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Abstract

We consider the problem

—Au — g(u) = A,
ue H'(RY), [enu?=1, AeR,

in dimension N > 2. Here g is a superlinear, subcritical, possibly nonhomoge-
neous, odd nonlinearity. We deal with the case where the associated functional is not
bounded below on the L?-unit sphere, and we show the existence of infinitely many
solutions.
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1 Introduction

In this note we consider the nonlinear eigenvalue problem

{—Au — g(u) = Au,

1.1
(1) ue H'RY), [vu?*=1, A€R,

in dimension N > 2. The nonlinearity g : R — R is superlinear, subcritical, and possibly
nonhomogeneous. A model nonlinearity is

k
(1.2) g(u) = (Z |u|p"_2> u, 2<p<...<pp <2,

i=1

where 2* = 2N/(N — 2) if N > 3 and oo if N = 2, the critical Sobolev exponent.



This problem possesses many physical motivations, e. g. it appears in models for
Bose-Einstein condensation (see [9]). Looking for standing wave solutions ¥ (¢,z) =
e’y (z) of the dimensionless nonlinear Schrédinger equation

one is lead to problem (1.1) with g(u) = f(Ju|)u. As in these physical frameworks V¥ is
a wave function, it seems natural to search for normalized solutions, 1. e. solutions of the
equation satisfying [,y u* = 1.

If g is homogeneous (k£ = 1 in (1.2)) then one can use the classical results from [3,4],
for instance, to solve —Au + u = g(u), and then rescale u in order to obtain normalized
solutions of (1.1). This does not work for a general nonlinearity, it fails already in the
case k > 2 in (1.2). If g is not homogeneous and does not grow too fast (for g as in (1.2)
this means all p; < 2 + %) then one can minimize the associated functional

(1.3) J(u):%/RN yvu|2—/RN G(u), with G(t) :/Otg(s) ds,

on the L*-unit sphere S = {u € H,4(RY) : [,5 u®> = 1} to obtain a solution. Here
HL,(RY) denotes the space of radial H'-functions. The parameter \ appears as Lagrange
multiplier. Rather general conditions on g which allow minimization, even in a nonradial
setting, can be found in [7] and the references therein. If g is odd, as in the case g(u) =
f(Jul)u appearing in applications, and if g does not grow too fast then one can obtain
infinitely many solutions using classical min-max arguments based on the Krasnoselski
genus.

However for fast growing g, .J is not bounded below on S, hence minimization doesn’t
work. Moreover, the genus of the sublevel sets J* = {u € S : J(u) < ¢} is always
infinite, so the Krasnoselski genus arguments do not apply. In [8], Jeanjean was able
to treat nonhomogeneous, fast growing nonlinearities and showed the existence of one
solution of (1.1) using a mountain pass structure for .JJ on .S. The object of this short note
is to prove that for the same class of nonlinearities considered in [8], (1.1) actually has
infinitely many solutions.

In order to state our result we recall the assumptions on the function g made in [8]:

(Hy) g : R — Ris continuous and odd,

(112) tllEIE EI;IS[S [l7 i E ]Ii Sa[ S ) g
N

such that
0 < aG(s) <g(s)s < BG(s).



The condition G > 0 in (Hs) is not stated in [8] but used implicitely.

Theorem 1.1. If assumptions (H,) and (H>) hold, then problem (1.1) possesses an un-
bounded sequence of pairs of radial solutions (\,, tu,).

The proof is based on variational methods applied to the functional .J constrained to .S.
We shall present a new linking geometry for constrained functionals which is motivated by
the fountain theorem [2, Theorem 2.5]; see also [10, Section 3]. The classical symmetric
mountain pass theorem applies to functionals on Banach spaces, not on spheres. Another
difficulty due to the constraint is that J|s does not satisfy the Palais-Smale condition
although the embedding H' (RY) — LP(RY) of the space of radial H'-functions into
the LP-spaces is compact for 2 < p < 2*. In fact, there exist bounded Palais-Smale
sequences for J|g converging weakly to 0, and there may exist unbounded Palais-Smale
sequences.

2 Proof of Theorem 1.1

L (RY), provided with the
standard scalar product and norm: |[u||*> = |Vu|3 + |ul3. Here and in the sequel we
write |u, to denote the LP-norm. As we look for normalized solutions, we consider the
functional .J constrained to the L?-unit sphere in E:

In order to recover some compacity, we will work in £ = H!

Js:S={ueFE:|uy=1} =R, ul—>%/ \Vu\Q—/ G(u).
RN RN

Observe that VJg(u) = V.J(u) — A u for some A, € R.
The main theorem’s proof will follow from several lemmas. We fix a strictly increas-

ing sequence of finite-dimensional linear subspaces V,, C £ such that [, V,, is dense in
E.

Lemma 2.1. For 2 < p < 2* there holds:

2
o (V)
ueV=

= 1m
1 (fRN |u|p)2/p ueVih |U|12)

tn(p) = — 00 asn — oQ.

Proof. Arguing by contradiction, suppose there exists a sequence (u,) C FE such that
u, € Vit |u,l, = 1 and |lu,|| — ¢ < co. Then there exists u € E with u,, — uin F
and u,, — u in L up to a subsequence. Letv € F and (v,) C E such thatv, € V,,_; and
v, — vin V. We have, in F,

[ (s 0} < [, 0 = )|+ [(n; 0n) | < lunllflv = al] =0

so that u,, — 0 = u, while |u|, = 1, a contradiction. O
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We introduce now the constant

5 — max @)

=0 Jof "+ |l

which is well defined thanks to assumption (H5). For n € N we define

Mg/(2(6—2))
P = "T1j(—2)
where
2\5/2
B e i 2
My, = (pa(@) ™2 + pa(8) %) and L = 3K max ~———5—.
We also define

B,={ueV, - nS:|Vuly=p,}.

Then we have:

Lemma 2.2. ian J(u) — oo asn — oo.
uELn

Proof. For any u € B,,, we deduce, using the preceding lemma with p = o and p = /3,

1 1 .
tw) =5 [ el = [ Gz g [ i -x [ -k [
a/2

B/2
i (L 7o +1)
> %/RN Vuf? - % (/RN qu|2+1>£/2
]\i ((/RN |Vu]2)ﬁ/2 " 1)

AV
N | —
%\
2

<

|
@

o

Let P, , : E — V,_; be the orthogonal projection, and set

h, : S — Vi1 X R+, U +—r (Pn,lu, IVU|2) .



Then clearly B,, = h;*(0,p,). With 7 : V,,_; x R* — R™ denoting the projection we
define

r, = {7 :10,1] x (SNV,) — S| v is continuous, odd in u and such that
Vu: mohyoy(0,u) < p,/2, mohyoy(1,u) > 2pn}.
It is easy to see that I';, # (). To describe a particular element v € T',,, let
m:RxE—FE, m(s,u)=sx*u,
be the action of the group R on £ defined by
(s xu)(x) = eNu(e’s) VseR, uc B, zeRY.

Observe that s x u € S if u € S. The map v(t,u) = (2s,t — s,,) * uliesin I, for s,, > 0
large.
We now need the following linking property.

Lemma 2.3. For every y € I,,, there exists (t,u) € [0,1] x (SNV,,) such that v(t,u) €
B,.

For the proof of this lemma we need to recall some properties of the cohomological
index for spaces with an action of the group G = {—1,1}. This index goes back to [5]
and has been used in a variational setting in [6]. It associates to a G-space X an element
i(X) € Ny U {oo}. We only need the following properties.

(I;) If G acts on S"~! via multiplication then i(S"™!) = n.
(I2) If there exists an equivariant map X — Y then i(X) <i(Y).

(I3) Let X = XU X; be metrisable and X, X; C X be closed G-invariant subspaces.
Let Y be a G-space and consider a continuous map ¢ : [0,1] x Y — X such that
each ¢, = ¢(t,-) : Y — X is equivariant. If ¢o(Y) C Xy and ¢;(Y) C X, then

i(Im(¢) N Xo N X1) > i(Y).

Properties (/1) and (/) are standard and hold also for the Krasnoselskii genus. Property
(I3) has been proven in [1, Corollary 4.11, Remark 4.12]. We can now prove Lemma 2.3.

Proof. We fix v € I',,, and consider the map

¢=h,oy:[0,1]x(SNV,) =V, xRt = X.



Since
¢0<S N Vn) C Vo1 X (Oapn] = XO

and
¢1(Sﬁ Vn> C Vn,1 X [pn,OO) = Xl,

it follows from (/) — (/3) that
i(Im(p) N Xo N Xy) >i(SNV,) =dimV,.
If there would not exist (¢, u) € [0, 1] x (S NV,,) with y(t,u) € B,, then
Im(¢) N Xo N Xy C (Vor \ {0}) X {po}.
Now ([y), (I2) imply that
i(Im(¢) N Xo N Xy) <i((Vaa \ {0}) X {po}) = dim V4,
contradicting dim V,,_; < dim V/,. O

It follows from Lemma 2.3 that

2.1 = inf J(y(t,u)) > inf J .
(2.1) ¢n = Inf max (v(t,w) 2 inf J(u) = oo
ueSNVn,

We will show that ¢, is a critical value of ./, which finishes the proof of Theorem 1.1. We
fix n from now on.

Lemma 2.4. There exists a Palais-Smale sequence (uy )y for Js at the level ¢, satisfying

N

(2.2) | Vg3 + N/ Glup) — — g(up)ug — 0.
RN 2 ]RN

For the proof we recall the stretched functional from [8]:
J RxE—=R, (s,u)— J(s*u).

Now we define

r, = {’y :10,1] x (SNV,) = R x S|4 is continuous, odd in w,
and such that m oy € Fn},
where m(s,u) = s * u, and

¢, = inf max J((t,u)).
nf - max ((t, u))
u€SNVn



Lemma 2.5. We have ¢,, = ¢,

Proof. The maps

O:T, = Th v [(0,7): (Euw)— (0,9 u)],

and
Vil =T e moy: (tu) = m(3(tu)],
satisfy ) )
J(@()(t,u) = J(y(t,w), and  J(V(F)(t,u) = J((t,u)).
The lemma is an immediate consequence. O]

Proof of Lemma 2.4. By Ekeland’s variational principle there exists a Palais-Smale se-
quence (sg, ug )i for J|gxs at the level ¢,. From J(s,u) = J(0,s * u) we deduce that
(0, sy * u )y is also a Palais-Smale sequence for J |rxs at the level ¢,,. Thus we may as-
sume that s, = 0. This implies, firstly, that (ug ), is a Palais-Smale sequence for Jg at the
level c,, and secondly, using O J (0, ux) — 0, that (2.2) holds. O

Lemma 2.6. If the sequence (uy)y in S satisfies Ji(ug) — 0, Js(ug) — ¢ > 0, and (2.2),
then it is bounded and has a convergent subsequence.

Proof. That (uy)g is bounded in F, hence u;, — u along a subsequence, can be proved as
in [8, pp. 1644-1644]. The compactness of the embedding H! (RY) — LP(RY) yields
g(ux) — g(u) in E*. From J§(ug) — 0 it follows that

(2.3) —Auk — )\kuk — g(uk) —0 inFE*

for some sequence \j € R. Using Jg(ux) — ¢ > 0 and (2.2), we deduce as in [8,
Lemma 2.5] that \;, —>7)\ < 0 along a subsequence. Then —A — )\ is invertible and (2.3)
implies v, — (—A — X\)7(g(u)) in E. O

Theorem 1.1 follows from (2.1), Lemma 2.4 and Lemma 2.6.
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