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Deductive Spatial Reasoning:
A Computational and a Cognitive

Perspective

Marco Ragni, Markus Knauff

In recent years a number of different cognitive theories that explain human reasoning processes have been devel-
oped. This paper focusses on two broadly discussed theories: the theory of mental logic and the theory of mental
models. Both theories are presented and analyzed in formal terms and compared with respect to their explanatory
and predictive power. Our claim is that only a precise computational model can classify reasoning problems and can

help to formulate new predictions.

1 Introduction

It is remarkable how reasoning about relations is important
in everyday life. A simple example is that if we know that
Ann is taller than Beth and Beth is taller than Cath, we can
easily infer that Ann must be taller than Cath. Formally, this
kind of reasoning can be described by rules of transitivity. But
what makes spatial reasoning cognitively difficult? To answer
this question we need to know how humans represent and
reason with such information. Some necessary notions are
now introduced:
(I)  The red car is to the left of the yellow car.

The yellow car is to the left of the orange car.

The yellow car is to the left of the green car.

The green car is to the left of the blue car.

Is the blue car (necessarily) to the right of the orange car?

The statements are called premises, the cars are the terms,
and the question refers to a putative conclusion. A premise
like the first one consists of (two) objects, and a (usually
binary) relation like “to the left of” More precisely, the first
object (red car) is the “to be localized object”(LO), which is
placed according to its relation (left of) to the second object
(yellow car'), which is the “reference object” (RO).

There are basically two main cognitive theories on how
humans solve such problems: syntactic-based theories on
the one hand and semantic-based theories on the other. For
example, Rips [16] suggested that humans solve these prob-
lems by applying formal transitivity rules to the premises,
whereas the mental model theory (MMT) proposed by
Johnson-Laird and Byrne [7], suggests that people draw con-
clusions by constructing and inspecting a spatial array that
represents the state of affairs described in the premises. Both
theories can explain a number of psychological effects. But
is it possible to distinguish both theories from a formal per-
spective? A necessary condition for such an analysis is that
both theories are formalized. Although a number of psycho-
logical investigations have determined several effects, a for-
malization has not been proposed yet. The reason might lie
in the difficulty to specify precisely the exact rules for the
rule-based approach and the operations to manipulate men-

T The objects are abbreviated by R, Y, O, G and B

tal models for the model-based approach, respectively. How-
ever, without having a formalized theory or computational
model it is hard to test predictions or even try to falsify an
approach. Of course, like in physics, a theory about natural
phenomena can only be refuted based on experiments. But
if the theory itself is underspecified, it might be possible that
different experimenteers adapt the theory to suit the data in
a contradictory way.

In the following methods from Artificial Intelligence are
used to formalize the cognitive approaches and to develop
predictions of the theory that can be tested with human sub-
jects. We start with an analysis of the theory of mental logic
and the theory of mental models for spatial reasoning. The
latter theory is precised and integrated in a computational
model for spatial reasoning based on Baddeley’s working
memory model. A discussion of some remaining questions
concludes the paper.

2 Two Cognitive Theories

This section sheds some light on the two main cognitive the-
ories about human deduction: the syntactic theory of mental
logic and the semantic theory of mental models. Both the-
ories are independent from any data-structure, i.e., they do
not make any assumptions about how information is repre-
sented. Both theories are therefore limited in their explana-
tory power on how and why information necessary for rea-
soning gets lost.

2.1 Theory of Mental Models

According to the MMT, linguistic processes are relevant to

transfer the information from the premises into a spatial array

and back again, but the reasoning process itself completely

relies on the model manipulation only ( [6], pp. 434):
Reasoners use the meanings of assertions together with
general knowledge to construct mental models of the
possibilities compatible with the premises.

A mental model is an internal representation of objects
and relations in spatial working memory, which matches the
state of affairs given in the premises. The semantic theory
of mental models is based on the mathematical definition
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of deduction, i.e.,, a propositional statement ¢ is a conse-
quence of a set of premises P, written P = ¢, if in each
model A of P, the conclusion ¢ is true. In other words,
the conclusion is valid if there is no counter-example, i.e.,
a model where P holds but not . According to the men-
tal model theory (MMT) the human reasoning process con-
sists of three distinct phases: The model generation phase, in
which a first model is constructed out of the premises, an
inspection phase, in which the model is inspected to check
if a putative conclusion is consistent with the current model,
and, finally, the validation phase where alternative models
are generated from the premises that may refute the puta-
tive conclusion. Since the exact relation between the orange,
the blue, and the green car is not specified multiple-models
are consistent:

RYOGB RYGOB RYGBO

The numbers of models is one effect responsible for hu-
man difficulties in reasoning [6]. A limitation of the MMT
is that it is not able to explain a phenomenon encountered
in multiple-model cases, namely that humans generally tend
to construct a preferred mental model (PMM). This model is
easier to construct, less complex, and easier to maintain in
working memory than alternative models [8]. The determin-
ing factor in explaining human preferences is the principle
of economicity [9]. In the model variation phase this PMM
is varied to find alternative models [15]. This theory, how-
ever, has not been formalized yet and is therefore not fully
specified in terms of operations necessary to process such
problems as were described above. So it has been handled
in a rather implicit and vague way.

2.2 Theory of Mental Logic

There are a number of different calculi for reasoning with

spatial problems. Rips characterised the central idea of this

approach in the following way ( [16], p. 40):
Reasoning consists in the application of mental infer-
ence rules to the premises and conclusion of an argu-
ment. The sequence of applied rules forms a mental
proof or derivation of the conclusion from the premises,
where these implicit proofs are analogous to the explicit
proofs of elementary logic.

Van der Henst [19] e.g. proposes the set of rules of Figure 1,

which are successively applied to the premises of a problem

1. Left(z,y
Left(z,y

& Front(z,z) — Left(z,y)

& Front(z,y) — Left(x,z)

Left(z,y) & Left(y,z) — Left(x,z)

Left(xz,y) < Right(y,z)

(Left(y,x) & Left(z,xz)) — (Left(y,z) or Left(z,y))
(Left(y, z) or Left(z,y)) & Front(w,z) —
(Left(y,w) or Left(w,y))
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S T

Figure 1: Set of spatial inference rules from [19]

description. Assume we want to derive for problem (I) that
the blue car is necessarily to the right of the red car. It is
sufficient to apply the third and the fourth rule of Figure 1.
That is, by

Left(R,Y) & Left(Y,G) — Left(R,G)
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we derive that the red car is to the left of the green, by
Left(R,G) & Left(G,B) — Left(R,B)
we derive that the red car is to the left of the blue, and by
Left(R,B) < Right(B,R)

that the blue car is to the right of the red car. In other words,
a minimal solution needs three inference steps. Throughout
the reasoning process a high number of relations has to be
stored, namely all premises and all inferred relations. This can
result in a high load on the working memory. It is remarkable
that through the application of the rules in Figure 1 on a two-
dimensional problem more than one base relation, namely
right, left, front or behind, can hold for a tuple, i.e,, it is pos-
sible that the same tuple holds that A is left of B and A is in
front of B. So, by the application of the rules some kind of
fuzziness appears.

All rule-based theories claim that the difficulty mainly de-
pends on two things: On the number and kind of inference
rules applied to derive a conclusion. If we assume that all
the rules have the same difficulty, then the main difficulty
depends on the number of rules being applied. Hence, the
more inference steps are necessary, the more difficult is a
conclusion [7,19].

This idea implicitly assumes that humans use some kind
of search procedure involving optimal search strategies. A
search strategy is called optimal if it always finds the min-
imal solution for a problem. For instance breadth-search is
an optimal search strategy where depth-first is not [17]. So
the search strategy is an important factor in determining
the complexity of a problem, but there is no data indicating
which kind of search procedure humans apply. This point can
be further specified: Assume we have a set of premise P and
two conclusions 1 and o, where the steps to infer 1 from
P takes 3 steps and to infer o from P takes 4 steps. If it can-
not be generally assumed that reasoners necessarily choose
the minimal derivation steps to derive a putative conclusion,
then (P, 1) is not always easier than (P, p3). Otherwise the
reasoner would always have to know which inference has to
be drawn next-a property normally assumed with nonde-
terministic rather than deterministic systems. From a formal
perspective both theories-the theory of mental logic and of
mental models-do have the same explanatory power.

2.3 An Analysis

A first experiment of analyzing differences between the men-
tal logic approach and the mental model approach investi-
gated determinate and indeterminate problems (cf. Figure 2).
If we apply the rules 1-4 in Figure 1 to the determinate and
indeterminate problem description in Figure 2, the conclu-
sion can be derived in an equal number of steps. Therefore,
from a pure rule-based perspective, both problems have the
same difficulty. Nonetheless, empirical studies show that de-
terminate problems are significantly easier to solve than in-
determinate problems [7]. Van der Henst [19] argues for ex-
tending the classical set of rules by the rules 5 and 6. But
these rules are in some sense artificial and not necessary to
derive the conclusion. Thus it seems to be a post-hoc alter-
ation of the specified set of rules to explain the data [3]. The
mental model theory explains this phenomenon by regard-
ing the model relation. To check if the putative conclusion

14 Auszug aus: Kinstliche Intelligenz, Heft 1/2008, ISSN 0933-1875, BottcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order



Kl Fachbeitrag

(I Aistotherightof B.  (lll) Ais to the right of B.

D is in front of C. D is in front of C.
E is in front of A. E is in front of A.

Which relation holds between D and E?
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Figure 2: A determinate (ll) and indeterminate (Ill) problem

[7]

“E is to the left of D” can be derived, all consistent models
have to be checked. Since in the one-model case there is only
one model consistent, the effort to check the conclusion is
smaller than checking two models.

Another argument in favor of the mental model theory
is that recent experiments have shown that humans gener-
ally tend to construct a PMM in multiple model cases [8] in
reasoning with Allen’s Calculus and that they vary this model
according to the principle of local transformation [15]. Such
preference strategies are not limited to one calculus alone,
they can also hold for other calculi [12]. For instance, reason-
ers use for solid objects the fff-Principle, i.e., if they have to
insert an object C to the left of B in a model A B, they put
this object to the left of A. A general principle to explain such
effects is the number of operations necessary.

In another experiment [11] participants received inde-
terminate premises (lll) and questions of different relational
complexity [4] of the form: Is D as near to C as E is to A? The
participants had to decide whether the query was consistent
or not. The results show that binary relations are easier to
process than ternary and quartenary relations. But what is
more remarkable is that participants received a premise de-
scription with left, right, and front, but were able to solve a
question with the relation near. In other words, participants
received a relational description that was different to the re-
lations they were asked for. It is not only remarkable that
they had to translate one kind of relation into another, but
also that they were actually able to give an answer that re-
quired positional information. Typical transitivity rules main-
tain the relation of the premises, i.e., the relation of the con-
dition is used in the consequence (cf. Figure 1). Instead of
using classical rules other logical systems can be used to de-
scribe “nearness’. It is, however, much simpler to explain such
phenomena with a model-based approach.

Finally, the high number of rules that have to be specified
for each relation and the number of relations that have to be
stored in the working memory is remarkable. It is possible to
prove that a relational system consisting of two natural rela-
tions like adjacent left and distant left on discrete structures is
inherently incomplete, i.e., there is an infinite number of rules
necessary to prove all valid conclusions [10]. This is different
in reasoning with models, which are integrated representa-
tions of the relational information, i.e., the relations have not
to be stored but are implicitly represented by the position of
objects. Computational models are needed to specify opera-
tions and the memory used to solve tasks in order to analyze
these theories.
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3 The Computational Model

Human reasoning strongly depends on working memory.
Baddeley’s working memory model (WMM) [1], assumes a
central executive (CE), which is responsible for monitoring
and coordinating the operations of two subsystems: the
phonological loop (PL) and the visuo-spatial sketchpad (VSSP).
The first subsystem, the PL, stores information in a language-
based form. The second subsystem, the VSSP, is indepedent
from the first in terms of memory limits, stores visual and
spatial information. Both subsystems are controlled by a CE
which is able to store and manipulate information. Central
questions for a combination of the preferred mental model
theory and WMM are: In which subsystem and how does
the reasoning take place? What are limits of the subsystems
and the control process? Since the deduction process in re-
lational spatial reasoning uses mental models [2] these can
be located in the WMM in the VSSP, where the construction
and manipulation of the mental models by a special device,
which is called focus, takes place.

Several cognitive models have been developed to model
diverse aspects of deductive relational reasoning. One of the
best developed systems is a model by Schlieder and Berendt
for simulating the empirical results found in an experiment
which was conducted to analyze the three-term series prob-
lems in Allen’s Interval Calculus [18]. Although this model can
explain how humans construct a PMM by reasoning with in-
tervals, it cannot be applied to reasoning with solid objects.
This was the main motivation for developing a new model,
able to parse problems consisting of the most parsimonious
relations right, left, front and behind, to construct, to inspect
and vary the PMM [13].

However, no existing computational model for relational
reasoning integrates an algorithmic approach as well as a
working memory model. This is the starting point for our
analysis. The CROS-Model (Cognitive Relational Operating
System) which formalizes the WMM and PMMT consists of: A
conceptualization of the WMM (with subsystems), a manip-
ulation device for the mental models, a (relational) language
describing object positions, and a semantic interpreter, inter-
preting the language.

Phonalogical
Loop

Figure 3: The CROS-Model

The VSSP is a spatial array (SA) of two-dimensional grids,
called layer, in which mentals models are generated and ma-
nipulated by a device called focus. The focus can perform a
small number of operations like moving, reading, and insert-
ing. E.g. for ‘A left B’ and 'C right D; there are two possible
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submodels, each placed in its own layer, so that submodel
AB would be in the first and C'D in the second layer. For-
mally, the CROS is a 6-tuple (I, SI, A, F, PL,C) with I the
input device, SI the semantic interpreter, A a spatial array,
that contains the layers (submodels), F' the focus, manipulat-
ing the spatial array, PL, a memory for storing verbal infor-
mation, and C' a control process.

When processing natural language strings, the meaning
of the input has to be interpreted. In linguistics, as well as in
psychology, the existence of a semantic interpreter (Sl) is as-
sumed, which maps syntactically analyzed texts to the formal
representation in our model. A discussion of the SI, however,
would go beyond the scope of the paper. Problems related
to the ambiguity of spatial relations are not accounted for.
The CROS interprets the string “A is left of B” as: both ob-
jects are in the same line and A is to the left of B. The rela-
tions “right’ “front} and “behind” are equivalently defined. If
indeterminacy occurs, information about alternative models
must be stored. Since a mental model is only a representa-
tion, such information must be held in another subsystem.
The appropriate memory system in the WMM for this kind
of propositional information is the PL, which is consistent
with neuropsychological evidence [8]. The PL uses a dynamic
memory allocation system, which allows the modeling of ac-
tivated objects.

Since both systems, the SA and the PL, are only mem-
ory systems and the focus manipulates only the SA, a control
process, which manages the CROS, is needed, that manages
the subsystems and controls the focus operations on the SA.
The control process has a limited instruction set. Several in-
structions directly control read/insert/move operations of the
focus, statements to branch or loop the control flow, and
simple test instructions [14]. With this set of instructions, al-
gorithms for all three deduction phases can be defined and
different insertion strategies can be compared. The premises
are read and interpreted iterativeley by the SI, and the con-
trol process immediately inserts the new encountered infor-
mation into the model by moving the focus within the SA
and adding indeterminacy information to the PL. The focus
has the ability to create new layers for premises that cannot
be constructed into one layer.

Now four types of premises must be distinguished: (1)
the first premise, (2) premises in which one object from the
preceding premise appears and a new object which must
be inserted in the array, (3) the type of premises, where no
objects of the previous premises appear, eg, DrC, ArB, B
r C. And (4) premises in which two formally separate models
are connected.

The functionality of the CROS is now demonstrated by
processing problem I. The construction process starts with
the first premise and an empty layer. First the RO is placed,
then the focus moves in the direction of the relation and
places the LO to the next free cell. In our example Y is in-
serted first, the focus moves to the left and inserts R. The al-
gorithm checks to which type each new premise belongs and
then inserts the object(s) according to the specific case. For
premises of type 2 only one object has to be inserted and if it
cannot be placed as a direct neighbor, the model structure is
indeterminate, and therefore, the control process annotates
the object by inserting the relational information as a propo-
sition into the PL, and the focus places the present object
according to the fff-principle. For premises of type 3, where
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neither of the two objects are contained in the model, a new
layer is generated, both objects will be placed in this new
layer and are treated in the same way as a premise of type 1.
If both objects are contained in different layers (type 4), both
layers have to be merged according to the relation of the
premise. If a counter-example exists, it is a model containing
the additional knowledge. The second and third premises are
of type 2 because Y is already in the model, so O and G
are inserted to the right of Y according to the fff-principle.
Because G cannot be placed adjacent to Y/, it is annotated
with right Y. The next premise, which is to be processed, is
also of type 2 and object B, that is not in the model, is in-
serted directly to the right of G. But because G is annotated,
B has to be annotated too. Now the construction phase is
complete and the resulting model is shown in the first line
of Figure 4. Now that the construction of the model is fin-
ished, the inspection phase searches for new information that
was not directly specified in the premises. The focus moves
to the first given object (RO) and from there it inspects the
model according to the relation in order to find the second
object (LO). The model variation comes into play if a con-
clusion must be verified or if additional knowledge of two
already contained objects has to be processed during the
model construction process. The focus starts in the variation
process with the PMM and varies the model by local trans-
formations to generate a counter-example to the putative
conclusion. The variation process starts from the generated
PMM (in which the putative conclusion holds). The algorithm
checks if one of the objects in the conclusion is annotated.
Annotations on objects specify the positional relation to the
reference objects, which we refer to as anchor. If an annota-
tion include both objects of the putative conclusion then the
putative conclusion holds. The same argument holds if none
of the conclusions’ objects are annotated because then the
positions of the objects are fixed. If there is an annotation on
one object (and not to the other), as in the example conclu-
sion ‘B is to the right of O’ (see Figure 4), the only object of
the conclusion which has to be moved is B and not O. This

right Y right G

x| o] L= | The first line contains the generated
right Y iz PMM. The annotated objects can

x| o] [+] be varied, where the bold marked

right Y right G objects are to be varied to check

ﬂ 2] n the conclusion.

Figure 4: The variation process of the CROS for problem (I)

comes along with the use of annotations, i.e., an annotation
is only created for indeterminate object positions. If the ob-
ject which is to be moved has an anchor, it may be necessary
to move the anchor first. A simple example can illustrate this
process: B cannot be moved because G, the anchor of B, is
a direct neighbor of B. Thus, the algorithm first exchanges
the anchor to the left of O. Now the counter-example is gen-
erated by exchanging B beyond O and so B is left of O, so
false is returned. If both objects are annotated, then first the
LO of the putative conclusion is exchanged. The LO is moved
into the direction of the RO until its anchor is reached. If this
results in the generation of an inconsistent model, the algo-
rithm stops and returns false. It is possible that the anchor
object is in-between the LO and the RO, and that results in
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the exchange of the LO until it reaches its anchor. Then the
anchor object is recursively exchanged towards the RO. If no
further exchanges to the RO are possible, the exchange pro-
cess starts to exchange the RO into the direction of the LO.

4 Conclusion

A common proverb says that chess is the drosophila of Arti-
ficial Intelligence, referring to the fruit-fly who is the favorite
test bed for genetic theories. Analogically speaking, spatio-
temporal reasoning is the drosophila of human relational rea-
soning: Arbitrary relational premises with transitive relations
(nicer, smarter, etc.) imply an ordering relation and can there-
fore be interpreted by spatial representations. This and its im-
portance in everyday life is the reason why spatio-temporal
reasoning has been quite extensively studied in the field of
deductive reasoning.

The preferred mental model theory as well as Baddeley’s
WMM are able to explain several empirical results in spatial
reasoning. But both theories have neither been brought to-
gether nor been formalized. Since human reasoning is based
on mental operations as well as on mental structure, only a
cognitive as well as formal model, comprising both aspects,
is able to explain intra- and inter-individual differences. This
is the motivation for our investigation and formalization. The
resulting model, the CROS, is able to cover a wide span of
effects on experimental results from the literature [11-14].
An even more important confirmation of the CROS-model is
that several CROS-predictions like the insertion principle (fff)
and the continuous transformation process have been also
empirically validated.

Our approach has something in common with a very
early approach in cognitive science: Hunter [5] claimed that
reasoning difficulty strongly depends on operations on the
form of premises. Even if his approach was limited - he had
the right intuition: the number of mental operations is the
determining factor in explaining reasoning difficulty.
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