Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X—XX

MULTIBUMP SOLUTIONS OF NONLINEAR SCHRODINGER
EQUATIONS WITH STEEP POTENTIAL WELL AND
INDEFINITE POTENTIAL

THOMAS BARTSCH

Mathematisches Institut
University of Giessen
Arndtstr. 2 35392 Giessen Germany

ZHONGWEI TANG

School of Mathematical Sciences, Beijing Normal University
Laboratory of Mathematics and Complex Systems, Ministry of Education
Beijing 100875 P. R. of China

(Communicated by the associate editor name)

Dedicated to Jean Mawhin on the occasion of his T0th birthday.

ABSTRACT. We are concerned with the existence of single- and multi-bump
solutions of the equation —Au + (Ma(x) + ao(z))u = |ulP~2u, = € RN; here
p > 2, and p < ]3]_\12 if N > 3. We require that @ > 0 is in L{° (RV)
and has a bounded potential well Q, i.e. a(z) = 0 for z € Q and a(z) > 0
for € RNV \ Q. Unlike most other papers on this problem we allow that
ag € LOO(RN) changes sign. Using variational methods we prove the existence
of multibump solutions u) which localize, as A — oo, near prescribed isolated
open subsets Q1,...,Q, C Q. The operator Ly := —A 4 ag may have negative
eigenvalues in €2;, each bump of u may be sign-changing.

1. Introduction and main result. We are concerned with the stationary non-
linear Schrodinger equation

— Au+ (Na(z) +ag(x))u = [uP2u xRV,

S
u(xz) =0 as |z| — oo; ()

here p < 2* = 2N/(N — 2)*. We require that ¢ > 0 and 2 := inta=1(0) # 0.
Thus for A > 0 large the potential Aa + a¢ develops a steep potential well and one
expects to find solutions which localize near its bottom 2. This problem has found
much interest after being first considered in [3]-[1]; see the papers [10, 12] for recent
results and references to the literature.
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Fixing disjoint isolated open subsets ,...,Q; C Q we develop a method of
constructing solutions uy for A > 0 large such that the restrictions u )\|Qj converge
as A — oo towards a least energy solution of

— Au+ ap(z)u = |ulP~?u, u € Hy(Q;), (P;)

j=1,...,k. If —A + ao is positive such a result has been proved in [5]. In that
case, the trivial solution uw = 0 is a nondegenerate local minimum of the varia-
tional functional associated to (P;), and the least energy solution is positive and of
mountain pass type. More recently, Sato and Tanaka [10] considered the case where
ap = 1, so again —A + ag is positive. It is well known that (P;) has an unbounded
sequence uz(-J ), 1 € N, of critical points. This uses the oddness of the nonlinearity
in an essential way. Assuming Q = Q; + 5, Sato and Tanaka constructed for A
large solutions uy € H'(RY) of (S)) such that uy|q, converges towards u(ll), the
(2)

mountain solution of (P1), and uy|q, converges towards u;~, some j > 1.

In this paper we allow that —A 4 ag is indefinite. As a consequence, the least
energy solution of (P;) may change sign and will not be of mountain pass type in
general. It is obtained via a higher dimensional linking argument, or via a mini-
mization on a certain submanifold of Hg(§2;) of higher codimension. Our method
is quite different from those of [5] and [10]. It does not use the oddness of the
nonlinearity and can therefore be extended to deal with more general nonlinearities
f(u) instead of |ulP~2u; see Remark 1.2.

Let us fix our hypotheses on a and ag:
(V1) a € L (RYN), a > 0, Q := inta"!(0) # 0 is bounded with 9 smooth,

lim inf‘l:‘c_,oo a(z) > 0;

(Vo) ag € L=®(RN);

(V3) there exist nonempty disjoint open sets €y,...,Q,, C Q such that Q =
Ur<jcm - Foreach j = 1,...,m there holds Q; N Q\ Q; = 0 and —A + ag

is nondegenerate in Hj(Q;).

It is well known that under assumptions (V2) and (V) problem (P;) has a solution
obtained via a linking argument applied to the energy functional

1 1
Ii(u) = 5/9 (IVul® + apu®) — I;/Q [ulP.

J J
In fact, the solution can also be obtained by minimizing I; on the Nehari-Pankov
manifold; see Section 2. It is a least energy solution, i.e. it lies on the level

cj = inf{I;(u) : u € H}(Q;), u# 0 solves (P)},

and may be considered as ground state solution (see [11]. If 0 is a local minimum
of I; then this solution is positive and of mountain pass type; otherwise it changes
sign and has higher Morse index.

Theorem 1.1. Fiz a subset J C {1,2,---,m} and set Q; :=J;c; ;. Then for
any € > 0, there exists A(e) > 0 such that for any X > A(e), (Sx) has a solution
wy satisfying:

(i) For j € J there holds

1 1
/ (2(|Vu,\|2+aou§) — u,\p) dx —¢;
Q p

J

<e.
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(ii) / (|Vu>\|2 + (Aa+ ao)u?\) <e
RN\QJ

(iii) Bvery sequence A\, — oo has a subsequence (A\n,) such that uy, — @ as
i — oo. The restriction tulq, is a least energy solution of (P;) for j € J.
Moreover, @(x) =0 forz € RN \ Q.

This is a generalization of the result from [5] who considered the case where
—A + ag is positive definite, so that I; has mountain pass structure. A new feature
in the proof of our result is a combination of a global linking applied in each HJ (£2;),
j € J, and a local linking near 0 € Hi(€2;), j ¢ J. These are extended to H(R")
and “added”. We believe that this technique can be used in a variety of other
singular limit problems.

Remark 1.2. The results continue to hold for —Au + (Aa(z) + ag(z))u = f(u)
provided the nonlinearity f : R — R is continuous and satisfies the following condi-
tions:

(f1) f(u) =o(u) as u — 0.

(f2) 1F(w)] < A(1+ [uP~1) for some 7 > 0,

(f3) F(u)/u? = oo as |u| — oo where F(u) = [’ f.

(f4) The map u+— f(u)/|u| is strictly increasing in R\ {0}.

Also the hypotheses on the potential can be weakened. In (V;) the assumption
liminf |, o a(x) > 0 can be replaced by the following one: There exists M > 0
such that the measure of the set {z € RV : a(z) < M} is finite; see [1]. In (V2) it
suffices to assume that ag € L (RY) and essinfag > —oo. In order to keep the

loc
presentation readable we refrained from treating the most general situation.

Remark 1.3. If the least energy solutions u; of (P;) are isolated then Theorem 1.1
follows from [2]. In fact, one can show that they have nontrivial critical groups,
hence [2, Theorem 1.4] applies. If they have nontrivial degree then according
to [2, Theorem 1.2] there exists a connected set S C {(\,u) € R* x HY(RYN) :
(A, u) solves (Sy)} of solutions such that for any sequence (A, u,) € S with A\, —
oo there holds u,, — ZjeJ uj as n — oo. If they are even nondegenerate, then [2,
Theorem 1.3] yields a smooth function A — wu) satisfying uy — ZjeJ Uj as A — 00.

Our paper is organized as follows: In section 2 we recall the Nehari-Pankov man-
ifold and study the properties of the least energy solutions. Since the standard
functional associated to (S)) does not satisfy the Palais-Smale condition under our
hypotheses, in Section 3 we construct and investigate a penalized functional Jy.
This does satisfy the (PS)-condition for A large and its critical points in a certain
energy range are solutions of (Sy). In Section 4, we study the behavior of the eigen-
values and eigenspaces of —A 4+ Aa + ag when A — oco. Based on this we construct
a new linking and define a possible critical value for Jy, A > 0 large, in Section 5.
This is based on an intersection lemma which we prove in Section 6. Sections 5 and
6 are the new key ingredients of our work. Finally, Section 7 contains the proof of
Theorem 1.1.

We will use C' to denote various generic positive constants which are independent
of A and n, and we will write o(1) and 0,,(1) to denote quantities that tend to 0 as
A — 00, Tesp. n — oo.
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2. The Nehari-Pankov manifold. We consider an open subset O C R and a
potential b € Ly° (O) which is bounded below. The functional

J(u) = ;/ (IVul? + b(x) _7/ fuf?

is defined for u € H'(O) satisfying [, [blu® < co. We write E for either of the
energy spaces {u € H*(O) : [, |blu* < oo} or {u € H}(O) : [, [blu® < co}. In this
paper the operator —A + b(z) has finite Morse index and is nondegenerate on E.
Then E splits as an orthogonal sum E = E~ @ ET of the negative and positive ei-
genspace of —A+b(z), and dim E~ < co. Let P~ : E — E~ denote the orthogonal
projection.

The Nehari-Pankov manifold is defined as
N:={ueE\{0}: P VJ(u)=0, DJ(u)lul =0} C E\ E".

It has been introduced by Pankov [8] in a situation where dim E~ = oo, and coin-
cides with the Nehari manifold if E~ = {0}. In order to formulate certain geometric
properties of A/ we need some notation. For w € E\ E~ and R > r > 0 set

Hy, ={v+tw:ve E7, t>0} (2.1)
and
Aprri={v+tw:ve E™, ||v| <R, t € (r,R)} C Hy. (2.2)

Then we have
N={weFE\E™ :V(J|H,) =0}

Proposition 2.1.  a) For every w € ET\ {0} there exist t,, > 0 and p(w) € E~
such that Hy, NN = {p(w) + t - w}.
b) For every w € N and every u € H,, \ {w} there holds J(u) < J(w).
¢) co:=infuen J(u) >0
) For every w € N there holds |PTw| > max{||P~w]||,v/2co}.
e) Forwe N and 0 <r < |w| < R the map

fiHy,—E~ xR, f(u):= (P VJ(u),DJ(u)lu]),
has degree deg(f, Aw,r,r,0) = 1. Here we identify H, C E- & Rw and E~ X
Rt C E~ xR.

Proof. The proof of a) — d) can be found in [11]. For the proof of e) observe that
f is homotopic to V(J|Hy,) : Hy, - E~ @ Rw =2 E~ x R. By a) and b) the
constrained functional J|H,, has a unique critical point, namely w, which is the
global maximum. Since the local degree of a global maximum is +1 we deduce

deg(f, Awrr,0) = deg(V(J|Hy), Awr.r,0) = 1.
O

Remark 2.2. Set d := dim £~ and let ey, ...,eq be an orthonormal basis of E~.
We also need the sets A := {(s,t) € RExR:[s| <1, 0<t <1} and B := 0A C
R4*L. Given w € N and 0 < r < ||w|| < R the map

hwrr: (A, B) = (E,E\N)), hw,nr(st): RZslel (1 —t)yr +tR)yw
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is well defined. It is not difficult to see that all maps h, , r are homotopic. As a
consequence of Proposition 2.1 we have

= inf J(u)=  inf J(u) = inf J t
I AR T PR Y AR

where
I'={v:(4,B) = (E,E\N) | 7| is homotopic to some hy, , g}
The proof of the following result is standard.
Proposition 2.3. If J satisfies the Palais-Smale condition at the level ¢y = inf,epn J(u)

then cq is achieved by a least energy solution ug € N.

3. The penalized functional. We first construct a variational functional whose
critical points (in a certain energy range) will be solutions of (Sy) and which satisfies
the Palais-Smale condition. By assumption (V3) there exist smoothly bounded open
sets Q),...,Q/ C R such that

(TJ»CQ;»7 @ﬁ@z@fori#j, and ﬁ;ﬂQ\szﬁ.

Using (V1) — (V3), we may choose Ay > 0 such that
Noa(z) +ap(z) >1 ifzx ¢ Q = G Q;. (3.1)
j=1
Setting V) := Aa + ag we look for solutions lying in the energy space
E:= {u € DV2(RY) . /RN Viu® < oo} c HY(RY). (3.2)

As a consequence of (3.1) the norms

1/2
= ([, (9 +v370%))

are equivalent for A > Ag, and satisfy || - ||x < || - ||x for A < N. Occasionally we
write Ey for (E,| - |[x), and we observe that
-l <C|| - |]a for all A > Ag (3.3)
with embedding constant C' > 1 independent of A. The functional
1 1
I:E—=R, I)(u):= 7/ (IVul® + Vau?) — f/ |ulP,
2 Jry P Jry

is of class C?, and critical points of I are solutions of (S)). I, is the standard
functional associated to (Sy).

Since I does not need to satisfy the Palais-Smale condition we shall now modify
it. We first define for t € R and § > 0:

[t[P=2t if || <6
t) =
fs(®) {5?% if |t| >¢

and set Fs(t) := fot fs(s)ds. Let x : RN — [0,1] denote the characteristic function
of . We consider the penalized nonlinearity

gs (@, 1) = x (@)t 7%t + (1 = x(2)) f5(t)-
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Setting Gs(x,t) := fg gs(x, s)ds we can now define the functional
1
I E—=R, Jy(u) = 7/ (IVul® + Va(z)u?) —/ Gs(z,u),
2 RN RN

The constant ¢ is suppressed in the notation because it will be fixed. We only require
that 3C6P~2 < 1 with C from (3.3). This implies in particular that Gs(z,t) < t?/2
for z € RV \ Q. Tt is standard to check that Jy is of class C! and that its nontrivial
critical points are solutions of

—Au+ (Na(z) + ap(x))u = gs(z,u) in RV,

If moreover u satisfies |u(x)| < & for all z € RN \ ', then u solves the original
problem (Sy).

Proposition 3.1. Jy satisfies the Palais-Smale condition for A > Ag. More pre-
cisely, any sequence (u,) in E with

In(un) <e¢, VJda(up) — 0 strongly in Ey, (3.4)
contains a strongly convergent subsequence in E.
For the proof we need the following

Lemma 3.2. Suppose that a sequence (uy) in E satisfies (3.4). Then there exists
a constant M (c) which is independent of X such that

limsup ||u,||3 < M(c). (3.5)
n—oo

Proof. Setting &, := ||V Jx(uy)|| it follows from (3.4) that

LG [ (st - Fitu)

1

= */ 95 (0, U Uy, — Gs(z,un) (3.6)
2 RN RN

1
= Ja(un) — ijg\(un)un < e+ enlltnl|a
Observe that for |t| € (4, 00),

1 1. 1. p—2 p—2
Z _ — ZS§P—242 _ Z sp—242 D _ D> )
ot = Fylt) = 507242 = 56722 4 S0 S50 = S0 S50 20, (3)

and for |t| <4,

%f(t)t —F(t) = (; - ;) 1] (3.8)

Combining (3.6)-(3.8) we obtain

1 1 /
p—— unl? < c+o(1) + ep||tnlr-
(G-3) [ w Jual

Since V,~ is non-increasing with respect to A and suppV,  C Q' for A\ > Ay we
deduce for A > Ag:

Viu? = Vfuiﬁ/ V*uigC—l-/ un”
x/RN A Qf A Q Ao Q | | (39)
< O(1+c+ (en)llunllx),

where C is a positive constant which is independent of A and n.



NLS WITH STEEP POTENTIAL WELL AND INDEFINITE POTENTIAL 7

Using (3.4) once more, we obtain

1 1 1 1
- = vnQ V+2 = _ = V—2
(2 p)/w(|u|+*u") 27 p) Jan N

+ 1/ 96 (T, up )y — G(z,up) (3.10)
p RN RN

1
= Ja(uy) — ];J/’\(un)un < ¢+ enltn|a-

A similar argument yields

1 1 1
*/ gs(x,un)un — | Gs(z,un) > — ( - ) 51”2/ u? (3.11)
P JrN RN 2 p RN\(')/

Combining (3.10) and (3.11) gives

1 1 1 1
- _Z _ sp—2 2 _ (=2 _ = _ sp—2 2 +,.2
(2 p) (1= 8"2)|lunll3 = (2 p) (1-4 )/RN[IVunI + Vi)

< CO(1+4 ¢+ enllunlly).

Since 0P~2 < 1 it easily follows that there exists M (c) which is independent of
A > Ag such that (3.5) holds. This completes the proof of Lemma 3.2. O

Now we can give the

Proof of Proposition 3.1. From Lemma 3.2, we know that (u,) is bounded in Ej,
so after passing to a subsequence there holds

Uy, — u weakly in F)y,
u, — u strongly in LY (RN) for 2 < ¢ < 2%,

Up — w a.e in RV,

Now we prove that u,, — u in F). First of all, it is easy to check that u is a critical
point of Jy(u), that is,

/ (VuVy + Vy(z)uy) = / gs(z,u)p for every ¢ € E).
RN

RN

It follows from (3.4) that
on(1) = (Jx(un) — J3(w))(un — u)

= /RN(\V(un —u)* + Va(@)|un —ul?) — /R
+ [ o) =)
= |t — ulf3 — /Q V(@) un — ul? — / [ [Pt (i — )
_ /RN\Q, F5(wn) (un — u) + / P~ 2w, — u) +/ fs(u)(un — u)

RN\Q/

95(, un) (un — )
N



8 THOMAS BARTSCH AND ZHONGWEI TANG

By the definition of f5(t) we have

/ F3 (1) (11 — )
RN\Q/

g ) =072 =)

/ w(uy — u)
RN\ Q/

< 4 6P~2

/ Up (U, — 1)
RN\ Q/

)

< 3077 Juy — ul|32 + P2

Now u,, — u in F) implies

/RN\Q/ w(up, — u) /RN\Q/ fs(w)(upn — u)

Finally, since u,, — u strongly in LP(Q'), and since || - ||zz < C|| - |3, see (3.3), we
deduce:

(1= 308" ) lun — ul} < fun — ull = 36"2||un — ull7

< [ ual 2t =) = [Pt =)+ [V @) = uf? +0a(1)
Q Q Q

—0

—0 and — 0.

as n — 0o. Therefore u,, — u in E) because 3C6P~2 < 1. O

Proposition 3.3. Suppose the sequences A, — o0 and (u,) in E satisfy
In,(un) < e, VI, (un)llx, — 0. (3.12)

Then, after passing to a subsequence, we have:

a) u, — u weakly in E for some u € E.
—Au+ apu = |u|P"%u in Q;
b) u=0in RN\ Q, and u|g, solves L
(RS HO (Qj)
forji=1,...,m.
¢) |lun —ullx, — 0, consequently u, — u in H*(RY).
d) (un) also satisfies for n — oco:

(i) / Ana(z)u — 0
RN
(u‘)/ ([Vunf? + Vs, u2) = 0
RN\Q
(iii) / (IVun > + Vi, ul) — / (IVul® + ap(z)u®) forj=1,...,m.

Proof. As in the proof of Lemma 3.2, one shows that limsup,, ., [[un[l3 < M(c).
Thus (u,) stays bounded as n — oo in E, so we may assume that for some u € E:

Uy, — u weakly in F,
Uy — u a.e. in RY,
u, — u strongly in L{ (RY) for 2 < ¢ < 2%,
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Now we prove b). Setting Cy, := {z € RN : a(z) > 1}, we have for n large:

[z <t [ vad =5 [ Oate) +aoenad - - [ aotayu
Ck )\n RN )\n RN )\n RN
k k
<

1l + 5= llaollzsllunllZe = 0.
It follows that u(z) = 0 in (J;—, Cr = RV \ Q.

Next we have for any test function ¢ € C§°(Q;), j =1,2,...,m:

[T\, (un)ol < VI, (un)lx, [0l
Here we use the fact that ¢y, does not depend on A,. It follows that

/Q‘(VuVWraousO):/ g(z,u)ep.

J Q;

Anllelin, = 0.

This implies b).

In order to prove ¢) we observe that

T (un) (U —w) = T3 (u) (un — u)

=l =l = [ st [ st o

RN\
= —/ Vi (un — u)? — / | [P 2, (U, — ) +/ lulP 2 u(u, — u).
’ Q/ U

Here we have used the fact that supp V, C Y for n large. Since u,, — uin LP(Y),
we have

/ (|t P~ 2wy — [ulP~2u)(u,, —u) — 0 and Vi (un — u)? =0 asn — oo,
o o
On the other hand
[T, () (un = )] < [VIx, (un) [, [lun = ullx,,
< IV, (un)llx, (lunllx, + llullx,) = 0.

This implies
lem — ull3, — / (F(ttm) — F()) (1 — 10) — 0.
RN\ Q/

We obtain (1 —3C67~2)||u, —ul|} — 0 as in the proof of Proposition 3.1, hence
¢) holds.

It remains to prove d). Using c) we see that
1 1 1
7/ Apa(z)u? = f/ Apa(z)u? = f/ Ana(x)|uy, — ul?

Hun - u”%\n —0

IN

which proves (i); (i) and (iii) also follow immediately from c) O

Proposition 3.4. Given ¢ > 0 there exists A. > Ay such that for A > A, a critical
point uy of Jy with |Jx(uy)| < ¢ satisfies |uy| < 9§ for x € RV \ Q.
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Proof. Since uy € E) is a critical point of Jy(u) it satisfies the equation
—Auy + (Na(x) + ag(x))ux = gs(z,uy), in RV,

Using that uy is bounded in E independent of A, an argument as in the proof of [1,
Lemma 5.1] shows that ||uy||L~ is bounded independent of A. On the other hand,
by the definition of g5, we know that As(z) := gs(z,ux(z))/uxr(z) is bounded in
L>(RY). Moreover, (V;) implies that the negative part of Wy := \a + ag — A; is
bounded uniformly in A. It follows from [9, A.2.1] that the norm of W, in the Kato
class Ky is bounded uniformly in A. Thus by the subsolution estimate [9, Theorem
C.1.2] there exists a constant C' which is independent of A such that

ux(z)] < C(T)/ luxl; (3.13)
B (x)

here B,.(z) = {y € RY : |z — y| < r}. Proposition 3.3 implies that for any sequence

An — 00, after passing to a subsequence there holds uy, — ug € H} () strongly in

E, and therefore uy, — 0 strongly in L2(RY \ Q). Since \,, — oo was arbitrary, we

have

uy — 0 strongly in L2(R™ \ Q) as A — oc.
Thus, choosing r = 1 dist(Q, RY \ €'), we have uniformly in z € RV \ €’ that

ua(z)| < C(r)/B ( )|u,\(m)| < CO(r)(meas By (2)) 2 ur | 5. o))

< O(r) (meas B, ()2 Jux | /ot ga ) — 0-

This completes the proof. O

4. Behavior of eigenvalues and eigenspaces. Recall the smoothly bounded
open neighborhoods Q; of ; from the definition of the penalized functional in
Section 3, and denote X; := Hl(Qg) Let u?‘,l < u;‘g < ,u;‘73 < ... be the distinct
eigenvalues of Ly in X, and let Vﬁn, n € N, be the corresponding eigenspaces.
Similarly, let p;1 < pj2 < pjz < ... denote the distinct eigenvalues of Ly =

—A +ap in E; = H} () with eigenspaces V;,,. Then we have:
Lemma 4.1. '“;\,n — Wjn and Vf‘n — Vin as A = oo.

Here V])‘n — Vjn means that, given any sequence \; — oo and normalized
eigenfunctions i; € Vj’\n7 there exists a normalized eigenfunction 1 € Vj ,, such that

1; — 1 strongly in X; along a subsequence.

Corollary 4.2. For \ large the operator —A + Ma +ag on X; = H'(Q}) is nonde-
generate and has finite Morse index d; := dim E; uniformly in A.

Proof of Lemma 4.1. Since j € {1,...,m} is fixed, to simplify notation we denote
p;‘)n by p), tin DY i, Vf\n by V., and Vin by V. For n =1 the result has been
proved by Ding and Tanaka [5, Lemma 1.2]). Now suppose n > 2 and the result
holds up to n — 1. Set

d:=dimV; +---4+dimV,_; =dimV; + - -- + dim V.
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By the minmax description of the eigenvalues, see Reed and Simon [9, XIII.1], for
instance, there holds:

pin = inf {(Lay, ) : ¢ € H'()), [¥llz2(0y) =1,
1/JLVn);:Of0rm:17...,n—1}

i 4.1)
= f{(Lxv,¥) 1 ¢ € H' (), piry = 1, (
o % gy (D0, 0) 20 € HHQG), ey
(¥, ;) =0 fori=1,...,d}
and
pin = inf { (Lo, ) : ¥ € Hy (), Y120, =1,
YLV, form=1,...,n—1}
= max - inf {(Lot, ) 19 € Hy()), [¥]lr20, = 1, (4.2)

b1, ,pa—1€Hg ()
(¥, ¢) =0fori=1,...,d—1}.

Since V) — V,,, for 1 <m <n —1as A — oo, and since (Lzt,v) = (Lo, ), for
every ¢ € H} (), (4.1) and (4.2) imply:

limsup g < fi,. (4.3)

A—00

In order to prove equality consider a sequence \; — oo and normalized eigen-
functions ; corresponding to u)i. Then we have:

=L [ (96 + valo) + ao(@)0?) = s
Q; Q7

and

P; J.V,Qi form=1,2,...,n—1.
By (4.3), ¢ is bounded in H*(£2}), so we may assume that 1; — ¢ € H'(Q}) and
Yi — ¢ in L2(Q)). Tt is easy to see that ¢ = 0 in Q) \ Q;, because a(x) > 0 in
Q) \ Q;. Since 99 is smooth it follows that ¢ € H{j(€;). Strong convergence in
L2(Q;») implies fQj P2 = Jor ¥? = 1. Since by our induction assumption, V)i — V,,,,

m=1,...,n— 1, we obtain
Vv 1 Vy,, m=1...,n—1 (4.4)
By the minmax description of the nth-eigenvalue there holds:
po < [ (V0P +anfe)s?)

:
(4.5)
< li_minf/ (IVi)? + (Nia(@) + ao(z))y?) = liminf ) < p,.
71— 00 Q 71— 00

This and (4.3) show that u) — g, as A — oco. It also follows from (4.5) that
P; — 1 € Vy, strongly in X, hence Vn)‘ — V. O

,A
J
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5. Definition of the critical value. For j =1,...,m, we set E; := Hj(Q;) C E,
where E is defined in (3.2), and consider the functional

I, E; =R, Iju)= 1/ (IVul® + apu®) — 1/ [ulP.

2 Q; P Jo,
By assumption (V3), Ej; splits as the orthogonal sum E; = E; @ Ej of the negative
and positive eigenspace of —A + ag. As in Section 2 let P, : E; — E denote the
orthogonal projection. Since €; is bounded, p < 2N/(N —2) if N > 2, I; satisfies
the Palais-Smale condition, hence the infimum of I; on the Nehari-Pankov manifold

Nj ={ue E;\{0}: P (VI;(u)) =0, DIj(u)[u] = 0}
is achieved by some w; € Nj,

¢j = ulen/\ff Ii(u) = Ij(w;) > 0. (5.1)

We fix a subset J C {1,2,...,m}, set d; := dim £, and let e;;, i = 1,...,d
an orthonormal basis of E;, 7 =1,...,m. We also need the sets
A= {(sl,...,sm,t)eRdl X oo xR xR [sflee <1, i =1,...,m,
0<t; <1, j€ J}

and B := 0A. For R > max;cy ||wj| large and 0 < r < miney ||w;|| small, to be
determined below, we define the map 7y : A — F by

d;
Yo(s,1) Z RZsﬂeJZ tj)r +t;R)w +Z Tzsjieji

j€J i=1 jgJ \ i=1
Observe that I;(u) <0 for u € E, and therefore

d;

le rZsjieji S 0 for all Sji-

ig i=1

Hence if some sj; # 0 or some ¢; # 0 then

d.
vost ZI RZsﬂeﬂ (1 —=tj)r+t;R)w; +ZI- ri:sjieji
i=1

jeJ Jj¢d
— —00

as R — o0o. Also, if t; = 0 for j € J and r = 0 then J) (yo(s,t)) < 0. It follows that
for R > 0 large and r > 0 small there holds

Ir(0(s,t)) < ch for all (s,t) € B, A >0. (5.2)
jeJ
If  is small enough there exists a > 0 such that
Ii(uj) > oz||uj||%j for u; € E;', ujllz;, <7 (5.3)
We fix r, R satisfying (5.2) and (5.3). Now we define the sets
Hy:={h: Ax[0,1] = E:hecC h(s,t,0) =(s,1),

Jx(h(s,t,7)) is nonincreasing with respect to 7}
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and
Fyi={y:A—= E|3heH\V(st)€A:~(s,t) =h(s,t,1)}.
Finally we arrive at a minmax description of a possible critical value:

;= inf J t)). 5.4
ox = lnf - max, A(v(s:1)) (5.4)

Lemma 5.1. ¢y < Y ¢
jeJ
Proof. This follows from 7o € I'y, the choice of the w;, and Proposition 2.1. O

In order to obtain a lower bound for c¢) we need the smoothly bounded open
neighborhoods Q; of Q; from the definition of the penalized functional in Section 3.
We consider the functional I3 : X; = H'(€;) — R defined by

1 1
u) = f/ (1Vul’ + (Aa + ao)u?) _7/ ul?,
2 Q; p ’

Q'
and its associated Nehari-Pankov manifold
N} = {u € X;\ {0} : Q)™ (VINu)) =0 ,DI}Nu)[u] = 0}.

Here Q;"_ X — X;"_ is the orthogonal projection on the negative eigenspace
associated to Ly := —A + Xa + ap in X;. As a consequence of Corollary 4.2 the
results from Section 2 apply and the infimum

A

— s A
cj = ulerjl\f[A I (u) >0

is achieved. We have the following asymptotic behavior for cg\ as A — oo.

Lemma 5.2. c?‘ —¢j as A — oo.
Proof. Clearly Nj C N} because
Q) (VIMuy)) = P; (VIi(uy)) and DI} (u;)[uj] = DI;(u;)[uy]
for every u € H{(£;). It follows that
cj‘ <¢j. (5.5)

On the other hand, it is easy to see that c?- is nondecreasing with respect to A. Thus

(5.5) implies that the limit limy_, cj‘ exists and

Jim ) <. (5.6)

Now we prove the inverse of (5.6). Indeed, since I ])‘ satisfies the Palais-Smale
condition, c;-‘ is achieved by a critical point w? of I ;‘ Given a sequence \; — 00,
we deduce from (5.6) that w*' is uniformly bounded in H'(£2}), so we may assume
wh — w in H'(). As in the proof of Proposition 3.3 one sees that wh — w
strongly in H'(Q)), w € Hg(5;), and c;\ = IJ’\ (w*t) — I;(w); in particular w # 0.
Moreover,

DIy, (w*)[w*] = DI;j(w)[w]
and

Q VLY (W) = PV I;(w);
here we also used Lemma 4.1. Thus w € N; and

¢; < Ij(w) = . (5.7)

= lim ’
A— o0
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The lemma follows from (5.6) and (5.7). O

Let Qg := Ujng Q; and Q = Ung Qg We denote X := H'(Qf) = @jéﬁ X;
and Ey := H}(Qo) = ®j¢J E;. Let Xé‘f be the negative eigenspace associated to
—A+Xa+ap in Xp, and let E; be the negative eigenspace associated to —A+ag in
Eo. Clearly X3~ = @4, X}~ and Ey = @,,, E; . Finally, let Q)™ : Xo — X~
and Py : Ey — E; be the orthogonal projections.

The following linking property for v € I'y is the key to the proof of the lower
bound of ¢y. It will be proved in the next section.

Lemma 5.3. If A is sufficiently large, then for any v € Ty, there exists (s,t) € A
such that u := (s, t) satisfies
uj = ulq; € N} forjeJ, (5.8)
and
up L X3, |uol| < r. (5.9)

A
Lemma 5.4. ¢\ > > . ;¢5.

Proof. Lemma 5.3 yields that, given v € T') there exists (s,t) € A such that u :=
(s, t) satisfies (5.8) and (5.9). Using (5.3) this implies I3 (uo) > 0, hence

A A
InjxxJ,\ oy > Jx(u) > le (uj) > ch.
jed jeJ

As a consequence of the lemmas 5.1, 5.4 and 5.2, we deduce:

Corollary 5.5. There holds )\lim cy = E c; and for A large, cx is achieved by a
—00
jeJ
critical point uy of Jy.

Proof. In fact, for A large enough (5.2) implies

ex > max, Ix(v0(s, 1))

A standard argument now yields that ¢y is achieved by a critical point uy of Jy
provided A > Ay as in Proposition 3.1. As a consequence of Proposition 3.4, uy is
a solution of (Sy) for A large. O

6. Proof of Lemma 5.3. For u € E we write u; := ulg/, j € Jo := JU{0}. We
need the map
ftE—= X0 x [ (X} xR)
jed
defined by
fro:= Qéi B = X§T
and for j € J:
Pt E—= X7 xR, fuu) = (Q) (VI (uy), DI} (uj)[uy]) -
Clearly we have:

A)=0 <= wl X}, and u;j 6/\/']»)‘ forjeJ (6.1)
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Consider v € I'y and let h € H) be a homotopy from vy to 4. We have to show
that for A large there exists (s,t) € A such that u = (s, t) satisfies fy(u) =0 and
luo|| < 7. This will be done with a degree argument.

First we claim that for (s,t,7) € A x [0,1], u := h(s,t,7), and X\ large the
following holds:
) =0 = Jluollx, #r (6.2)
In order to see this we observe that Lemma 4.1 and (5.3) imply the existence of
B > 0 such that
I}(v) > B forallve X, ||lv|x, =7
and
I}(v) >0 forallve X7, |lv||x, <7
hold for A large. Moreover, Lemma 5.2 shows that
S <S48
jeJ jeJ
for A large. Now suppose that
l[uollxo = 7 (6.3)
Our choice of § implies for v € E and A > Ay that

1
Ja(v) = 3 /RN\Q/ (IVol* + (Aa + ag)v®) — /RN\Q, Gs(z,v)

j€Jo

> Z ( / (IVul® + (Aa + ap)v?) —%/,‘ |U|p>

Jj€Jo
- B

Jj€Jo

Thus we get for u = h(s,t,7)
u) > le‘(uj)26+20j‘>20j. (6.4)
Jj€Jo jEJ jEJ
On the other hand, using that Jy(h(s,t, 7)) is nonincreasing with respect to 7 € [0, 1]
we have
Ian(u) = In(h(s,t, 7)) < Jr(h(s,t,0)) = Jx(v0(s,t)) Zc]
jeJ

which contradicts with (6.4). This contradiction implies that (6.3) is impossible,
which proves (6.2).

Now we consider the sets
Gy :={(s,t,7) € Ax[0,1] : fa(h(s,t,7)) =0}
and
GY = {(s,t,7) € Gr : u = h(s,t,T) satisfies ||uol||x, < 7}
By (6.2), for A large there exists a neighborhood Uy of GY in A x [0,1] such that
UyxN(Gx\GY) = 0. We define U] := {(s,t) € A: (s,t,7) € Up}. The lemma
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is proved if we can find (s,t) € U} such that fi(y(s,t)) = 0. By the homotopy
invariance of the degree we have

deg(fx 07, U3, 0) = deg(fx 070, U3, 0). (6.5)
Setting
1—7r 1
R

s*=1(0,...,0) € R% x ... x R and t*( T)ERJ (6.6)
-Tr

we have
gn (A X {0}) - {(8*,t*,0)},
and therefore
deg(fx 070, UR, 0) = deg(fx 0 70, 4,0). (6.7)
Clearly 7y is linear in (s,t) and defines a homeomorphism
Yo : A=A =By, x [[Aw,mr € Ey x [[ Ho, € Hj(9).
JjeJ jeJ
Here Ay, r.r C Hy; C E; @ Ruwj is defined as in (2.1) and (2.2), and

d;
By, =qucky :u= ’l"zzsjiejia |5ji| <1
JgJ =1

It follows that
deg(fx © 70, 4,0) = £deg(fx, A", 0). (6.8)
Moreover, since A’ C H{(Q) we have for u € A’ that u; = ulgy € H} (). This
implies
Qo (uo) = By (uo),
and for j € J:
Q)7 (VINuy) = Py (VI;(uy)), DI}(uj)[u;] = DI;(u;)[uy].
Thus for v € A we have fy(u) = (g,(u;));jes, With go(u) = Py (u) and
9i(u;) = (P; (VI;(u;)), DI;(uj)ug]), j€J.

Now Proposition 2.1 e) yields

deg(fka A/, 0) = deg(g(), BO,Ra O) : H deg(gj’ Aw]‘,r,R, O) =1 (69)

JjeJ

The equations (6.5)-(6.9) imply the existence of (s,t) € Uy with fy(y(s,t)) =0. It
follows that u = ~y(s,t) satisfies ||ug||x, < r, in addition to f(u) = 0. This proves
Lemma 5.3.

7. Proof of Theorem 1.1. For v € E and M C RY measurable we use the
notation

l[ullxar = </M (IVul* + (Aa(z) + ao(fv))UQ))l/Q-

We choose € > 0 small so that B.(0, E;) contains only 0 € E; as critical point of
I;, for all j ¢ J. We also require that ¢ < \/2pc;/(p — 2) for j € J. Now we define

5= {ue Bailulyama, /3

||u||)\’93 —/2pc;/(p— 2)’ <eg/3forall je J}.
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Setting ¢* := ). ¢;, it is easy to check that D5 N Jf* contains all functions of the

form

jeJ

vi(x) x€Q;, jEJ,
’U)(Q?): ]() ?v .
0 zeR \Q,],

where v; minimizes [; in Nj; see Section 5.
Lemma 7.1. There exists o9 > 0 and Ay > Ag such that
[VIr(u)|[x =00 for X > Ay andu € (D3 \ D5) N J5 (7.1)

Proof. We argue by contradiction. Suppose there exist A, — oo and u,, € (D?\i \
D5 )N an such that [|[V.Jy,(u)lln, — 0. Since D3¢ is bounded we can apply
Proposition 3.3, so up to a subsequence u,, — u in E and ulq, is a critical point of
I;. In addition we have:

n— oo

lim |Jun|x, o :/ (|Vul* + ag(z)u?) for1<j<m, (7.2)
J Q]

and

Jim Jun[x, myior = 0. (7.3)
This implies that v = 0 in RV \ Q. Since ||u|q,|| < £ for j ¢ J we also have u =0
in RN\ ;. On the other hand, (7.2) and our choice of € imply ulq, # 0 for j € J,
hence I;(ulq,) > ¢; for j € J. Then Jy, (u,) < c¢* yields I;(ulg,) = ¢; for j € J.
From this we deduce

1 1\7!
/ (IVul? + agu?) = (2 - p) c; =2pcj/(p—2) forjel,
Q

hence u,, € D5 for large n by (7.2) and (7.3), contradicting u, € D3 \ D5 . O
The following proposition is the key of the proof of our main result.

Proposition 7.2. Let A1 be the constant given in Lemma 7.1 and A« the constant
from Proposition 3.4. Then for A > max{A1, A} there exists a solution uy of (Sy)
satisfying ux € D5 N J§\
Proof. We argue indirectly and assume that Jy has no critical points in D5 N Jﬁ*.
Since Jy satisfies the Palais-Smale condition, there exists a constant d) > 0 such
that

[V Jx(u)|lx > dy  for all uw € D5 NJS . (7.4)
By Lemma 7.1 there holds

[V Jr(u)||x > 00 for all u e (D¥\ D)NJS

Let ¢ : E — R be a Lipschitz continuous function such that
3e/2

1 for u € Dy
p(u) = e
0 foru¢ D3

and 0 < p(u) <1 for every u € E. Then the vector field
* VJy (u)
V:Ji - E, V) =—pu)——"",
; ()=~ el
is well defined, Lipschitz continuous and satisfies

IV (u)||x <1 for all u. (7.5)



18 THOMAS BARTSCH AND ZHONGWEI TANG

We consider the associated flow 7 : [0,00) x J{ — J5 defined by

itrw) = S = Vin(r.w), n(0,) = u.
Obviously 7 satisfies
LI\ w) = @)V A <0, (76)
and
n(ru) =u forallT>0, ueJ{ \ D¥. (7.7)
We consider 7(7,7o) for large 7. Since yo(s,t) & D3¢ for (s,t) € B, (7.7) implies
(7, v(s,t)) =vo(s,t) for (s,t) € B, 7> 0. (7.8)

Recall that suppyo(s,t) C Ujejﬁj for every (s,t) € A, hence Jx(vo(s,t)) and
[I70(s,t)|Ix,0 etc. do not depend on A > 0. On the other hand
In(o(s,t)) < ¢ for (s,t) € A
and there exists a unique (s*,t*) € A, see (6.6), with Jx(yo(s*,t*)) = ¢*, that is,
Yo(s*,t%))|lq, = w; for j € J and vo(s*,t*))(x)|q, = 0 for j ¢ J. Thus we have
mo = max{Jy(u) : u € v(4)\ D5} < ¢ (7.9)
is independent of A.

Now we claim that for large 7,

max Jx(n(7,vo0(s,t)) < max{myg,c" — ope/6} (7.10)
(s,t) €A

with o9, mg from (7.1), (7.9), respectively. In fact, (7.9) yields Jx(n(7,v0(s,t))) <
mo if v (s,t) € D5, 7 > 0. In the case yo(s,t) € D5 we consider the behavior of
(1) :=n(1,v(s,t)). We set dy := min{dy, 0o} and 7 = oou/6dy, where d is from
(7.4). We consider two cases:
1) (1) € Df’\gm for all T € [0,7].
2) 7i(mo) € 8Df’\6/2 for some T € [0, 7).
In case 1) we have ¢(7j(7)) = 1 and ||VJx(7(7))|[x > d for all 7 € [0, 7]. Then (7.1)
implies
. Td o
INGr) = Do) + [ ZING)

= Jy(r0(s,1)) - / D)) VIA((5)) 1 ds

<c - /Td~>\ds = —d\t=c"— o0e/6.
In case 2) there exist 0 < 7 < 7';) < 7 such that
i(r) € OD5, ii(r2) € DY, (7.11)
and

ii(r) € D3\ D5 for all 7 € [r, 7). (7.12)
It follows from (7.11) that

[0z, < /3 and \nﬁ(nm@; —/20e/(p - 2>| <e/3forallje
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and

~ 3 - e .
lillsma, = 5 or [l — 20es/ 0= 2) = 5 for some j € 4

This immediately implies

=

[7(11) = 71(72)[[x = £/6. (7.13)

Now (7.5), (7.13) and the mean value theorem imply 7 — 71 > €/6. Using (7.1)
we deduce

In(7)) = Ia(ro(s, 1) — /OT e(RSNIIVIN(T(s) 5 ds
<c - /T2 oods = c¢* —og(m2 — 1) < ¢ —oop/6
and thus (7.10) is proved.

Now we define h(s,t,r) := n(r7,vo(s,t)) and 3(s,t) == h(s,t,1) = (7, v0(s, t)).
Observe that h € Hy due to (7.6), (7.8), hence v € I'y. Thus we have

ex < In(A(s,t)) < max {mg,c* —oou/6} (7.14)

However by Corollary 5.5 we have ¢y — ¢* as A\ — co. This contradicts (7.10), and
thus Jy has a critical point uy € D5. By Proposition 3.4, uy is a solution of the
original problem (Sy). O

Finally we easily prove the main result.

Proof of Theorem 1.1. Let uy be a solution of (S)) obtained in Proposition 7.2.
Applying Proposition 3.3, for any given sequence \,, — 0o we can extract a subse-
quence, which satisfies the conclusion of Proposition 3.3. With the same argument
as in the proof of Lemma 7.1, we can extract a subsequence of uy,, such that uy, — u
in E along this subsequence, and U|RN\Q , = 0. Furthermore

: 1 2 2 1 N ;
nh_}n;o o (2(|Vu>\n +ao(z)uy, ) — §|u>\ )> =¢; forjedJ (7.15)
and
lim (IVu, > + (Ana(z) + ag(z))u3, ) = 0. (7.16)

n— o0 ]RN\QJ

Since the limits in (7.15) and (7.16) do not depend on the choice of the sequence
An — 00 Theorem 1.1 is proved. O
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