hit), for the other half it was “no” (correct rejection). The two bars on the righ
in the model built by rule 1AC or rule 1CC, respectively. Error bars indicate st
held in models constructed according to rule 1CC

(M = 27.14; SD = 5.88). This indicates that indeed the
rules derived from our alternative cost functions are more
often applied than the rules derived from the classical com-
puter science cost function.

ANOVA of the decision times of correct responses also
yielded a significant main effect [F(2, 18) = 4.25, p < .05]
(see Fig. 3). Decision times for determinate/valid items
(M = 3.62 s, SD = 1.43) were significantly lower compared
to determinate/invalid items (M = 4.89 s, SD = 2.69;
t(34) = �4.67; p < .01). Decision times for indeterminate/
rule 1AC items (M = 4.16 s, SD = 3.07) were significantly
lower compared to indeterminate/rule 1CC items
(M = 5.06 s, SD = 3.46; t(20) = �2.29; p < .05). This
implies that conclusions of the determinate/valid items
were easier to confirm than the ones of the determinate/
invalid items and the conclusions of the indeterminate/rule
1AC items were easier to accept than the ones of the inde-
terminate/rule 1CC items. The easier items were those where
the confirmation could easily be made by following the
implicit direction of the queue provided that the queue
was indeed constructed from left to right.

3.4. Other evidence

Further evidence for our model comes from the experi-
ments of Jahn et al. (2007). Their participants inserted an
object to an existing array, as opposed to adding it to
one end of the array, more often for objects that would
have been added to the left end of an array than for entities
that would have been added to the right end of an array
(Jahn et al., 2007, Experiment 2, Table 4). The authors
come to the conclusion that: “Given that the participants
constructed arrays from left to right, they evidently found
it easier to add a new entity to the right-hand end of an
array than to the left-hand end of an array [...].”(Jahn
et al., 2007, p. 2081).

For a queue that is constructed from left to right our
model predicts this behavior: rule 1AC is applied to objects
inserted to the right of a reference object and therefore the
objects should be inserted at the end of the queue. In
rminate problems, for half of the problems the correct response was “yes”

t show how often the participants correctly accepted a conclusion that hold
andard errors.



Fig. 3. The two bars on the left show the mean decision times of correct responses. For determinate problems, for half of the problems the correct response
was “yes” (hit), for the other half it was “no” (correct rejection). The two bars on the right show reaction times when the participants correctly accepted a
conclusion that holds in the model built by rule 1AC or rule 1CC, respectively. Error bars indicate standard errors.
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contrast rule 1CC would call for an insertion of an object
directly behind the reference objects. Rule 2AC and rule
2CC are identical: if an object is to be inserted to the left
of a reference object, it should be inserted directly in front
of the reference object. The results of Jahn et al. (2007)
confirm that reasoners construct a queue following the
rules derived from the alternative cost function.

This evidence combined with our findings suggests that
reasoners follow the rules 1AC and 2AC when constructing
a mental model. In particular rule 2AC describes the con-
struction process better than rule 2CC if the queue is con-
structed from left to right, which also implies that if the
description of an arrangement is indeterminate (allowing
more than one model) the direction of the queue influences
which model will be built.

4. Reasoning with the model

Once a model has been constructed it can be used to
make inferences. If we build the model

apple� ! mango! pear

from the premises of the first example with the implicit
direction from left to right we can answer the question
“Is the apple to the left of the pear?” by finding the apple
in the queue and then moving further down the queue till
we find the pear. This search process starts at the beginning
of the queue. Since the implicit direction of the queue rep-
resents the relation in the question, once the pear is found
we can answer the question with yes. That means that the
deduction process shares some of the mechanisms with the
encoding process: moving through the queue and finding
objects.

The deduction process uses the transitivity of the rela-
tion “to the left”. However, this does not imply that the
knowledge of transitivity of the relation “to the left” is
not considered until the question “Is the apple to the left
of the pear?” is posed. One can argue that the knowledge
of transitivity is already used in the encoding process: we
only encode the information in a single model and assume
that we can read out the relation between objects from the
model, because we know the relation is transitive.
The question “Is the apple to the right of the pear?” can
be answered in a similar way: find the apple and then move
down the queue until the pear is found. However, in this
case the implicit direction of the question does not repre-
sent the relation in the question. Therefore the answer to
the question is No.

If the objects cannot be found in the order in which they
appear in the conclusion, for example “Is the pear to the
left of the apple?”, there are two options: either the process
has to be started again with the objects in inverse order and
the inverse relation, so here we would have to test “Is the
apple to the right of the pear?”. The other possibility is that
we remember having found the pear, but no apple behind
it, and so we search the queue again from the beginning
for the apple. In both cases the queue has to be accessed
twice.

This illustrates we can also make predictions from the
structure of the queue for the reasoning process. It should
be easier to infer information that can be obtained follow-
ing the implicit direction of the queue than to infer infor-
mation that requires to go in the opposite direction.
More specifically: if the objects in a statement are named
in the same order in which they appear in the queue, it
should be easier to compare this information to the queue
than if they are named in the opposite order.

4.1. Empirical evidence

There is empirical evidence from an experiment we
recently conducted in our lab. The experiment aims to
investigate spatial belief revision. For that purpose it will
be reported in detail elsewhere (Bucher et al., in prepara-
tion). Here we will report a detailed analysis of the infer-
ence tasks participants had to conduct prior to belief
revision. This analysis was done specifically for the current
context as it is not of particular interest concerning the
investigation of belief revision.

4.1.1. Material and method

Sixteen participants (three male, M = 21.75; SD = 1.61)
were individually presented with 32 items, each following
the same structure: two premises (presented sequentially



Table 1
Combinations of the relations “left of” and “right of”, used in the premises and facts (consistent and inconsistent) of the items.

Relations “left of” and “right of” in the premises and facts of items in experiment 2

1st Premise Left of Left of Right of Right of
2nd Premise Left of Right of Left of Right of
Fact (consistent or inconsistent) Left of/right of Left of/right of Left of/right of Left of/right of

Table 2
Correct judgments [%] and correct judgment times [s] are shown for
consistent and inconsistent facts with the relations “left of” and “right of”,
respectively.

Correct judgments [%] Correct judgment times [s]

Consistent fact
Left 98.22 (SD = 4.88) 5.56 (SD = 3.32)
Right 90.18 (SD = 11.72) 8.01 (SD = 5.90)

Inconsistent fact
Left 89.25 (SD = 10.93) 8.69 (SD = 3.23)
Right 97.66 (SD = 5.04) 6.96 (SD = 4.42)
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in a self-paced manner) containing the relations “left of”
and “right of” described a one-dimensional (linear) order
of three (small, equal-sized, disyllabic-termed) objects,
belonging to either one of two categories (tools or fruits).
See Table 1 for the four possible relation orders in premises
1 and 2. Please note, as the last object always had to be
inserted at the very right position of the alignment the con-
struction of the linear order always followed a left to right
direction. Participants were instructed to choose the correct
order from two alternative orders presented on the left and
right side of the computer monitor, indicating their choice
by pressing a left or right response button with the left or
right hand, accordingly. Presentation locations of correct
and incorrect (mirrored orders of correct) orders were
counterbalanced across the trials. Decision times as well
as the number of correct decisions were recorded. Subse-
quently to the participant’s decision, a conclusive fact
was presented. The fact was either consistent (for half of
the items) or inconsistent (for the other half of the items)
with the information provided by the premises and hence
with the order of objects. The relation of the fact was either
“left of” or “right of” (see Table 1). The Participantś task
was to judge whether the conclusive fact was consistent
or inconsistent with the order of objects by pressing the
respective response button (“yes” for consistent or “no”

for inconsistent) with the left or right hand, accordingly.
Locations of “yes” and “no” buttons were counterbalanced
across participants. Thus, consistency judgments required
to infer information from a linear order of three objects
after construction of the order given a verbal description.
The percentage of correct (consistence and inconsistent)
judgments for conclusive facts with the relation “left of”
and “right of”, respectively, and the corresponding deci-
sion times were recorded. Correct “inconsistent”-judg-
ments were followed by revisions of initially constructed
orders. This latter part of the experiment is not of interest
here. The items were presented in a random order to the
participants. All stimuli were generated and presented
using Superlab 4.0 (Cedrus Corporation, San Pedro, CA,
1999) with an RB-530 response pad running on a standard
personal computer (2.80 GHz) with a 1900 monitor.

4.1.2. Results and discussion

Based on the information provided by the premises the
correct order of objects was chosen in 97.27%
(SD = 3.76) of the cases within 1.67 s (SD = 0.45). Errone-
ous trials were excluded from further analyses. Separate
ANOVAs for correct percentages and judgment times with
the factors consistency (consistent, inconsistent) � fact
(left, right), respectively were conducted. Both ANOVAs
revealed a significant interaction of consistency � fact (cor-
rect percentages: [F(1, 15) = 10.368; p < .01]; judgement
times: [F(1, 15) = 11.526; p < .01]. All main effects were
non-significant (ps > .35). Correct percentages and judg-
ments times for correctly judged consistent and inconsis-
tent conclusive facts with the relation “left of” and “right
of”, respectively, were compared using paired t-tests.
Descriptive statistics can be found in Table 2.

Facts in which the objects were named in the same order
as in the described alignment when moving from left to
right (consistent/left facts and inconsistent/right facts) led
to faster decision times and a higher percentage of correct
responses than facts in which objects were named in the
inverse order (consistent/right facts and inconsistent/left
facts).

Specifically, percentage of correct judgements of consis-
tent/left facts (M = 98.22%; SD = 4.88) were significantly
higher than consistent/right facts (M = 90.18%; SD =
11.72; t(15) = 2.43; p < .05) as well as significantly higher
than inconsistent/left facts (M = 89.25%; SD = 10.93;
t(15) = 3.11; p < .01). Also, inconsistent/right facts resulted
in significantly higher percentages of correct judgments
(M = 97.66%; SD = 5.04) than both consistent/right facts
(M = 90.18%; SD = 11.72; t(15) = �2.16; p < .05) and
inconsistent/left facts (M = 89.25%; SD = 10.93;
t(15) = �2.68; p < .05). Differences in percentages of correct
judgments between consistent/left facts and inconsistent/
right facts were non-significant (p > .75) as well as differ-
ences in percentages of correct judgments between consis-
tent/right facts and inconsistent/left facts (p > .75).

Decision times were significantly lower for consistent/
left facts (M = 5.56 s; SD = 3.32) than for consistent/right
facts (M = 8.01 s; SD = 5.90; t(15) = �3.11; p < .05) and
for inconsistent/left facts (M = 8.69 s; SD = 3.23;
t(15) = �3.71; p < .05). Also the decision times for incon-
sistent/right facts (M = 6.96; SD = 4.42) were marginally
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significant lower than decision times for inconsistent/left
facts (M = 8.69; SD = 3.23; t(15) = 1.98; p = .066). All
other differences were non-significant (all ps > .35).

There was a clear asymmetry concerning facts with the
relation “left of” compared to the relation “right of”. For
the relation “left of” the processing of consistent facts
seems to be easier than for inconsistent facts while for
the relation “right of” the opposite is true. The results
imply that items with facts in which the order of the named
objects corresponded to the left to right order of these
objects in the alignment described by the premises were
indeed easier to solve than items in which the objects were
named in the inverse order.

The results of the experiment suggest that the reactions
in the reasoning task are influenced by the encoding pro-
cess, more specifically by the direction of encoding. This
implies that the process of encoding the information is crit-
ical for the result of the reasoning process, which qualifies
this kind of reasoning as verbal reasoning.

The reasoning process described here can also explain
the distance effect, where it takes less time and is more
accurate to make an inference about objects that are closer
Fig. 4. Top: A pseudo-code definition of a linked list and functions to move t
beginning of the list. The Node data structure consists of two fields. The variabl
an empty list. Since inserting a node at the beginning of a list requires updatin
data type linked list.
together compared to objects that are further apart
(Acuna, Sanes, & Donghue, 2002; Frank, Rudy, Levy, &
O’Reilly, 2005; Moyer & Landauer, 1967; Van Opstal,
Gevers, de Moor, & Verguts, 2008).

Inferences regarding objects that are further apart in the
queue should take longer as more movement through the
queue is required than for objects that are close together.

5. Computational implementation

The model construction process can be easily imple-
mented as a computer model using the data structure
linked list, consisting of nodes containing data and a poin-
ter to the next node in the list as well as a start pointer
pointing to the first node of the list (compare to Fig. 4).
If we compare this data structure to our mental model
the pointers from one node in the list to the next represent
the link between the objects and the data in the nodes rep-
resent the objects. It is therefore easy to model a queue
such as the one we proposed in a computer program. Algo-
rithms in pseudo-code for moving through the list and
inserting new nodes into the list can be seen in Fig. 4.
hrough the list, inserting a node after a node, and inserting a node at the
e first Node is a reference that points to the first node in the list, or is nil for
g first Node, it requires a separate function. Bottom: An illustration of the
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It should be noted that technically it is not possible to
insert a new node in front of a node, since we only have
pointers to the following, but not to the preceding nodes.
If a node is to be inserted in front of a node containing cer-
tain data, the node in front of that node is found and the
new node is inserted behind it. Other than that the rules
1AC and 2AC can be easily implemented for the construc-
tion of a linked list. The interpretation of the direction of
the links would have to be stored in an extra data structure.

5.1. Algorithmic description of the reasoning process

The reasoning process described in Section 5 can also be
transcribed into an algorithm using a linked list as data
structure representing the queue. Let r be a transitive bin-
ary relation and r�1 the inverse relation, for example r is
“left of” and r�1 “right of”. Let M be a model in the form
of a linked list with implicit direction D of type r or r�1 and
X and Y objects featured in that model. Given a sentence of
the form XrY, the reasoning process can be described by
pseudo-code algorithm in Fig. 5 which returns the value
“true” if the sentence is true in the model and the value
“false” if it is not.

The Reasoning algorithm starts with a search at the first
node of the linked list. It uses the first option listed in Sec-
tion 4 to verify conclusions in which the objects are not
named in the same order as they appear in the queue.
The other option could be implemented just as easily. An
algorithm for the encoding process is not explicitly listed
here. However, it can be easily constructed using rules
1fp, 2fp, 1AC, and 2AC, as well as the functions from
Fig. 4. The very compact Reasoning algorithm demon-
strates that the information is just read out of the model
and no specific reasoning processes are employed.

A linked list is a dynamic data structure, which means
that nodes are created and discarded as they are needed.
This also implies that a linked list does not exist before
the first node is inserted. We believe that this property rep-
resents the dynamic character of cognition well.
Fig. 5. A pseudo-code algorithm of the reasoning process using the function M
order. The function Reasoning first tests if the objects are in the list in the order
the list (stored in D) is equal to the relation used in the sentence. If the objec
checked.
5.2. Comparison with other computational models and

algorithmic descriptions

There are a number of computational models and algo-
rithmic descriptions that also address relational or spatial
reasoning. Ragni, Knauff, and Nebel, for instance, intro-
duced a computational model for spatial reasoning by
mental models (SRM) which conceptualizes spatial work-
ing memory as a two-dimensional array. Within this array
models can be build and manipulated using a spatial focus
(Ragni et al., 2005). This theory has later been applied to
the preferred mental models account (Jahn et al., 2007;
Knauff, 1999; Knauff et al., 1995) to model reasoning with
indeterminate descriptions in order to determine which
mental models are preferably constructed by reasoners
(Ragni, Fangmeier, Webber, & Knauff, 2006). While this
account would also predict the results of our first experi-
ment, it cannot account for the left–right asymmetry that
we found in the second experiment.

The group around Johnson-Laird provided a Lisp pro-
gram called “Spatial Reasoning” which makes spatial
deductions from given premises. The premises may consist
of binary statements using objects and the relations right
of, left of, in front of, behind, above, and below. The pro-
gram tries to find a model in which all premises are true by
recursively revising possible models. If it succeeds it also
tries to find falsifying models to check the conclusion.
Models are represented by arrays as well (Spatial Reason-
ing, unknown year). While the program shows that spatial
reasoning can be done using models, it makes no prediction
which model a human reasoner would preferably construct.

Van der Henst explicitly describes how (spatial) reason-
ing problems can be solved through an inference rule
approach. He suggests rules to solve two-dimensional
spatial reasoning problems for indeterminate as well as
determinate problems similar to the ones presented here,
using the relations left of, right of, and in front of (Van
der Henst, 2002). The main aim of this work was to show
that rule-based reasoning can also account for effects
ove from Fig. 4. The function Search tests if objects are in the list in a given
given in the sentence. If that is the case it checks if the implicit direction of

ts are not in the list in the order given in the sentence the inverse order is
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indeterminacy. However, the rules whose application gives
an indeterminate conclusion do not reflect any preference
of reasoners for a solution. So, similar to the program
“Spatial Reasoning”, no predictions for preferred solutions
follow from this approach.

Schlieder proposes an outline for reasoning about the
relative position of intervals on a line. For some of these
spatial–relational inferences there are several logically
equivalent solutions, some of which are preferred by
human reasoners (Knauff et al., 1995). Assuming that these
problems are solved using mental models that represent the
start- and endpoints of the intervals, Schlieder provides an
algorithmic description of the model construction process
which is able to reproduce most of the preferences by
human reasoners (Schlieder, 1999). Schlieder’s model is
concerned with the composition of two relations (transitive
and intransitive) between three intervals (spatial or tempo-
ral) and cannot easily be generalized to other kinds of rea-
soning. Particularly, as the main point of interest is to
explain how two relations of a different nature are con-
nected it cannot be compared to the approach outlined
here since we focus on transitive relations that can be easily
combined. Also, while Schlieder’s model makes predictions
on preferred answers, it does not cover whether an answer
is harder or easier to obtain.

Bara and Bucciarelli provide a computational theory
of deductive reasoning based on mental models with an
implementation in the program UNICORE (UNIfied
COmputational REasoner) (Bara & Bucciarelli, 2000;
Bara, Bucciarelli, & Lombardo, 2001). Their aim is to
unify the main types of deductive reasoning into a single
set of basic procedures. They distinguish five phases of
deduction: Construction, Integration, Conclusion, Falsifi-
cation and Response. UNICORE is able to reproduce
correct and erroneous performances of human reasoners
of different age groups in the three areas syllogistic, prop-
ositional and relational reasoning. For relational reason-
ing Bara, Bucciarelli and Lombardo examine determinate
three term series problems. They assume that models are
ordered left to right according to the sequential order in
which the state of affairs they represent are described in
the sentence. In accordance with the mental model theory
they claim that two models are created, one from each
premise, which are then combined into a single model
to make an inference (Bara et al., 2001). While this is
not stated explicitly, their approach implies that infer-
ences whose relations correspond to the left to right
ordering in their models should be drawn faster than
other inferences. However, since they assume that all models
are constructed in the order in which objects are named in
sentences, independent of the relation used, they would
use models constructed from left to right for one half the
items and models constructed from right to left for the other
half of the items of the experiment reported in Section 4.
This would lead to the prediction that on average there
should be no difference in reasoning time for conclusions
using relation left and conclusions using relation right,
which does not match the results we found. For indetermi-
nate problems the theory does not make predictions for
preferences of reasoners.

A completely different approach uses the LISA model of
analogical reasoning by Hummel and Holyak. This con-
nectionist model employs a neural network to model rea-
soning. Objects of propositions as well as their relations
are represented as patterns of activation distributed over
semantic units, which are integrated into representations
of propositional structures using synchrony of firing.
Through its structure LISA can account for the limits of
working memory (Hummel & Holyoak, 2003, 2005). How-
ever, LISA focuses on analogical reasoning that is finding
correspondences between elements that play parallel roles
in two similar situations. While this is an important part
of relational thinking, we do not believe that the kind of
problems discussed in this work are solved by analogical
reasoning. Therefore, there is no straight-forward way
how our kind of indeterminate problems can be solved in
LISA.

6. Discussion

We introduced an approach about how relational rea-
soning can be modeled as verbal reasoning. The main idea
is that the deduction process does not necessarily require
deduction-specific mechanisms to operate on internal rep-
resentations. Instead we assume that a simple order of
objects (represented by words) and some genuine verbal
cognitive mechanisms might guide the reasoning process.
Following Polk and Newell (1995) we assumed that the
cognitive processes in deductive reasoning can be based
upon the same processes as language comprehension and
generation. Our model satisfies the criteria of verbal rea-
soning as outlined by Polk and Newell (1995). Verbal in
that sense refers to transforming between verbal and
semantic representations, that is constructing the queue
(encoding) and “reading out” information that is not
explicitly provided by verbal descriptions. The most impor-
tant point is that “reading out” information from the
queue does not require mechanisms that are especially ded-
icated to deduction. Rather, reasoning is accomplished by
applying more well-trained linguistic processes that are
more likely to be applied by individuals not trained in
logic. The approach does not obviate specific mechanisms
but provides a more parsimonious explanation how infer-
ences can be drawn from given information without assum-
ing additional mechanisms.

Mechanisms operating on mental models and not rea-
soning-specific mechanisms are applied during “reading
out” information from the queue. The claim is that individ-
uals – especially when untrained in logic – are more likely
to apply well-trained linguistic-based, rather than deduc-
tion-specific mechanisms to derive implicit information
from given information. The algorithms outlined in Sec-
tion 5 demonstrate how these reasoning processes can be
realized by very simple means.
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Our empirical work has shown that the approach and
the related cost measure leads to good predictions about
what kind of model will be created. It predicts behavior
better than the standardized computational complexity
approach. In addition predictions from the suggested rea-
soning process were empirically supported.

While the present experiments only used problems with
two premises, we believe that the postulated rules also
apply for more than two premises and three objects, as long
as the premises all contain transitive relations describing
the same dimension. It is also possible to mix relations of
the same dimension such as left and right, as done in our
second experiment and in many other experiments (e.g.,
Jahn et al., 2007; Ragni et al., 2006). Also the mechanisms
described by us are not limited to spatial relation, but are
general enough so that they can be employed for all transi-
tive relations. However, although in principle the suggested
mechanisms might operate with non-spatial transitive rela-
tions in the same way as with spatial relations, the influence
of aspects that result from content-inherent factors (e.g.,
complexity modulating aspects such as lexical marking of
adjectives or congruence of relations in the premises and
conclusions; Clark, 1969) on the processes have to be inves-
tigated and specified.

We provide algorithms for the construction and reason-
ing process, making it easy to implement the model. The
proposed computational implementation is more frugal
concerning data-structure and algorithms compared to
alternative approaches listed in Section 5 while still con-
taining all aspects of reasoning about linear orders outlined
in this study. Also, this is the first model that can account
for a left–right asymmetry as found in our second experi-
ment or reported by Jahn et al. (2007).

However, some issues concerning the model still have to
be specified. A question that remains is whether the starting
point of a queue is really a link like all the other links in the
queue. Since this link is different concerning its cognitive
nature it might be weaker or stronger than the links
between objects in the queue. If this is the case, it would
make it either easier or harder to insert an object at the
beginning of the queue than between two objects of the
queue.

Another point is that if, for some reason, we already
know that a reference object is in the queue, and we have
to insert an object in front of it, it is more cost efficient
to insert a new object at the beginning of the queue
instead of first finding the reference object in the queue
to insert the object directly in front of it. In this case
inserting the object at the beginning of the queue saves
moving through the queue. The same is not true for
inserting an object behind a reference object. Here we
always have to move through the queue, at least to the
reference object.

A third problem is that we postulate that the implicit
direction of a queue can theoretically be chosen freely, with
the choice in our spatial reasoning tasks strongly being
influenced by cultural and linguistic factors, as discussed
in Section 2. Can this choice be further influenced? In spo-
ken language emphasis can be used. For instance in the
sentence: “The apple is to the left of the mango” intonation
can be used to put the focus on the mango. This might
prompt reasoners to change their preferred direction of
construction. In addition, to evaluate the influence of cul-
ture comparison between participants from a left-to-right
reading country with those of a right-to-left reading one
would be interesting.

Finally, the validity of the alternative cost measure
should be examined in more detail. One problem of
our approach results from the assumption that it is easier
to move through the queue than to alter existing links,
no matter how far we have to move. However, it is pos-
sible that, if the queue becomes larger, there might exist
a critical distance after which more mental effort is
required moving this distance through the queue than
altering a link. This would imply that if the queue
reaches a certain number of objects new objects would
not necessarily be attached to the end of the queue any
more. If this is the case one could identify a “break-
even-point” and specify how many objects one has to
move through the queue to induce the same cognitive
effort as creating a link.

We consider our approach to be a helpful addition to
the long lasting controversy between models and rules in
reasoning (e.g., Hagert, 1984; Johnson-Laird, Byrne, &
Schaeken, 1994; Rips, 1994). In fact, models are often iden-
tified with visuo-spatial processing and rules with linguistic
or sentential mechanisms (e.g., Goel, Buchel, Frith, &
Dolan, 2000). Our study, however, shows that this distinc-
tion does not reflect the actual differences between the two
approaches. In fact, our approach is a model-based
approach, because at no time during the inference process
rules of inference are used and the new information must
be derived from the queue – the model. On the other hand,
our results suggest that such models can be the basis of ver-
bal reasoning, and visuo-spatial processes are not necessar-
ily involved in the inference.

Overall, we were able to present some evidence for our
assumption that the process of constructing a verbal men-
tal model from premises influences deductive relational rea-
soning. For indeterminate problems, we can predict which
model is preferred over others. For determined problems,
we can make predictions on how the conclusion should
be phrased so that it can be easily confirmed or invalidated.
While our model cannot necessarily be generalized to other
domains of reasoning we feel that it can describe some
aspects of human reasoning with transitive relations and
that it demonstrates that relational reasoning can also be
conceived of as verbal reasoning.
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