

Workshop

R-package *Luminescence*

Einführung in die Plottfunktionen

Sebastian Kreutzer, Margret Fuchs, Michael Dietze, Manfred Fischer

Oktober 2012

Sebastian Kreutzer	Justus-Liebig-Universität Giessen				
	sebastian.kreutzer@geogr.uni-giessen.de				
Margret Fuchs	TU Bergakademie Freiberg				
	fuchs@mailserver.tu-freiberg.de				
Michael Dietze	TU Dresden				
	micha.dietze@mailbox.tu-dresden.de				
Manfrod Fischer	Universität Payrouth				
Manifed Fischer	Universitat Bayreutin				
	manfred.fischer@uni-bayreuth.de				
Christoph Schmidt	Universität Bavreuth				
	christoph cohmidt@uni hovrouth do				
	<u>chinstoph.schiniat@uni-bayreutit.de</u>				
Christoph Burow	Universität Köln				
	christoph.burow@uni-koeln.de				

Inhaltsverzeichnis

1.	Plotten von Kurven in eine Datei	1
2.	Das Plotten einer Ausleuchtkurve	3
3.	Die Plotfunktion <i>plot_GrowthCurve</i>	6
4.	Weitere Plotfunktionen	8
	4.1 plot_DeDistribution	9
	4.2 plot_RadialPlot	10
	4.3 plot_Histogram	11
5.	Installationsanleitung von R mit R-Studio	12
	5.1 Windows	12
	5.2 MacOS	12
	5.3 Linux (Ubuntu)	13

Anmerkungen:

Bei den Erläuterungen zu den einzelnen Schritten werden

Funktionen rot, Argumente grün und *Variablen blau* hervorgehoben.

R-Befehle werden in einem farbig hinterlegten Rahmen dargestellt

dev.off()

Die Ausgabe nach Befehlsaufruf wird mit einem schwarzen Rahmen versehen.

## null de	evice			
##	1			

1. Plotten von Kurven in eine Datei

1.Schritt

Sofern noch nicht geschehen wird als Erstes das Lumineszenz-Paket geladen.

library("Luminescence")

2.Schritt

Mit Hilfe der Funktion **readBIN2R** wird ein Risoe-binfile geladen und der Variablen **max** zugewiesen. Als Argument wird nur der Pfad (grün) zur betreffenden Datei angegeben.

max <- readBIN2R("D:/R/Daten/test2.BIN")</pre>

Beim Aufruf der Variablen *max* wird deren Inhalt ausgegeben.

max

##	Risoe.BINfileData Object								
##	Version:	03							
##	Object Date:	200120							
##	User:	Default							
##	System ID:	0							
##	Overall Records:	440							
##	Records Type:	OSL=280; TL=140; IRSL=20;							
##	Position Range:	1:20							
##	Run Range:	2:43							
##	Set Range:	1:2							

3.Schritt

R stellt eine Vielzahl von Grafikformaten für den Export bereit. Exemplarisch sollen hier die Ausleucht- und TL-Kurven der in Schritt 2 eingelesenen Daten im PDF-Format ausgegeben werden. Dies geschieht mit Hilfe der Funktion *pdf*, der drei Argumente übergeben werden. Das erste bestimmt den Dateinamen und gibt den Speicherort an. *paper* legt die Seitengröße und *height* die Höhe der einzelnen Diagramme fest.

pdf(file = "D:/R/WorkingDirectory/Plot_2/CurveOutput_test2_g.pdf",
paper = "a4", height = 11)

4a.Schritt

Der Aufruf von **par(mfrow = c(2, 1))** unterteilt das Ausgabefenster in zwei Zeilen und eine Spalte, sodass insgesamt zwei Diagramme pro Seite geplottet werden können. Die Anzahl der Zeilen und Spalten werden mit dem Argument **mfrow** festgelegt. Der erste Wert legt die Anzahl der Zeilen, der zweite die Anzahl der Spalten fest.

par(mfrow = c(2, 1))

siehe Plot 4a

4b.Schritt

In diesem Fall unterteilt der Aufruf von **par(mfrow = c(3, 4))** das Ausgabefenster in vier Zeilen und drei Spalten, sodass insgesamt zwölf Diagramme je Seite geplottet werden können.

par(mfrow = c(3, 4))

siehe Plot 4b

5.Schritt

Die Funktion *plot_BINfileData* plottet die einzelnen Diagramme. Als Argument wird die Variable max, in der der Datensatz abgelegt ist übergeben.

plot_BINfileData(BINfileData = max)

6.Schritt

Mit **dev.off()** wird das R-eigene Grafikfenster geschlossen und das erzeugte PDF-Dokument kann geöffnet werden. Dieser Befehl ist zwingend auszuführen, da sonst nur ein leeres PDF-Dokument erstellt wird.

dev.off()		

##	null	device
##		1

2. Das Plotten einer Ausleuchtkurve

1.Schritt

Hier wird der erste Datensatz [1] vom Datentyp "Liste" aus der Variablen *max* aufgerufen.

max@DATA[1]

##	[[1]]														
##	[1] (6891	3255	1792	984	624	401	320	265	245	180	185	169	152	171
##	[15]	164	151	162	138	102	151	126	128	110	130	111	120	116	107
##	[29]	119	100	106	86	104	87	96	106	93	83	112	111	102	79
##	[43]	65	97	109	82	96	101	69	110	69	94	82	109	86	87
##	[57]	96	101	99	88	103	83	68	95	93	108	95	95	84	106
##	[71]	72	83	89	81	101	84	81	84	82	85	72	71	79	85
##	[85]	85	68	79	67	75	87	100	75	85	51	78	71	73	64
##	[99]	100	59												

2.Schritt

Umwandlung des Datentyps und Variablenzuweisung.

Die Liste wird mit Hilfe der Funktion **unlist** in einen Vektor umgewandelt, sodass alle Listenelemente der Reihe nach auch im Vektor enthalten sind.Der neu erstellte Vektor wird der Variablen **y** zugewiesen.

y <- unlist(max@DATA[1])	

3.Schritt

In diesem Schritt wird der Variablen *zeit* der erste Datensatz von *max* (max@METADATA) zugewiesen. Das Argument *HIGH* gibt das Zeitintervall der Messung an.

zeit <- max@METADATA[which(max@METADATA[, "ID"] == 1), "HIGH"]</pre>

Beim Aufruf von *zeit* wird der Wert ausgegeben, hier = 20 (20 sec).

zeit

[1] 20

4.Schritt

Die Funktion *length* fragt die Länge (d.h. die Anzahl der Elemente) des Vektors ab. Gleichzeitig wird das Ergebnis der Abfrage der Variablen *laenge* zugewiesen.

laenge <- length(y)</pre>

Beim Aufruf von *laenge* wird die Anzahl der Elemente des Vektors ausgegeben, hier = 100.

laenge

[1] 100

5.Schritt

Die Funktion **seq** erstellt eine Zahlenfolge mit beliebigen Abständen. Das erste Argument gibt den Startwert an (**zeit/laenge**, d.h. 20/100 == 0.2), das zweite den Endwert und das letzte Argument **by** gibt den Abstand zwischen den einzelnen Werten an. Das Ergebnis des Funktionsaufrufs wird in der Variablen **x** abgelegt.

	x <- seq(2	zeit/laenge,	zeit, by =	zeit/laenge	e)
--	------------	--------------	------------	-------------	----

Beim Aufruf von \mathbf{x} wird die Zahlenfolge (die Anzahl der Elemente) ausgegeben.

х

##	[1]	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	
##	[15]	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	
##	[29]	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	
##	[43]	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0	10.2	2 10.	4 10	.6 10	.8 1	1.0 11	.2
##	[57]	11.4	11.6	5 11.	8 12	.0 12	2.2 1	2.4 1	2.6	12.8	13.0	13.2	2 13.4	4 13	.6 13.8	3 14.0
##	[71]	14.2	14.4	114.	6 14	.8 15	5.01	5.2 1	5.4	15.6	15.8	16.0) 16.	2 16	.4 16.0	5 16.8
##	[85]	17.0	17.2	2 17.	4 17	.6 17	'.8 1	8.01	8.2	18.4	18.6	18.8	3 19.0	0 19	.2 19.4	4 19.6
##	[99]	19.8	20.0)												

6.Schritt

Die Variablen **x** und **y** werden in einen "data.frame" überführt und der variablen **xy** zugewiesen.

xy <- data.frame(x, y)</pre>

7.Schritt

Im nächsten Schritt wird **xy** mit Hilfe der R-eigenen Funktion **plot** dargestellt.

plot(xy)

3. Die Plotfunktion plot_GrowthCurve

1.Schritt

Die Funktion **Analyse_SAR.OSLdata** wird mit folgenden Argumenten aufgerufen: **max** = Risoe.BINfileData **c(1:2)** = das Integral von 1 bis 2 wird für die Auswertung herangezogen **c(85:100)** = das Integral von 85 bis 100 wird als Untergrund abgezogen Das Ergebnis wird der Variablen **z** zugewiesen.

z <- Analyse_SAR.OSLdata(max, c(1:2), c(85:100))

[Analyse_OSLCurves.R] >> Position 51 is not valid and has been omitted!

2.Schritt

Aus der Variablen z wird der erste Datensatz extrahiert und der Variablen z1 zugewiesen.

$= 1$ \downarrow $= d \mid \mu \mid \sqrt{T} \mu T \sqrt{1}$	
$7.1 \le 7.5101 \times 101 \times 111$	

3.Schritt

Das Objekt **z1** wird mit der Funktion **as** in einen DataFrame umgewandelt. In R kann mit Hilfe der Funktion **as** ein beliebiger Datentyp in einen anderen "zwangsweise" umgewandelt werden.

```
z.1 <- as.data.frame(z.1)</pre>
```

4.Schritt

Im letzten Schritt wir die Funktion **plot_GrowthCurve** aufgerufen. Als Argument wird der Datensatz von **z1** übergeben.

plot_GrowthCurve(z.1[, c("Dose", "LxTx", "LxTx.Error", "TnTx")])

[plot_GrowthCurve.R] >> D0 = 3253.27


```
## $De
      De De.Error D0
##
## 1 1732 43.87 3253
##
## $Fit
## Nonlinear regression model
    model: y \sim fit.functionEXP(a, b, c, x)
##
##
     data: data
##
      а
           b
                С
    20.8 3253.3 26.0
##
## weighted residual sum-of-squares: 0.00249
##
## Algorithm "port", convergence message: relative convergence (4)
```

4. Weitere Plotfunktionen:

- 4.1 plot_DeDistribution
- 4.2 plot_RadialPlot
- 4.3 plot_Histogram

1.Schritt: Einlesen der Daten

Im ersten Schritt wird mit der R-eigenen Funktion **read.csv** eine CSV_Datei mit zwei Spalten aufgerufen und das Ergebniss der Variablen **a** zugewiesen. Die Funktion wird mit drei Argumenten aufgerufen: Das erste gibt den Pfad zur CSV-Datei an, das zweite - header - die Beschriftung der Spalten, und das letzte - **sep** - legt als Seperator zwischen den einzelnen Daten ein Semikolon fest.

a <- read.csv("D:/R/Daten/MKQ.csv", header = TRUE, sep = ";")

Ruft man *a* auf wird der Inhalt der Variablen dargestellt, und man kann die zwei Spalten ED und ED_Error erkennen.

а

#######################################	$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\$	ED 1733 1913 1817 1884 2087 2313 2741 1543 2021 2852 2404 2133 1590 1696 2102 1950	ED_Error 58.87 98.80 83.82 67.08 132.69 87.26 147.55 91.72 106.15 159.21 83.10 89.96 65.10 111.37 106.12 106.24
## ## ##	16 17 etc.	1950 2021	106.24 92.99

2.Schritt: Plotten der De-Verteilung

Die De-Verteilung kann nun mit der Funktion **plot_DeDistribution** ausgedruckt werden. Als Argumente werden der Datensatz aus der Variablen **a** übergeben, sowie **zlab** mit den Parametern De und [s] zur x-Achsenbeschriftung.

plot_DeDistribution(a, xlab = expression(paste(D[e], " [s]")))

D_e Distribution

3.Schritt: Der Radialplot

Der Radial-Plot wird mit der Funktion **plot_RadialPlot** ausgedruckt. Als Argumente werden der Datensatz aus der Variablen **a** übergeben, sowie **zaxis.scale** für die Skalierung der z-Achse, und **zlab** mit den Parametern De und [s] zur z-Achsenbeschriftung

plot_RadialPlot(a, zaxis.scale = seq(1500, 3000, by = 250), zlab =
expression(paste(D[e], "[s]")))

4.Schritt: Das Histogramm

Mit der Funktion **plot_Histogram** wird ein Histogramm ausgedruckt. Als Argumente werden der Datensatz aus der Variablen **a** übergeben, sowie **zlab** mit den Parametern De und [s] zur x-Achsenbeschriftung.

plot_Histogram(a, xlab = expression(paste(D[e], "[s]")))

5. Installationsanleitung von R mit R-Studio und Lumineszenzpacket

5.1 Windows

- Download des R-Packets <u>http://cran.r-project.org/bin/windows/base/</u>
 - Installation des R-Packets
- Download von R-Studio
 <u>http://rstudio.org/download/desktop</u>
 - Installation von R-Studio
- Einbinden des Lumineszenzpackets
 - Öffnen von R-Studio
 - Den Reiter *Packages* im unteren, rechten Fenster anklicken
 - Install Packages anklicken: Es öffnet sich ein Fenster, indem man im Auswahl-Feld Install from Repository (Cran, Cranextra) auswählt. Danach gibt man im Feld Packages den Begriff Luminescence ein und klickt auf Install →Fertig!

5.2 MacOsX

- Download des R-Packets <u>http://cran.r-project.org/bin/macosx/</u>
 - Installation des R-Packets
- Download von R-Studio <u>http://rstudio.org/download/desktop</u>
 - Installation von R-Studio
- Einbinden des Lumineszenzpackets
 - Öffnen von R-Studio
 - Den Reiter *Packages* im unteren, rechten Fenster anklicken
 - Install Packages anklicken: Es öffnet sich ein Fenster, indem man im Auswahl-Feld Install from Repository (Cran, Cranextra) auswählt. Danach gibt man im Feld Packages den Begriff Luminescence ein und klickt auf Install →Fertig!

5.3 Linux (Ubuntu)

- Download des R-Packets <u>http://cran.r-project.org/bin/linux/</u>
 - Installation des R-Packets
- Download von R-Studio
 <u>http://rstudio.org/download/desktop</u>
 Installation von R-Studio
- Einbinden des Lumineszenzpackets
 - Öffnen von R-Studio
 - Den Reiter *Packages* im unteren, rechten Fenster anklicken
 - Install Packages anklicken: Es öffnet sich ein Fenster, indem man im Auswahl-Feld Install from Repository (Cran, Cranextra) auswählt. Danach gibt man im Feld Packages den Begriff Luminescence ein und klickt auf Install →Fertig!