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Abstract

We consider locally Lipschitz and completely continuous maps A : C → C de-
fined on a closed convex subset C ⊂ X of a Banach space X . The main interest lies
in the case when C has empty interior. We establish Poincaré-Hopf type formulas
relating fixed point index information about A with homology Conley index infor-
mation about the semiflow on C induced by −id + A. If A is a gradient we also
obtain results on the critical groups of isolated fixed points of A in C.

Keywords: fixed point index on convex sets, Conley index on convex sets, Poincaré-Hopf
formula, critical groups
AMS subject classification: 37B30, 47H10, 58E05

1 Introduction
Let X be a Banach space, C ⊂ X a closed and convex subset. It is allowed that C
has empty interior as is the case for order intervals in Sobolev spaces, for instance. We
consider completely continuous maps A : C → C which are locally Lipschitz continu-
ous. Then the vector field −id + A induces a semiflow ϕ : D(ϕ) ⊂ [0,∞) × C → C
on C; see Section 2. For such kind of flow Conley index theory as developed in [12]
applies. The goal of this paper is to relate homology Conley index information about ϕ
with fixed point index information about A in the spirit of the Poincaré-Hopf formula. In
applications, C has empty interior so the classical Poincaré-Hopf formula on manifolds
with boundary and the generalizations we are aware of do not apply. If dimX < ∞
and intC 6= ∅ then our results can be deduced from [13]. In that situation we present
however a rather simple proof of the Poincaré-Hopf formula which we haven’t seen in
the literature. Our results are applicable to a variety of problems and save calculations in
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each individual case.

We use the following standard notation. Given a set N ⊂ C its invariant set is defined by

inv(N) = inv(N,ϕ) := {x ∈ N : ϕ(t, x) ∈ N for all t ∈ R}.

Here we write ϕ(t, x) for t < 0, x ∈ C, if there exists y ∈ C with ϕ(−t, y) = x. There
exists at most one such y, so we may set ϕ(t, x) := y if it exists. Thus inv(N) consists
of all x ∈ Nsuch that ϕ(t, x) exists for all t ∈ R and lies in N . N is said to be an
isolating neighbourhood of inv(N) if N is closed and bounded and inv(N) ⊂ int (N).
Here and in the sequel all topological notions refer to the topology of C induced from
X , in particular int (N) = int C(N). A set S ⊂ C is then said to be isolated invariant
if an isolating neighbourhood N exists with S = inv(N). In that case S is compact and
one can define the Conley index CC(N,ϕ) = CC(S, ϕ); see Section 2. Moreover, since A
cannot have any fixed points on ∂N , its fixed point index indC(A,N) ∈ Z is defined. We
refer to [1, 6, 9] for its definition and properties.

For our first result let H∗ denote singular homology with coefficients in a commutative
ring R, e.g. Z or a field. For a pair (X, Y ) of topological spaces such that H∗(X, Y ) is
finitely generated, χ(X, Y ) =

∑∞
i=0(−1)irankHi(X, Y ) denotes its Euler characteristic.

Theorem 1.1. Given an isolating neighbourhood N ⊂ C then its Conley index CC(N,ϕ)
has the homotopy type of a finite pointed CW-complex, hence the homology Conley
index H∗(CC(N,ϕ)) is finitely generated. There holds the Poincaré-Hopf formula:
indC(A,N) = χ(CC(N,ϕ)).

We now specialize to the case where X is a Hilbert space and A = ∇g is the gradient of a
C1-function g : D → R defined on an open neighbourhood D ⊂ X of C. Then −id + A
is the negative gradient of the functional f(x) = 1

2
‖x‖2 − g(x). We say that a ∈ R is a

regular value of f in C if f does not have any critical points in C ∩ f−1(a), i.e., A does
not have any fixed points in C ∩ f−1(a). In this setting we use some standard notation.
For a ∈ R we set fa := {x ∈ D : f(x) ≤ a} and for a < b we set f ba := {x ∈ D : a ≤
f(x) ≤ b}. f is said to satisfy the Palais-Smale condition (PS)c in a set M ⊂ D if every
sequence (xn)n in M with f(xn)→ c and f ′(xn)→ 0 has a convergent subsequence.

Theorem 1.2. Let a < b be regular values of f in C such that f satisfies (PS)c in C ∩ f ba
for c ∈ [a, b]. Then indC(A, f ba ∩ C) = χ(f b ∩ C, fa ∩ C).

Observe that indC(A, f ba ∩ C) ∈ Z is well defined because FixA ∩ f ba is compact as a
consequence of the Palais-Smale condition in f ba ∩ C, and FixA ∩ f ba ⊂ int (f ba ∩ C).

Next we state a result relating the local fixed point index of an isolated fixed point x0 ∈ C
of A and its critical groups H∗

(
f c ∩ C, f c ∩ C \ {x0}

)
as a critical point of f in C; here

c = f(x0).
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Theorem 1.3. If x0 ∈ C is an isolated fixed point of A in C and c = f(x0) then

H∗
(
CC({x0}, ϕ)

) ∼= H∗
(
f c ∩ C, f c ∩ C \ {x0}

)
and therefore indC(A, x0) = χ

(
CC({x0}, ϕ)

)
= χ

(
f c ∩ C, f c ∩ C \ {x0}

)
.

As a corollary of Theorem 1.3 we obtain that the critical groupsH∗
(
f c∩C, f c∩C \{x0}

)
are homotopy invariant.

Corollary 1.4. Let gλ : D → R, 0 ≤ λ ≤ 1, be a continuous family of C1-functions,
such that Aλ := ∇gλ induces a continuous family of locally Lipschitz and completely
continuous maps Aλ : C → C. Set fλ(x) = 1

2
‖x‖2 − gλ(x). If Aλ has a continuous

family of fixed points xλ ∈ C, λ ∈ [0, 1], which are isolated in C then the critical groups
H∗
(
f cλλ ∩ C, f

cλ
λ ∩ C \ {xλ}

)
, cλ := fλ(xλ), are independent of λ ∈ [0, 1].

In our last result we compute the critical groups in Theorem 1.3 of an isolated fixed
point of A in C provided a nondegeneracy condition holds. We first need to recall some
concepts from [4, 5, 7]. The tangent wedge of a point x ∈ C is defined by

Wx :=
⋃
t>0

t · (C − x) = {y ∈ X : x+ εy ∈ C for some ε > 0}.

Clearly Wx is a wedge, i.e., ty ∈ Wx for every y ∈ Wx and t > 0. The tangent space

Tx := W x ∩ (−W x)

is a closed linear subspace of X . If A is differentiable at x with derivative L = DA(x) :
X → X then L(Wx) ⊂ Wx and L(Tx) ⊂ Tx. A fixed point x ∈ C of A is said to
be a nondegenerate fixed point of A in C if A is differentiable at x and Ly 6= y for all
y ∈ W x \ {0}. We say that L repels y ∈ W x \ Tx if there exists t > 1 with Ly− ty ∈ Tx.

Theorem 1.5. Let x0 ∈ C be a nondegenerate fixed point of A in C, c = f(x0), m the
sum of the multiplicities of the eigenvalues in (1,∞) of L = DA(x0) restricted to Tx0 .
Then

Hk

(
f c ∩ C, f c ∩ C \ {x0}

) ∼= { 0 if L repels at least one point in W x0 \ Tx0;
δkmR else.

Remark 1.6. a) An important special case is when W x0 = Tx0 = X . Then Theorem 1.5
says that the critical groups of f in C are isomorphic to the full critical groups of f in X:

Hk

(
f c ∩ C, f c ∩ C \ {x0}

) ∼= Hk

(
f c, f c \ {x0}

)
.

This happens for instance if X = H1
0 (Ω), C = {x ∈ X : x ≥ 0 a.e.}, and x0 > 0 in Ω.

Observe that intC = ∅.
b) Theorem 1.5 can frequently be used to compute critical groups even if x0 is a degenerate
fixed point of A in C by looking at perturbations and using homotopy invariance.
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We conclude this section by mentioning one application where Theorem 1.5 simplifies
arguments and leads to a conceptually more satisfying proof.

Remark 1.7. In [2] we were interested in positive solutions u, v > 0 of the system

(1.1)

{
−∆u+ u = µ1u

3 + βv2u in Ω

−∆v + v = µ2v
3 + βu2v in Ω

of nonlinear Schrödinger (or Gross-Pitaevskii) type equations on a bounded (or radially
symmetric unbounded) domain Ω ⊂ RN , N ≤ 3. Here µ1, µ2 > 0 are fixed and β is
taken as bifurcation parameter. For each positive solution w ∈ H1

0 (Ω) of the equation
−∆w + w = w3 there exists a trivial branch

Tw =
{

(β, uβ, vβ) : −√µ1µ2 < β < min{µ1, µ2}
}

of positive solutions of (1.1). [2, Theorem 2.1] states the existence of a sequence of bi-
furcation points (βk, uβk , vβk) on Tw for positive solutions of (1.1). Solutions of (1.1) are
obtained as critical points of an associated functional Jβ : X = H1

0 (Ω) ×H1
0 (Ω) → R.

In the proof we showed that the critical groups Hk

(
J cβ, J

c
β \ {(uβ, vβ)}

)
of the triv-

ial solutions in Tw change infinitely often along the trivial branch at parameter val-
ues βk. The homotopy invariance of the critical groups of isolated critical points (see
[8, Theorem 8.8], for instance) implies the bifurcation of critical points of Jβ near
(βk, uβk , vβk). In order to show that these bifurcating critical points are actually pos-
itive solutions we considered a modified functional J+

β whose critical points are posi-
tive solutions of (1.1). Since J+

β is only of class C2−0 the computation of the critical
groups Hk

(
(J+
β )c, (J+

β )c \ {(uβ, vβ)}
) ∼= Hk

(
J cβ, J

c
β \ {(uβ, vβ)}

)
required an ad-hoc

argument based on some nontrivial results. Using Theorem 1.5 one can instead di-
rectly compute the critical groups Hk

(
J cβ ∩ C, J cβ ∩ C \ {(uβ, vβ)}

)
of Jβ in the cone

C = {(u, v) ∈ X : u, v ≥ 0 a.e.}. Since these change infinitely often (at βk) Corol-
lary 1.4 yields the existence of the bifurcation points with bifurcation into the cone.
Theorem 1.5 can also be applied to compute the critical groups of Jβ in C at isolated
“semitrivial” solutions (u, 0) or (0, v) of (1.1). This can be used to prove bifurcation of
positive solutions from the set of semitrivial solutions. One can then deduce information
on the critical groups of the bifurcating solutions except when the bifurcation is vertical.
See [3] where the fixed point index in C has been applied.

2 Some Conley index theory
As in the introduction X is a Banach space, C ⊂ X a closed convex subset, and A : C →
C is locally Lipschitz and completely continuous. The vector field −id + A then induces
a semiflow

ϕ : D(ϕ) = {(t, x) ∈ [0,∞)× C : 0 ≤ t < T (x)} → C.
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To see this one rewrites the initial value problem

(2.1)

{
ẋ = −x+ A(x)

x(0) = x0

as integral equation using the variation-of-constant formula

(2.2) x(t) = e−tx0 +

∫ t

0

es−tA(x(s))ds.

Observe that given a continuous function x : [0, T ]→ C then∫ t

0

es−tA(x(s))ds ∈ (1− e−t)C for t ∈ [0, T ]

because
∫ t

0
es−tds = 1− e−t. Therefore

e−tx0 +

∫ t

0

es−tA(x(s))ds ∈ C for t ∈ [0, T ]

so that one can apply a standard iteration method to construct ϕ(t, x0) as unique solution
of (2.1). In general the solution of (2.1) cannot be extended to t < 0. However, if for
some x0 ∈ C and some t < 0 there exists y0 ∈ C with ϕ(−t, y0) = x0 then this y0 is
uniquely determined and we define ϕ(t, x0) := y0. In fact, suppose x, y : [−δ, δ] → C
are solutions of (2.1). Then (2.2) holds for t ∈ [−δ, δ], and also with y instead of x. This
implies for t ∈ [−δ, δ]:

‖x(t)− y(t)‖ =

∥∥∥∥∫ t

0

es−t
(
A(x(s))− A(y(s))

)
ds

∥∥∥∥
≤ |t|e|t|K max{‖x(s)− y(s)‖ : |s| ≤ t}

where K is a Lipschitz constant for A. We deduce x(t) = y(t) for all t with |t|e|t|K < 1.

For the semiflow ϕ we recall a few basic concepts from Conley index theory on metric
spaces (which are not necessarily locally compact) due to Rybakowski [12]. A closed
subset N ⊂ C is said to be strongly admissible, if the following two conditions hold:

(A1) if x ∈ N is such that ϕ(t, x) ∈ N for all 0 ≤ t < T (x) then T (x) =∞;

(A2) given sequences xn ∈ N , tn →∞, such that ϕ([0, tn], xn) ⊂ N for all n ∈ N, then
ϕ(tn, xn), n ∈ N, has a convergent subsequence.

In our situation we have the following simple result concerning admissibility.
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Lemma 2.1. Every bounded set is strongly admissible.

Proof. Let N ⊂ C be bounded and recall the variation-of-constant formula:

ϕ(t, x) = e−tx+

∫ t

0

es−tA(ϕ(s, x))ds.

Given x ∈ N with ϕ(t, x) ∈ N for all 0 ≤ t < T (x), there holds:∫ t

0

es−tA(ϕ(s, x))ds ∈ clos conv(A(N) ∪ {0}) =: M for every 0 ≤ t < T+(x).

M is compact because N is bounded and A is completely continuous. Consequently
T+(x) = ∞, and (A1) follows. Similarly, if xn ∈ N , tn → ∞, are as in (A2) then
e−tnxn → 0, and ϕ(tn, xn) − e−tnxn ∈ M has a convergent subsequence. Therefore
ϕ(tn, xn) has a convergent subsequence, and (A2) follows.

Given a strongly admissible isolating neighbourhood N ⊂ C there exist (quasi-)index
pairs (N1, N2) in N , and the pointed homotopy type of the quotient space N1/N2 is
independent of the choice of the (quasi-)index pair. This homotopy type is the Conley
index of N which we denote by C(N,ϕ); see [12, Chapter 1] for details.

We need the following weak version of the continuation invariance. It is a consequence
of the more general continuation invariance [12, Chapter 1, Theorem 12.2].

Theorem 2.2. Let Aλ : C → C, 0 ≤ λ ≤ 1, be a continuous family of locally Lipschitz
and completely continuous maps. Let ϕλ be the associated family of semiflows on C
satisfying

d

dt
ϕλ(t, x) = Aλ(ϕ(t, x)).

Suppose N ⊂ C is an isolating neighbourhood for every ϕλ. Then the Conley indices
C(N,ϕλ) are independent of λ ∈ [0, 1].

In the proof of Theorem 1.5 we also need the following reduction property of the homol-
ogy Conley index.

Theorem 2.3. Let C0 ⊂ C be closed convex, and suppose A(C) ⊂ C0, so C0 is positively
invariant under ϕ and there is an induced semiflow ϕ|C0 . If N ⊂ C is an isolating neigh-
bourhood for ϕ then N ∩ C0 is an isolating neighbourhood for ϕ|C0 and the homology
Conley indices H∗

(
CC(N,ϕ)

)
and H∗

(
CC0(N ∩ C0, ϕ|C0)

)
are isomorphic.

One might expect that not only the homology Conley indices are isomorphic but that even
the Conley indices are the same: CC(N,ϕ) = CC0(N ∩ C0, ϕ|C0). This does not seem to
be easy to prove, though.
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Proof. Consider x ∈ C such that ϕ(t, x) exists for all t < 0 and remains bounded. For
t < 0 the variation-of-constant formula yields

x− etϕ(t, x) =

∫ 0

t

esA(ϕ(s, x))ds ∈ (1− et)C0

because A(C) ⊂ C0 and
∫ 0

t
esds = 1 − et. Letting t → −∞ we deduce that x ∈ C0. It

follows that

(2.3) N− := {x ∈ N : ϕ(t, x) ∈ N for all t < 0} ⊂ C0,

that inv(N,ϕ) = inv(N ∩ C0, ϕ|C0), and that N ∩ C0 is an isolating neighbourhood
for ϕ|C0 . Given an index pair (N1, N2) for ϕ in N , [11, Theorem 4.6] implies that the
inclusion

(N1 ∩N−, N2 ∩N−) ↪→ (N1, N2)

induces an isomorphism in Alexander-Spanier cohomology:

H∗(N1/N2, {N2}) ∼= H∗(N1, N2) ∼= H∗(N1 ∩N−, N2 ∩N−).

One easily checks that (N1 ∩ C0, N2 ∩ C0) is an index pair for ϕ|C0 in N ∩ C0. Hence,
using (2.3) and [11, Theorem 4.6] once more we also have an isomorphism

H∗(N1 ∩C0/N2 ∩C0, {N2 ∩C0}) ∼= H∗(N1 ∩C0, N2 ∩C0) ∼= H∗(N1 ∩N−, N2 ∩N−).

It follows that the Conley indices CC(N,ϕ) and CC0(N ∩ C0, ϕ|C0) have isomorphic
Alexander-Spanier cohomology groups with arbitrary coefficients. Then also the (co-
)homology groups are isomorphic because the Conley indices have the homotopy type of
finite CW-complexes by Theorem 1.1. (The proof of Theorem 1.1 in the next section does
not require Theorem 2.3.)

3 Proof of Theorem 1.1
The closure A(N) is compact because N is bounded and A is completely continuous.
Hence, for fixed ε > 0 there exist points x1, . . . , xn ∈ C such that closA(N) ⊂⋃n
i=1 Uε(xi). We consider the partition of unity subordinated to this covering given by

πi : closA(N)→ [0, 1], πi(x) :=
dist(x,N \ Uε(xi))∑n
j=1 dist(x,N \ Uε(xj))

.

Now we define

Y :=

{
n∑
i=1

αixi : αi ∈ R,
n∑
i=1

αi = 1

}
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and approximate A by the finite-dimensional map

Aε : C → C ∩ Y, Aε(x) :=
n∑
i=1

πi(A(x))xi.

We may assume that 0 ∈ C and x1 = 0, so that Y is a finite-dimensional linear subspace
of X . Observe that int Y (C ∩ Y ) 6= ∅. Clearly we have ‖Aε(x) − A(x)‖ ≤ ε for every
x ∈ N . Since the maps π1, . . . , πn, hence Aε, are locally Lipschitz continuous the vector
field−id+λAε+(1−λ)A, with λ ∈ [0, 1], induces a semiflow ϕε,λ on C. For 0 < ε� 1,
N is an isolating neighbourhood for ϕε,λ for every λ ∈ [0, 1]. We fix such an ε from now
on. The continuation property of the Conley index yields

CC(N,ϕ) = CC(N,ϕε,0) = CC(N,ϕε,1).

We choose y0 ∈ int Y (C ∩ Y ) and define

Bδ(x) := (1− δ)Aε(x) + δy0.

Let ψδ be the semiflow on C induced by −id + Bδ. As before, for 0 < δ � 1, N is an
isolating neighbourhood for ψδ, hence

CC(N,ϕε,1) = CC(N,ψ0) = CC(N,ψδ).

We fix such a δ now and set ψ = ψδ. We claim that

(3.1) CC(N,ψ) = CY (N ∩ Y, ψ).

In order to see (3.1) we first observe that inv(N ∩Y, ψ) ⊂ int Y (C ∩Y ) because Bδ(C) ⊂
int Y (C ∩ Y ) by our choice of y0. In fact, C ∩ Y is strongly positive invariant for ψδ, i.e.,
ψδ(t, x) ∈ int Y (C∩Y ) for every y ∈ C, t > 0. It follows that ψ induces a flow in the open
subset int Y (C ∩ Y ) of the finite-dimensional space Y . According to [14, Theorem 2.4]
there exists a C∞ isolating block with corners (M,M−) for the isolated invariant set

S := inv(N ∩ Y, ψ) ⊂M ⊂ N ∩ Y.

This means that M ⊂ N ∩ Y is a compact isolating neighbourhood of S with
exit set M−, ∂M = M− ∪ M+ is a union of C∞-manifolds M± with boundaries
∂M− = ∂M+ = M− ∩ M+, so M is a ∂-manifold with corners. This implies that
the Conley index CY (N ∩ Y, ψ) = M/M− has the homotopy type of a finite pointed
CW-complex and that H∗(C(N,ϕ)) ∼= H∗(M/M−, {M−}) ∼= H∗(M,M−) is finitely
generated. Moreover, ψ is transverse to M±, i.e., at a point y ∈ M± the vector
−y + Bδ(y) is transverse to TyM±. It follows that for such y there exists ρy > 0 so that
the vector −y +Bδ(x) is transverse to TyM± for every x ∈ C with ‖x− y‖ ≤ ρy.
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We choose a closed complement Z of Y in X , and write the elements of X ∼= Y × Z as
x = (y, z) ∈ Y ×Z. Using the compactness of ∂M it follows that there exists ρ > 0 such
that for y = (y, 0) ∈ M± and ‖z‖ ≤ ρ, the vector −(y, z) + (Bδ(y, z), 0) is transverse
to M± × Nρ(0, Z) at (y, z); here Nρ(0, Z) = {z ∈ Z : ‖z‖ ≤ ρ}. Consequently,((
M ×Nρ(0, Z)

)
∩ C,

(
M− ×Nρ(0, Z)

)
∩ C

)
is an isolating block for the invariant set

inv(N,ψ) of the semiflow ψ in C. Now (3.1) follows because

CC(N,ψ) =
((
M ×Nρ(0, Z)

)
∩ C

)/((
M− ×Nρ(0, Z)

)
∩ C

)
'M/M− = CY (N ∩ Y, ψ)

Now we make the same reduction process for the fixed point index. The homotopy invari-
ance and the commutativity property of the fixed point index imply

(3.2)
indC(A,N) = indC(Aε, N) = indC(Bδ, N) = indC∩Y (Bδ, N ∩ Y )

= indY (Bδ, N ∩ Y ).

Here we use the same choices of ε and δ as above. In fact, it suffices that ε < dist(S,C \
N). By (3.1) and (3.2) it remains to prove

(3.3) indY (Bδ, N ∩ Y ) = χ
(
CY (N ∩ Y, ψ)

)
This is the Poincaré-Hopf formula in the finite-dimensional setting essentially going back
to Morse [10]. A version which applies here can be found in [12, Chapter 3, Theorem 3.8].

In our setting the Poincaré-Hopf formula (3.3) is actually very easy to prove. Since this
formula is the core of our paper and since we haven’t seen the following proof in the
literature we present it here. Recall the isolating block with corners (M,M−) from above.
The homotopy

h : [0, 1]× (N ∩ Y )→ Y, h(t, x) :=

Bδ(x) t = 0

1

t
(ψ(t, x)− x) + x t > 0

is continuous and there exists t0 > 0 such that

h(t, x) = x, 0 ≤ t ≤ t0 =⇒ x ∈ S ⊂ intM.

It follows that

(3.4) ind(Bδ, N ∩ Y ) = ind(Bδ,M) = ind(h(0, . ),M) = ind(h(t0, . ),M).

Next the homotopy

[0, 1]× (N ∩ Y )→ Y, (s, x) 7→
(

1− s
t0

+ s

)(
ψ(t0, x)− x

)
+ x
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shows that
ind(h(t0, . ),M) = ind(ψ(t0, . ),M).

Now consider the map

τ : M → [0,∞), τ(x) := min
{
t0, sup{t ≥ 0 : ψ(s, x) ∈M \M− for all s ∈ [0, t]}

}
which is continuous because (M,M−) is an isolating block. If x ∈ M− then τ(x) =
sup ∅ = 0. Consequently the map

f : M →M, f(x) := ψ(τ(x), x),

is well defined and continuous. Clearly Fix(f) = Fix(ψt0) ∪M− and there are disjoint
neighbourhoods V , W of Fix(ψt0) and M−, respectively, such that f(x) = ψ(t0, x) =
ψt0(x) for x ∈ V , and f(x) ∈M− for x ∈ W . It follows that

(3.5)

χ(M) = ind(id,M) = ind(f,M) = ind(f, V ) + ind(f,W )

= ind(ψt0 , V ) + ind(f,W ) = ind(ψt0 , V ) + ind(f,M−)

= ind(ψt0 , V ) + ind(id,M−) = ind(ψt0 , V ) + χ(M−)

= ind(ψt0 ,M) + χ(M−).

Here the first and the second to last equalities are consequences of the Lefschetz index for-
mula, which applies because M and M− are compact ENR’s. The second holds because
f is homotopic to the identity using the homotopy

H : [0, 1]×M →M, H(t, x) = ψ(tτ(x), x).

The third equality is a consequence of the additivity property of the fixed point index, the
fourth is obvious by our choice of V . The fifth follows from the commutativity property
of the fixed point index because f retractsW ontoM−, the sixth is trivial because f is the
identity on M−, and finally, the last uses the excision property of the fixed point index.
The Poincaré-Hopf formula (3.3) follows from (3.4) and (3.5) immediately:

indY (Bδ, N ∩ Y ) = ind(ψt0 ,M) = χ(M)− χ(M−) = χ(M,M−) = χ(M/M−, [M−])

= χ
(
CY (N ∩ Y, ψ)

)
.

Here the fourth equality holds because the inclusion M− ⊂ M is a cofibration (M− is a
deformation retract of a neighbourhood in M ).

4 Proof of Theorems 1.2, 1.3, and Corollary 1.4
Proof of Theorem 1.2. We set F := Fix(A) ∩ f ba ⊂ int f ba and S := inv(ϕ, f ba). The proof
consists of several steps.
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STEP 1: S is bounded.
Suppose to the contrary that there exist xn ∈ S, n ∈ N, with ‖xn‖ → ∞. Then we define

tn := inf{t ≥ 0 : dist(ϕ(s, xn), F ) ≥ 1 for all s ∈ [0, t]}.

Clearly tn < ∞ if dist(xn, F ) > 1 because dist(ϕ(s, xn), F ) → 0 as t → ∞. Since f
satisfies the Palais-Smale condition in C ∩ f ba we have

δ := inf{‖∇f(x)‖ : x ∈ C ∩ f ba, dist(x, F ) ≥ 1} > 0.

We obtain a contradiction as follows:

b− a ≥ f(xn)− f(ϕ(tn, xn)) = −
∫ tn

0

d

dt
f(ϕ(t, xn))dt =

∫ tn

0

‖∇f(ϕ(t, xn))‖2dt

≥ δ

∫ tn

0

‖∇f(ϕ(t, xn))‖dt = δ

∫ tn

0

∥∥∥ d
dt
ϕ(t, xn)

∥∥∥dt ≥ δ‖xn − ϕ(tn, xn)‖

≥ δ(‖xn‖ − ‖ϕ(tn, xn)‖) ≥ δ(‖xn‖ − 1− sup{‖x‖ : x ∈ F})→∞

STEP 2: S is compact
Since S is closed it suffices to prove that S is precompact. This follows from the fact that
S = ϕt(S) for t ≥ 0 and the variation-of-constant formula:

ϕt(x) = e−tx+

∫ t

0

es−tA(ϕs(x))ds.

The first summand e−tx ∈ e−tS lies in an arbitrarily small ball for t → ∞ because S
is bounded. Concerning the second summand, A(ϕs(x)) ∈ A(S) for x ∈ S, s ≥ 0,
and A(S) is precompact. Then M := {λy : y ∈ A(S), 0 ≤ λ ≤ 1} is precom-
pact and

∫ t
0
es−tA(ϕs(x))ds ∈ t · convM where convM denotes the closed convex hull

ofM , which is compact. Thus the integral lies in a compact set and STEP 2 follows easily.

Now we choose a bounded neighbourhood U ⊂ {x ∈ C : a < f(x) < b} of S and set

N := {ϕt(x) : x ∈ U, t ≥ 0, f(ϕt(x)) ≥ a}, N− := N ∩ f−1(a).

STEP 3: (N,N−) is an index pair for S and

indC(A,C ∩ f ba) = χ(N/N−, [N−]) = χ(CC(S, ϕ)).

That N is bounded can be proved in the same way as the boundedness of S in STEP 1.
The Palais-Smale condition implies that N is closed. Clearly S ⊂ U ⊂ int (N \ N−).
That N− is an exit set is also obvious.
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We fix some T > 0 and define

τ = τT : C ∩ f b → [0,∞], τ(x) = min
{
T, sup{t ≥ 0 : f(ϕt(x)) ≥ a}

}
,

where τ(x) := T if f(ϕt(x)) > a for all t ≥ 0. We also consider the deformation

(4.1) h = hT : [0, 1]× (C ∩ f b)→ C ∩ f b, h(t, x) := ϕ(tτ(x), x).

STEP 4: τ, h are continuous and h(1, C ∩ f b) ⊂ int (N) ∪ (C ∩ fa) for T large.
The continuity of τ , hence of h, is easy to prove. In order to see the inclusion suppose to
the contrary that there exists Tn → ∞ and xn ∈ C ∩ F b with ϕ(Tn, xn) /∈ int (N) ∪ fa.
Since int (N)∪fa is positive invariant by the construction of N , it follows that ϕ(t, xn) /∈
int (N) ∪ fa for 0 ≤ t ≤ Tn, hence,

‖∇f(ϕ(t, xn))‖ ≥ δ := inf{‖∇f(x)‖ : x ∈ f ba \ int (N)} > 0

for every t ∈ [0, Tn]. This yields the contradiction

b− a ≥ f(x)− f(ϕ(t, xn)) =

∫ Tn

0

‖∇f(ϕ(t, xn))‖2dt ≥ Tnδ
2 →∞

STEP 5: χ(CC(S, ϕ)) = χ(C ∩ f b, C ∩ fa)
Choose T as in STEP 4 and consider h = hT as in (4.1). Then we have:
(4.2)
χ(C ∩ f b, C ∩ fa) = χ(h(1, C ∩ f b), C ∩ fa) = χ(h(1, C ∩ f b) ∩N,C ∩ fa ∩N)

= χ(CC(S, ϕ))

The first equality is clear because the two pairs of topological spaces are homotopy
equivalent. The second equality is a consequence of the excision property of homology.
The pair (h(1, C ∩ f b) ∩N,C ∩ fa ∩N) is a regular index pair for S which implies the
third equality.

Theorem 1.2 is a consequence of STEP 3 and STEP 5. �

Proof of Theorem 1.3. Let

W± := {x ∈ C : ϕt(x)→ x0 as t→ ±∞}

be the positive (negative) invariant set of x0 with respect to ϕ. For ε > 0 we define

Nε := {ϕ(t, x) : x ∈ C ∩ f c+ε, dist(x,W+) ≤ ε, t ≥ 0, f(ϕ(t, x)) ≥ c− ε}
∪ {x ∈ W− : f(x) ≥ c− ε}.

and
N−ε := Nε ∩ f−1(c− ε).
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It is easy to check that (Nε, N
−
ε ) is an index pair for S = {x0} in C provided 0 < ε� 1.

Since∇f = id−A andA is completely continuous, f satisfies the Palais-Smale condition
in bounded sets, in particular in Nε. It follows easily that N−ε is a deformation retract of
Nε ∩ f c \ {x0}. Therefore N−ε ⊂ Nε is a cofibration and

(4.3) H∗
(
CC({x0}, ϕ)

) ∼= H∗
(
CC(Nε, ϕ)

) ∼= H∗(Nε, N
−
ε ).

The excision property of homology yields

(4.4) H∗ (C ∩ f c, C ∩ f c \ {x0}) ∼= H∗ (Nε ∩ f c, Nε ∩ f c \ {x0}) .

Again by the Palais-Smale condition the map

τ : Nε \W+ → [0,∞), τ(x) := sup{t ≥ 0 : f(ϕ(t, x)) < c},

is well defined and continuous, and it satisfies τ(x)→∞ as dist(x,W+)→ 0. Therefore
the map

h : [0, 1]×Nε → Nε, h(t, x) :=


ϕ(t/(1− t), x) if x ∈ W+, t < 1;

x0 if x ∈ W+, t = 1;

ϕ(tτ(x)/((1− t)τ(x) + 1), x) if x ∈ Nε \W+.

is well defined and continuous. h shows that Nε∩f c is a deformation retract of Nε, hence

(4.5) H∗ (Nε ∩ f c, Nε ∩ f c \ {x0}) ∼= H∗ (Nε, Nε ∩ f c \ {x0}) .

Since N−ε is a deformation retract of Nε ∩ f c \ {x0}, we have

(4.6) H∗ (Nε, Nε ∩ f c \ {x0}) ∼= H∗(Nε, N
−
ε ).

Theorem 1.3 follows from (4.3) – (4.6). �

Proof of Corollary 1.4. This follows immediately from Theorem 1.3 and the homotopy
invariance of the Conley index as stated in Theorem 2.2. �

5 Proof of Theorem 1.5
The proof owes a lot to the proof of [7, Theorem 1]. We may assume without loss of
generality that x0 = 0 and f(x0) = 0. We consider first the case where L repels a point
y ∈ W 0 \ T0. In that case, by [7, Lemma 1] there exists y0 ∈ C such that x − Lx 6= y0

for all x ∈ W 0. This implies in particular y0 6= 0. Now we define

ft(x) :=
1

2
‖x‖2 − (1− t)g(x)− t〈y0, x〉.
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Since∇ft(x) = x− ((1− t)A(x)+ ty0) and (1− t)A(x)+ ty0 ∈ C for x ∈ C, 0 ≤ t ≤ 1,
it follows that C is positively invariant with respect to the negative gradient flow of ft for
0 ≤ t ≤ 1. The proof of [7, Theorem 1(a)] shows that 0 is an isolated critical point of ft
for 0 ≤ t ≤ 1. Moreover, ∇f1(x) = x− y0 6= 0 for x close to 0. Consequently,

C∗(f |C , 0) ∼= C∗(f1|C , 0) ∼= 0.

It remains to consider the case where L does not repel a point in W 0 \T0. Let E0 ⊂ X be
the finite-dimensional eigenspace of L associated to σ(L)∩(1,∞), so thatm = dim (E0∩
T0). Let P : X → E0 ∩ T0 denote the orthogonal projection and set L0 := P ◦ L : X →
E0 ∩ T0. According to [7, Lemma 2] there exist ε0, δ > 0 such that

(5.1) ‖x− (1− λ)A(x)− λL0(x)‖ ≥ δ‖x‖ for all λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0.

It is here that the condition “L does not repel a point in W 0 \ T0” enters. Since the set

M := {L0x : x ∈ W 0, ‖x‖ = 1} ⊂ E0 ∩ T0 ⊂ W 0

is precompact as a bounded subset of the finite-dimensional space E0 ∩ T0 there ex-
ist y1, . . . , yj ∈ W0 =

⋃
t>0 tC such that M ⊂

⋃j
i=1 Uδ/3(yi). Setting µi(y) :=

max
{

0, δ
3
− ‖y − yi‖

}
we consider the finite-dimensional map

Qδ : M → conv{y1, . . . , yj}, Qδ(y) :=
1∑j

i=1 µi(y)

j∑
i=1

µi(y)yi.

This is a δ
3
-approximation of the identity on M :

‖Qδ(y)− y‖ ≤ 1∑j
i=1 µi(y)

j∑
i=1

µi(y)‖yi − y‖ ≤
δ

3
for all y ∈M .

We choose ti > 0 and xi ∈ C with yi = tixi. Observe that for s ≤ 1/ti we have
syi = stixi+(1−sti) ·0 ∈ C. Therefore, setting s0 := min{1/ti : i = 1, . . . , j} we have

sQδ(y) ∈ C for all y ∈M , 0 ≤ s ≤ s0.

Now we we define Aδ : W 0 → C by

Aδ(x) :=


0 x = 0;

‖x‖Qδ

(
L0(x/‖x‖)

)
x ∈ W 0, 0 < ‖x‖ ≤ s0;

s0Qδ

(
L0(x/‖x‖)

)
x ∈ W 0, ‖x‖ ≥ s0.
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Aδ is completely continuous and satisfies:

(5.2) ‖Aδ(x)− L0x‖ = ‖x‖ · ‖Qδ(L0(x/‖x‖))− L0(x/‖x‖)‖ ≤
δ

3
‖x‖

for all x ∈ W 0 with ‖x‖ ≤ s0. Clearly Qδ and Aδ are locally Lipschitz continuous.
Consequently, for 0 ≤ λ ≤ 1 the map

gλ := −id + (1− λ)A+ λAδ : C → C

is locally Lipschitz continuous and induces a semiflow ϕλ : Dλ ⊂ [0,∞)× C → C:
d

dt
ϕλ(t, x) = gλ(ϕλ(t, x))

ϕλ(0, x) = x

Lemma 5.1. {0} is an isolated invariant set for ϕλ, 0 ≤ λ ≤ 1; here δ is from (5.1).

Proof. Recall δ, ε0 from (5.1) and choose ε ≤ ε0 such that

(5.3) ‖A(x)− L0x‖ ≤
δ

3
‖x‖ for all x ∈ C with ‖x‖ ≤ ε.

We consider the family of functions

fλ(x) :=
1

2
‖x‖2 − (1− λ)g(x)− λ

2
〈L0x, x〉.

and show that fλ(ϕλ(t, x)) is strictly decreasing in t for every x ∈ C with 0 < ‖x‖ ≤ ε.
Observe that (5.1) says that

‖∇fλ(x)‖ ≥ δ‖x‖ for all λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0,

so using this and (5.3) we have for λ ∈ [0, 1], x ∈ C, 0 < ‖x‖ ≤ ε0:

〈∇fλ(x), gλ(x)〉 = −〈x− (1− λ)A(x)− λL0x, x− (1− λ)A(x)− λAδ(x)〉
= −‖∇fλ(x)‖2 + λ〈∇fλ(x), Aδ(x)− L0x〉
≤ −δ2‖x‖2 + δ‖x‖ · ‖Aδ(x)− L0x‖

≤ −δ2‖x‖2 + δ‖x‖ · δ
3
‖x‖

< 0

The lemma follows immediately.
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Lemma 5.1 and Theorem 2.2 imply

(5.4) Hk(f
c ∩ C, f c ∩ C \ {0}) ∼= Hk

(
CC({0}, ϕδ,0)

) ∼= Hk

(
CC({0}, ϕδ,1)

)
.

Since Aδ is defined on W 0, the vector field −id +Aδ induces a semiflow ψ on W 0 which
satisfies ψ|C = ϕδ,1. And since Aδ(W 0) ⊂ C, Theorem 2.3 implies

(5.5) Hk

(
CC({0}, ϕδ,1)

) ∼= Hk

(
CW 0

({0}, ψ)
)
.

Now we consider the homotopy

hλ := −id + (1− λ)Aδ + λL0 : W 0 → W 0, 0 ≤ λ ≤ 1,

which induces semiflows ψλ on W 0 satisfying

d

dt
ψλ(t, x) = hλ(ψλ(t, x)).

Clearly we have ψ0 = ψ. Observe that (5.1) implies ‖x − L0x‖ ≥ δ‖x‖ for all c ∈ C
close to 0, hence for all x ∈ W 0. Using this and (5.2) we see that the function f(x) =
〈x−L0x, x〉 satisfies 〈∇f(x), hλ(x)〉 < 0 for x ∈ W 0 with 0 < ‖x‖ ≤ ε0, hence f serves
as a strict Lyapunov function for ψλ near 0. It follows that {0} is an isolated invariant set
for ψλ, and the continuation invariance Theorem 2.2 yields

(5.6) Hk

(
CW 0

({0}, ψ)
) ∼= Hk

(
CW 0

({0}, ψ1)
)
.

Moreover, since L0(W 0) ⊂ E0 ∩ T0 Theorem 2.3 implies

(5.7) Hk

(
CW 0

({0}, ψ1)
) ∼= Hk

(
CE0∩T0({0}, ψ1|E0∩T0)

) ∼= δkmR.

The last isomorphism is obvious because 0 is a repeller for ψ1 in E0 ∩ T0 and m =
dim (E0 ∩ T0).
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