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GROUND STATES OF A NONLINEAR CURL-CURL PROBLEM IN

CYLINDRICALLY SYMMETRIC MEDIA

THOMAS BARTSCH, TOMÁŠ DOHNAL, MICHAEL PLUM, AND WOLFGANG REICHEL

Abstract. We consider the nonlinear curl-curl problem ∇×∇×U+V (x)U = Γ(x)|U |p−1U

in R3 related to the nonlinear Maxwell equations for monochromatic fields. We search for
solutions as minimizers (ground states) of the corresponding energy functional defined on
subspaces (defocusing case) or natural constraints (focusing case) of H(curl;R3). Under a
cylindrical symmetry assumption on the functions V and Γ the variational problem can be
posed in a symmetric subspace of H(curl;R3). For a strongly defocusing case ess supΓ < 0
with large negative values of Γ at infinity we obtain ground states by the direct minimization
method. For the focusing case ess inf Γ > 0 the concentration compactness principle produces
ground states under the assumption that zero lies outside the spectrum of the linear operator
∇ × ∇ × +V (x). Examples of cylindrically symmetric functions V are provided for which
this holds.

1. Introduction

For given functions V ∈ L∞(R3), Γ ∈ L∞
loc(R

3) \ {0} we consider the nonlinear curl-curl
problem

(1.1) ∇×∇× U + V (x)U = Γ(x)|U |p−1U in R
3,

where p > 1, and look for real weak solutions

U ∈ X := H(curl;R3) ∩ Lp+1
|Γ| (R

3),

where Lp+1
|Γ| (R

3) denotes the space of Lp+1-functions with respect to the measure |Γ| dx and

H(curl;R3) is the space of functions U ∈ L2(R3) for which curlU is defined in the sense
of distributions and curlU ∈ L2(R3); cf. Section 2 for more details on these spaces. The
solutions U ∈ X of (1.1) arise as critical points of the functional

J [U ] =

∫

R3

1

2
(|∇ × U |2 + V (x)|U |2)− Γ(x)

p+ 1
|U |p+1 dx, U ∈ X.

We find ground state solutions, i.e. minimizers of J within a certain subspace (defocusing
case) or a natural constraint (focusing case) of X . Note that although we limit our attention
to real solutions, the methods are in principle applicable in the complex case U(x) ∈ C3 as
well.
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2 THOMAS BARTSCH, TOMÁŠ DOHNAL, MICHAEL PLUM, AND WOLFGANG REICHEL

1.1. Variational aspects of the curl-curl problem. In the literature there are only few
results on the nonlinear curl-curl problem. In [8] Benci, Fortunato opened the discussion
about ground states for the problem

(1.2) ∇×∇× U =W ′(|U |2)U.
The problem was solved by Azzollini, Benci, D’Aprile, Fortunato in [4] using variational
and symmetry-based methods. Using a different class of symmetries D’Aprile, Siciliano also
obtained in [9] solutions of (1.2). Recently, Bartsch and Mederski [6] considered ground
states as well as bound states of (1.2) on a bounded domain Ω with the boundary condition
ν × U = 0 on ∂Ω. In [16] Mederski considers (1.1) where, e.g., the right hand side is of the
form Γ(x)f(u) with f(u) ∼ |u|p−1u if |u| ≫ 1 and f(u) ∼ |u|q−1u if |u| ≪ 1 for 1 < p < 5 < q

and where Γ > 0 is periodic and bounded, V ≤ 0, V ∈ L
p+1

p−1 (R3) ∩ L
q+1

q−1 (R3).

Let us point out that on top of the common obstacle of J being unbounded from below in
case Γ > 0, the variational formulation has the following additional difficulties:

• For p > 1 the spaceH(curl;R3) does not embed into Lp+1
|Γ| (R

3) even when Γ is bounded.

In the so-called focusing case Γ > 0 it is therefore hard to control the X-norm of
any Palais-Smale sequence (Uk)k∈N, i.e., any sequence with (J [Uk])k∈N bounded and
J ′[Uk] → 0 as k → ∞.

• Note that ‖∇U‖22 = ‖∇ × U‖22 + ‖∇ · U‖22. Hence restriction of J to the space
X0 = {U ∈ X : ∇·U = 0} on one hand allows at least for Γ ∈ L∞(R3) the embedding
X0 → Lp+1

|Γ| (R
3) but on the other hand it generates an additional gradient term in the

Euler-Lagrange equation.

Therefore, finding critical points of J directly in the whole space X is out of the scope of the
current paper. Instead we will look for critical points on a suitable subspace by exploiting
symmetries of (1.1). As proposed in [4], one such subspace is given by functions U of the
form

(1.3) U(x) =
u(r, x3)

r





−x2
x1
0



 , r2 = x21 + x22,

where u : (0,∞)× R → R is a real valued, scalar function. Assuming cylindrical symmetry
also for the potentials V and Γ, i.e., V = V (r, x3),Γ = Γ(r, x3), this ansatz leads to the
equation

(

−∂2r − ∂2x3 −
1

r
∂r +

1

r2
+ V (r, x3)

)

u = Γ(r, x3)|u|p−1u.

We also define the linear operator in the vector valued equation (1.1) as

(1.4) L := (∇×∇×) + V (x)

and study its spectrum σ(L) when restricted to a suitable subspace of functions which exhibit
symmetries like the functions given in (1.3). Under the above symmetry assumptions, we
will study (1.1) in the following three scenarios:

• Fully radially symmetric case: V = V (ρ), Γ = Γ(ρ) with ρ2 = r2 + x23.
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• Strongly defocusing case: ess supR3 V < 0 and Γ(x) ≤ −C(1+|x|)α for some constants

C > 0 and α > 3(p−1)
2

.
• Focusing case: ess infR3 Γ > 0, 0 6∈ σ(L). Examples of such potentials V (r, x3) are
given. They are periodic in the x3-direction, satisfy limr→∞ V (r, x3) = V∞(x3) and
ess supR V∞(x3) > 0 > ess infR3 V . Hence the potential has non-vanishing negative
and, as r → ∞, also non-vanishing positive part.

From a physical point of view the latter two scenarios may be criticized. Because Γ corre-
sponds to the electric susceptibility of the considered medium, see Section 1.3, the strongly
defocusing case implies unrealistically high defocusing nature of the material. And since V (x)
is proportional to −n2(x), where n is the refractive index, the condition of the non-vanishing
positive part of V at infinity in the focusing case implies an imaginary refractive index. Hence
it will be desirable to overcome these limitations in future work.

1.2. Main results. Now we state our main results. The first result is concerned with those
solutions of (1.1) that are fully radially symmetric.

Theorem 1 (Fully radially symmetric case). Let p > 1 and assume that V,Γ ∈ L∞
loc(R

3) and

0 ≤ V Γ−1 ∈ L
p

p−1

loc (R3). Additionally suppose the full radial symmetry of V and Γ in R
3, i.e.

V (x) = Ṽ (|x|) and Γ(x) = Γ̃(|x|) for almost all x ∈ R3 and Ṽ , Γ̃ ∈ L∞
loc([0,∞)). Under the

full radial symmetry condition U(x) = MTU(Mx) for a.a. x ∈ R3 and all M ∈ O(3), all
distributional solutions U ∈ Lploc(R

3) of (1.1) satisfy ∇× U = 0 and have the form

U(x) = s(|x|)
(
V (x)

Γ(x)

) 1
p−1 x

|x| ,(1.5)

where s : (0,∞) → {−1, 1} is an arbitrary measurable function. If additionally (V Γ−1)
2

p−1 ,

(V Γ−1)
p+1

p−1Γ ∈ L1(R3) then U ∈ X and hence it is a critical point of J .

Thus, the assumption of full radial symmetry does not lead to interesting solutions of (1.1).
We therefore relax the fully radial symmetry and look for solutions having only cylindrical
symmetry. For this purpose we use in Theorem 2 and Theorem 3 the space XG1

which will
be defined in Section 2 and may be thought of as the subspace of X = H(curl;R3)∩Lp+1

|Γ| (R
3)

consisting of vector fields of the form (1.3).

Theorem 2 (Strongly defocusing case). Let p > 1 and assume that V = V (r, x3) and
Γ = Γ(r, x3) have cylindrical symmetry and satisfy

(i) Γ(x) ≤ −C(1 + |x|)α in R3 with α > 3
2
(p− 1) and C > 0,

(ii) V ∈ L∞(R3) and ess supR3 V < 0.

Then (1.1) has a ground state on XG1
.

Theorem 3 (Focusing case). Let 1 < p < 5 and assume that V = V (r, x3) and Γ = Γ(r, x3)
have cylindrical symmetry and satisfy

(i) ess infR3 Γ > 0,
(ii) V,Γ ∈ L∞(R3) are 1-periodic in the x3-direction, i.e., V (r, x3) = V (r, x3 + 1),

Γ(r, x3) = Γ(r, x3 + 1) for a.a. r > 0, x3 ∈ R,
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(iii) 0 6∈ σ(L).
Then (1.1) has a ground state on XG1

, which is moreover a minimizer of J restricted to a
natural constraint set (the so-called Nehari-Pankov manifold, cf. Section 5).

Examples of potentials V (r, x3) with 0 6∈ σ(L) are given in Section 4. They have non-
vanishing positive and negative parts.

1.3. Physical context of the problem. As we show below, equation (1.1) is a general-
ization of the Kerr nonlinear Maxwell’s equations in three dimensions for monochromatic
waves when higher harmonics are neglected. Solutions U ∈ H1(R3) then correspond to fully
localized standing electromagnetic waves. The problem of localizing light in all three dimen-
sions attracts strong interest in the physics community. This is partly due to the potential
applications of such “light bullets” as information carriers in future optical logic and optical
computing devices. Standing bullets, in particular, can be used in optical memory.

So far, to our knowledge, standing light bullets have not been observed in experiments:
neither in homogeneous or periodic media nor in radial or cylindrical geometries, correspond-
ing to the choice in this paper. Nevertheless, at least one theoretical prediction of such waves
exists. In the Kerr nonlinear fiber Bragg grating (a cylindrical geometry with periodicity in
the longitudinal direction) an asymptotic model for broad wavepackets and a small period-
icity contrast supports localized waves, so called gap solitons [3]. The model is the system
of one dimensional coupled mode equations and the gap solitons come in a family including
standing solutions. Gap solitons have been experimentally observed with velocities as low as
0.23 c

n
, where c is the speed of light in vacuum and n the average refractive index of the fiber

core [18], but not with velocity zero. On the other hand, moving localized pulses have been
demonstrated in numerous other nonlinear geometries including standard optical fibers [19]
and arrays of waveguides arranged in the plane [17]. In most physics articles theoretical
predictions of light bullets are made based on the nonlinear Schrödinger equation (NLS). For
instance in homogenous materials the NLS is known to have radially symmetric localized
solutions, so called Townes solitons, in all dimensions [27]. In periodic media [22] and at
interfaces of two periodic structures [10] standing ground state H1-solutions exist. The NLS
is, however, only an asymptotic approximation of Maxwell’s equations. Moreover, for inho-
mogeneous media in two and three dimensions the approximation has not been rigorously
justified. This paper, in contrast, deals with the full three dimensional Maxwell problem.

The three dimensional Maxwell equations in the absence of charges and currents read

∇× E + ∂tB = 0, ∇ · D = 0,

∇×H− ∂tD = 0, ∇ · B = 0.

Here E ,H : R4 → R3 denote the electric and magnetic field, respectively, and D,B : R4 → R3

denote the displacement field and the magnetic induction, respectively. For the relation
between the magnetic field H and the magnetic induction B we assume B = µ0H with µ0

constant. By taking the curl of the first equation one finds

(1.6) ∇×∇× E + µ0∂
2
tD = 0, ∇ · D = 0.
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For a Kerr-type nonlinear medium the material law between the electric field E and the
displacement field D is given by

(1.7) D = ǫ0
(
n2(x)E + PNL(x, E)

)
with PNL(x, E) = χ(3)(x)(E · E)E ,

where n2(x) = 1 + χ(1)(x) is the square of the linear refractive index and where PNL denotes
the nonlinear part of the polarization. Note that in this section we use the notation w · z =
w1z1+w2z2+w3z3 both for real and complex valued vectors w, z ∈ C3. The functions χ(1) and
χ(3) denote the linear and cubic susceptibilities of the medium respectively. Although χ(3) is
generally a tensor, symmetries in the atomic structure of the material allow a reduction to a
scalar, see [20, Sec. 2d]. The resulting second order equation for the electric field E is then
given by the quasilinear wave equation

(1.8) ∇×∇× E +
1

c2
∂2t
(
n(x)2E + χ(3)(x)(E · E)E

)
= 0, (x, t) ∈ R

4

together with ∇ · D = 0. Here c = (ǫ0µ0)
−1/2 is the speed of light in vacuum. If E solves

(1.8), then D is known from (1.7) and B can be obtained from ∇× E by a time integration
and thus also H is known. Moreover, the fields D,B will be divergence free provided they
are divergence free at some fixed time, e.g., t = 0.

The question of light bullets is that of the existence of solutions of Maxwell’s equations in
nonlinear dispersive media which are localized in space, i.e., which at all times t are decaying
to 0 as |x| → ∞.

In this paper we cannot give a complete answer to this question. Instead we will solve a
related problem. Motivated by Fourier-expansion in time, one might look for a solution of
(1.8) of the form E(x, t) = ∑∞

k=0

(
e−i(2k+1)ωtEk(x) + c.c.

)
with Ek(x) ∈ C3. If such solution

existed under the additional assumption of localization, i.e., E(x, t) decaying to 0 as |x| → ∞
for all t, then it would be a standing light bullet. Here we consider the simpler monochromatic
ansatz

(1.9) E(x, t) = e−iωtE(x) + c.c. with E(x) ∈ C
3.

If we insert these monochromatic fields into the constitutive relation (1.7) and neglect the
generation of higher harmonics, i.e., we cancel all terms with factors e±3iωt, then we obtain

the new simplified constitutive relation D = ǫ0

(

n2(x)E + P(a)
NL(x, E)

)

with

(1.10) P(a)
NL(x, e

−iωtE + c.c.) = χ(3)(x)e−iωt
(
2|E|2E + (E · E)Ē

)
+ c.c..

Note that here E · E = E2
1 + E2

2 + E2
3 ∈ C whereas |E|2 = |E1|2 + |E2|2 + |E3|2 denotes the

Hermitian inner product of E with itself. The second order elliptic equation for the E-field
resulting from (1.6) is

(1.11) ∇×∇× E − ω2

c2
(
n2(x)E + χ(3)(x)

(
2|E|2E + (E · E)E

)
= 0, x ∈ R

3.

Note that the divergence conditions ∇·D = 0 is automatically satisfied due to the monochro-
matic ansatz and the curl-curl structure of the equation.
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Another model of the nonlinear polarization which effectively removes higher harmonics
and results in equation (1.11) is given by time-averaging E · E . In detail, for a T−periodic
E(x, t) · E(x, t) one defines

(1.12) P(b)
NL(x, E) = χ(3)(x)

1

T

∫ T

0

E(x, t) · E(x, t)dt E(x, t),

see, e.g., [26, 28]. For E as in (1.9), where T = π/ω, we get the same for as in (1.10), i.e.

P(a)
NL(x, e

−iωtE + c.c.) = P(b)
NL(x, e

−iωtE + c.c.).

To sum up, we may say that a solution E : R3 → C3 of (1.11) gives via (1.9) rise to a
complete solution of the Maxwell system provided we consider the constitutive relation (1.10)
or (1.12) instead of (1.7).

With the notation

V (x) := −ω
2

c2
n2(x), Γ(x) := 3

ω2

c2
χ(3)(x)

equation (1.11) reads

(1.13) ∇×∇×E + V (x)E =
1

3
Γ(x)

(
2|E|2E + (E ·E)E

)
in R

3.

Restricting to real valued solutions E ∈ H1(R3), equation (1.13) is equivalent to (1.1) with
p = 3.

1.4. Structure of the paper. The rest of the paper is structured as follows. In Section 2
Theorem 1 is first proved. Next, for the case of cylindrical symmetry of V and Γ a subspace
of X is chosen in which minimization of J is possible. In Section 3 the strongly defocusing
case (i.e. Theorem 2) is handled by the direct minimization method. Sections 4 and 5 treat
the more delicate focusing case (i.e. Theorem 3). In Section 4 we study the spectrum of
the linear operator in (1.1) and find examples of V for which zero lies outside the spectrum.
This is a necessary condition for our minimization approach. Finally, in Section 5 J is
minimized on the so called Nehari-Pankov manifold within the symmetric subspace using the
concentration-compactness principle.

2. Variational formulation of (1.1)

We begin with the definition of some spaces of vector valued functions U : R3 → R3.
For a measurable weight-function σ : R3 → (0,∞) the corresponding weighted Lq-space for
1 ≤ q <∞ is defined by

Lqσ(R
3) =

{

U : R3 → R
3 :

∫

R3

σ(x) |U |q dx <∞
}

with the norm

‖U‖σ,q =
(∫

R3

σ(x) |U |q dx
) 1

q

.
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The space H1(R3) is defined by

H1(R3) = {U : R3 → R
3 : U i,

∂U i

∂xj
∈ L2(R3) for i, j = 1, 2, 3},

with the norm

‖U‖2H1 =

∫

R3

3∑

i,j=1

(
∂U i

∂xj

)2

+ |U |2 dx.

The space H(curl;R3) is defined by

H(curl;R3) = {U : R3 → R
3 : U,∇× U ∈ L2(R3)},

with the norm

‖U‖2H(curl) =

∫

R3

|∇ × U |+ |U |2 dx

and where ∇×U is understood in the distributional sense, i.e., it satisfies
∫

R3 (∇× U)·ϕdx =
∫

R3 U · curlϕdx for all C∞-functions ϕ : R3 → R3 with compact support.

Notice that for U ∈ H1(R3) we have the identity

∫

R3

|∇ × U |2 + (∇ · U)2 dx =

∫

R3

3∑

i,j=1

(
∂U i

∂xj

)2

dx

with ∇ · U denoting the distributional divergence of U . Therefore

(2.1) H(curl;R3) ∩ {U : ∇ · U = 0} = H1(R3) ∩ {U : ∇ · U = 0}.
This property will be used when we single out a suitable subspace of H1(R3), one in which
we can solve (1.1). For this purpose we first study the symmetries of (1.1).

Lemma 4. Assume that the locally bounded measurable functions V,Γ : R3 → R
3 are radially

symmetric.

(a) If U ∈ Lploc(R
3;R3) is a distributional solution of (1.1) and M ∈ O(3) then Ũ(x) :=

MTU(Mx) also solves (1.1) in the sense of distributions.
(b) Suppose U : R3 → R3 satisfies U(x) =MTU(Mx) for a.a. x ∈ R3 and all M ∈ O(3).

Then U(x) = f(|x|) x
|x|

for some f : [0,∞) → R. If additionally U ∈ L1
loc(R

3) then

∇× U = 0 in the sense of distributions.

Proof. (a) Let ϕ : R3 → R3 be a C∞-function with compact support, let M ∈ O(3) and
define

ψ(y) :=Mϕ(MT y), y ∈ R
3.

Then a direct computation yields

∇×∇× ψ(y) =M(∇×∇× ϕ)(MT y)

and thus

(Lψ)(y) =M(Lϕ)(MT y).
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Therefore, if U ∈ Lploc(R
3;R3) satisfies

∫

R3

U(y) · (Lψ)(y)− Γ(y)|U(y)|p−1U(y) · ψ(y) dy = 0 for all ψ ∈ C∞
0 (R3;R3)

then
∫

R3

Ũ(x) · (Lϕ)(x)− Γ(x)|Ũ(x)|p−1Ũ(x) · ϕ(x) dx

=

∫

R3

MTU(y) · (Lϕ)(MTy)− Γ(y)|U(y)|p−1MTU(y) · ϕ(MT y) dy

=

∫

R3

MTU(y) ·MTLψ(y)− Γ(y)|U(y)|p−1U(y) · ψ(y) dy

=

∫

R3

U(y) · Lψ(y)− Γ(y)|U(y)|p−1U(y) · ψ(y) dy
= 0.

(b) Let x ∈ R
3 be such that U(x) =MTU(Mx) for all M ∈ O(3). Then U(x) =MU(x) for

all those rotations M which leave x fixed, i.e., for all rotations around the axis Rx. Hence
U(x) ∈ Rx and we may write U(x) = f(|x|) x

|x|
. Under the assumption U ∈ L1

loc(R
3) we see

that f ∈ L1(I) for any compact interval I ⊂ (0,∞). Therefore we may define the function
F (r) :=

∫ r

1
f(s) ds for r > 0 which is absolutely continuous in R

+. Moreover, for any R > 1
using polar coordinates and Fubini’s theorem we see that

∫

BR(0)

|F (|x|)| dx = 4π

∫ R

0

∣
∣
∣
∣

∫ r

1

f(t) dt

∣
∣
∣
∣
r2 dr

≤ 4π

∫ 1

0

∫ 1

r

|f(t)| dt r2 dr + 4π

∫ R

1

∫ r

1

|f(t)| dt r2 dr

≤ 4π

3

∫ 1

0

|f(t)|t3 dt+ 4πR3

3

∫ R

1

|f(t)| dt

≤ 4πR3

3

∫ R

0

|f(t)|t2 dt

=
R3

3

∫

BR(0)

|U(x)| dx <∞

since U ∈ L1
loc(R

3). Hence the function F (| · |) belongs to L1
loc(R

3) and due to the absolute
continuity of F it has the strong derivative U(x) almost everywhere. Since both F (| · |) and
U are L1

loc(R
3), one can see that U(x) = ∇ (F (|x|)) in R3 in the weak sense. This implies

∇× U = 0 in the distributional sense. �

Proof of Theorem 1 : Suppose U ∈ Lploc(R
3) is a distributional solution of (1.1). Lemma 4

shows that the requirement of full radial symmetry of V and Γ and the solution symmetry
U(x) =MTU(Mx) for a.a. x ∈ R3 and all M ∈ O(3) reduces (1.1) to the algebraic equation

V (x)U = Γ(x)|U |p−1U in R
3.
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Provided 0 ≤ V Γ−1 the function U has the form (1.5). Now let us reversely assume that U

has the form (1.5). Since 0 ≤ V Γ−1 ∈ L
p

p−1

loc (R3) we see that U ∈ Lploc(R
3) and in particular

U ∈ L1
loc(R

3). Moreover, with an absolutely continuous function F : (0,∞) → R given by

F (t) =

∫ t

1

s(τ)

(

Ṽ (τ)

Γ̃(τ)

)1/(p−1)

dτ, t > 0

we have U(x) = ∇ (F (|x|)) in the distributional sense. As in Lemma 4 we find F (| · |) ∈
L1
loc(R

3) and, moreover, ∇×U = 0. Hence U solves (1.1). Finally, the assumption (V Γ−1)
2

p−1 ,

(V Γ−1)
p+1

p−1Γ ∈ L1(R3) implies that any U defined by (1.5) belongs to the space X and thus
is a critical point of J . �

Although the H(curl;R3) solutions in Theorem 1 are valid localized solutions of (1.1), in
the rest of the paper we consider solutions that are not gradient fields.

Since the requirement of full radial symmetry does not lead to interesting solutions of (1.1),
we look for solutions which are invariant only under a subgroup of O(3) (this idea is due to
Azzollini et. al. [4]). For this we define the following copy of SO(2) as a subset of O(3)

G0 :=











cosα − sinα 0
sinα cosα 0
0 0 1



 : α ∈ R






.

Assume that the measurable weight σ : R3 → (0,∞) satisfies σ(Mx) = σ(x) for all x ∈ R3

and all M ∈ G0. Then the group G0 operates isometrically on Lqσ(R
3), on H(curl;R3) and

on H1(R3) by the group action U 7→ MTU(M ·). Due to this result we can now define the
corresponding G0-fixed point subspaces of Lqσ(R

3), H(curl;R3) and Hk(R3), k ∈ N by

Lqσ,G0
(R3) = {U ∈ Lqσ(R

3) : U(x) =MTU(Mx) ∀x ∈ R
3, ∀M ∈ G0},

HG0
(curl;R3) = {U ∈ H(curl;R3) : U(x) =MTU(Mx) ∀x ∈ R

3, ∀M ∈ G0},
Hk
G0
(R3) = {U ∈ Hk(R3) : U(x) =MTU(Mx) ∀x ∈ R

3, ∀M ∈ G0}, k ∈ N,

XG0
= HG0

(curl;R3) ∩ Lp+1
|Γ| (R

3).

Observe that the functional J is invariant under the action of G0. Thus, by Palais’ principle
of symmetric criticality [21], [29], every critical point of J |XG0

is also a critical point of J on

X . Next we want to restrict the spaces Lqσ,G0
(R3), HG0

(curl;R3) and Hk
G0
(R3) even further.

In order to do so we need two lemmas – the first one being analogous to Lemma 4. We omit
the proofs because they are contained in Lemma 1 and Proposition 1 in [4].

Lemma 5. Suppose a measurable function U : R3 → R3 satisfies U(x) =MTU(Mx) for a.a.
x ∈ R

3 and all M ∈ G0. Then there are unique measurable functions Q, S, T : R3 → R
3 such

that

U(x) = Q(x) + S(x) + T (x)
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with

(2.2) Q(x) =
q(r, x3)

r





−x2
x1
0



 , S(x) =
s(r, x3)

r





x1
x2
0



 , T (x) =





0
0

t(r, x3)



 .

where q, s, t : (0,∞) × R → R are measurable function. If U ∈ Lqσ(R
3) or H1(R3) then

Q, S, T ∈ Lqσ(R
3) or H1(R3), respectively.

Lemma 6. Let Y be either the spaces Lqσ,G0
(R3), HG0

(curl;R3) or Hk
G0
(R3), k ∈ N and define

the map

g1 :

{
Y → Y,

U = Q + S + T 7→ Q− S − T.

The map g1 is a linear isometry and satisfies g1 ◦ g1 = Id. Hence G1 = {Id, g1} is a group of
order 2. Moreover, the functional J |XG0

is invariant under the action of G1.

Remark. The proof of the isometry and invariance statement relies on the fact that pointwise
|U |2 = |Q|2 + |S|2 + |T |2 and |∇U |2 = |∇Q|2 + |∇S|2 + |∇T |2, cf. [4]. However, for the curl
only |∇ × U |2 = |∇ ×Q|2 + |∇ × (S + T )|2 holds. But this is sufficient for our claim.

This result allows to define the spaces

Lqσ,G1
(R3) = {U ∈ Lqσ,G0

(R3) : g1U = U},
HG1

(curl;R3) = {U ∈ HG0
(curl;R3) : g1U = U},

Hk
G1
(R3) = {U ∈ Hk

G0
(R3) : g1U = U}, k ∈ N,

XG1
= HG1

(curl;R3) ∩ Lp+1
|Γ| (R

3).

All the spaces with the suffix G1 may be thought of as the subspaces of Lqσ(R
3), H(curl;R3)

and Hk(R3) consisting of vector fields of the form (1.3). Again, Palais’ principle of symmetric
criticality ensures that every critical point of J |XG1

is also a critical point of J on X . Finally,
note that

(2.3) HG1
(curl;R3) = H1

G1
(R3)

because the members of both spaces have vanishing divergence, cf. (2.1).

To summarize the results of this section recall that the energy functional related to (1.1)
is

J [U ] =

∫

R3

1

2
(|∇ × U |2 + V (x)|U |2)− Γ(x)

p+ 1
|U |p+1 dx,

which is well defined on X = H(curl;R3) ∩ Lp+1
|Γ| (R

3). Due to Lemma 5, Palais’ principle of

symmetric criticality (cf. Palais [21], Willem [29]) and (2.3) can seek critical points of the
functional J restricted to the subspace XG1

= H1
G1
(R3) ∩ Lp+1

|Γ| (R
3) and these critical points

will be solutions of (1.1). The elements of the subspace H1
G1
(R3) have the favorable property

of vanishing divergence.
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3. Ground states in the defocusing case

We assume p > 1 and

(H-defoc) Γ(x) ≤ −C(1 + |x|)α in R
3 with α >

3

2
(p− 1) and C > 0.

We work in the following reflexive Banach space

XG1
:= H1

G1
(R3) ∩ Lp+1

|Γ| (R
3)

where the norm on XG1
is given by

‖U‖X := ‖U‖H1 + ‖U‖|Γ|,p+1.

The basic tool for proving existence of ground states in the defocusing case is the following
embedding result, which is due to Benci, Fortunato [7].

Lemma 7. Assume p > 1 and (H-defoc). Then the space Lp+1
|Γ| (R

3) embeds continuously into

L2(R3) and the space XG1
embeds compactly into L2(R3).

Proof. Let β = p+1
p−1

and β ′ = p+1
2
. Then

∫

R3

|U |2 dx =

∫

R3

|Γ(x)|−
1

β′ |Γ(x)|
1

β′ |U |2 dx

≤
(∫

R3

|Γ(x)|− 2
p−1 dx

) p−1

p+1
(∫

R3

|Γ(x)||U |p+1 dx

) 2
p+1

,

and the first integral is finite since by assumption (H-defoc) |Γ(x)|− 2
p−1 ≤ C(1+ |x|)− 2α

p−1 and
− 2α
p−1

< −3. This proves the first part of the claim. For the second part, let us define the

positive and continuous radially symmetric function ρ : R3 → (0,∞) by setting ρ(x) = 1 for
|x| ≤ 1 and ρ(x) = |x|γ with γ > 0 so small that γβ − 2α

p−1
< 3. Then ρ(x) → ∞ as |x| → ∞

and
∫

R3 ρ(x)
β(1 + |x|)− 2α

p−1 dx <∞. We obtain

‖U‖2ρ,2 =
∫

R3

ρ(x)|Γ(x)|−
1

β′ |Γ(x)|
1

β′ |U |2 dx

≤
(∫

R3

ρ(x)β |Γ(x)|− 2
p−1 dx

) p−1

p+1
(∫

R3

|Γ(x)||U |p+1 dx

) 2
p+1

≤ C‖U‖2|Γ|,p+1.

This shows that Lp+1
|Γ| (R

3) embeds continuously into L2
ρ(R

3). Finally, by Theorem 3.1 of

Benci, Fortunato [7] we have that H1(R3) ∩ L2
ρ(R

3) embeds compactly into L2(R3). Both
facts together imply the second claim of the lemma. �

Lemma 8. Assume p > 1, (H-defoc) and V ∈ L∞(R3). Then the functional J is a weakly
lower-semicontinuous, coercive C1-functional on XG1

and hence has a minimizer.
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Proof. Since

J1[U ] =

∫

R3

1

2
|∇ × U |2 − Γ(x)

p+ 1
|U |p+1 dx

is convex on XG1
and

J2[U ] =

∫

R3

V (x)

2
|U |2 dx

is weakly continuous on XG1
by Lemma 7 we find that the functional J = J1 + J2 is weakly

lower-semicontinuous on XG1
. Moreover, there exist constants K1, . . . , K5 > 0 such that the

following estimates hold for U ∈ XG1
:

J [U ] ≥ 1

2
‖∇ × U‖22 +

1

p+ 1
‖U‖p+1

|Γ|,p+1 −
‖V ‖∞

2
‖U‖22

≥ 1

2
‖∇ × U‖22 +

1

p+ 1
‖U‖p+1

|Γ|,p+1 −K1‖U‖2|Γ|,p+1

≥ 1

2
‖∇ × U‖22 +K2‖U‖2|Γ|,p+1 −K3

≥ 1

2
‖∇ × U‖22 +K4‖U‖22 +

K2

2
‖U‖2|Γ|,p+1 −K3

≥ K5‖U‖2X −K3,

which shows the coercivity of J . It is clear that the quadratic parts of the functional J are
C1 and it is standard (cf. Struwe [25]) to verify that the functional

∫

R3 Γ(x)|U |p+1 has a
Gâteaux derivative which depends continuously on U ∈ XG1

. Hence J is a C1-functional on
XG1

and the minimizer of J is a weak solution of (1.1). �

Proof of Theorem 2: We set U0(x) = sW (tx) for some vector-valued function W ∈ C∞
0 (R3)

and take s, t > 0. Since ess supR3 V < 0 we obtain

J [U0] =

∫

R3

1

2
|∇ × U0(x)|2 −

Γ(x)

p+ 1
|U0(x)|p+1 +

V (x)

2
|U0(x)|2 dx

≤ t−3s2
∫

R3

t2

2
|∇ ×W (y)|2 − sp−1Γ(y/t)

p+ 1
|W (y)|p+1 +

ess supR3 V

2
|W (y)|2 dy

< 0

provided we first choose t > 0 so small that
∫

R3 t
2|∇ ×W (y)|2 + (ess sup3

R
V )|W (y)|2 dy < 0

and then choose s > 0 sufficiently small. Thus the minimizer of J over XG1
is non-trivial

and therefore a ground state of (1.1) within XG1
. �

4. Spectrum of the linear operator L
In the focusing case we can only show the existence of ground states (cf. Section 5) when

zero does not lie in the spectrum of the linear operator

L := (∇×∇×) + V (r, x3).
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Of course an easy example is given by the class of potentials V = V (r, x3) with ess inf VR3 >
0. However, since V (x) is proportional to −n2(x) with n(x) being the refractive index,
the physically interesting case consists of functions V which are negative (or at least have
non-vanishing negative part). In this section we construct potentials V with non-vanishing
negative part and where 0 lies in a spectral gap of the operator L, cf. Lemma 15, Lemma 16,
Lemma 17.

The construction of such examples needs various preprations. We consider L as an operator
defined on

D(L) = H2
G1
(R3) ⊂ L2

G1
(R3)

and we will show in Lemma 12 that L is a selfadjoint operator, whose spectrum has a
particular additive structure whenever the potential is separable, i.e., V (r, x3) = W (r) +
P (x3), cf. Lemma 14. The key to these results is the following observation: if

U(x) = u(r, x3)





−x2
x1
0



 with r =
√

x21 + x22

then

(4.1) LU(x) =
(

(Lu)(r, x3)
)





−x2
x1
0





with

(4.2) L = − 1

r3
∂

∂r

(

r3
∂

∂r

)

− ∂2

∂x23
+ V (r, x3)

where the first two terms correspond to a five-dimensional Laplacian with cylindrical sym-
metry. Let us now start with the detailed analysis of the operators and their spectra.

Define the maps

Ψrad :

{

R
4 → R,

(y1, . . . , y4) 7→
√

y21 + . . .+ y24
Ψ :

{
R5 → R2,

(y1, . . . , y5) 7→ (Ψrad(y1, . . . , y4), y5)

In the following we use the index rad for spaces of functions u : (0,∞) → R of the single
radial variable r; the index cyl refers to spaces of functions u : (0,∞) × R → R of two
variables r, x3). For the following Hilbert spaces we also denote in brackets the measure with
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respect to which integration is performed.

L2
rad(r

3dr) =
{
u : (0,∞) → R : u ◦Ψrad ∈ L2(R4)

}

=
{
u : (0,∞) → R : u ∈ L2

r3(0,∞)
}
,

L2
cyl(r

3drdx3) =
{
u : (0,∞)× R → R : u ◦Ψ ∈ L2(R5)

}

=
{
u : (0,∞) → R : u ∈ L2

r3((0,∞)× R)
}
,

H1
rad(r

3dr) =
{
u : (0,∞) → R : u ◦Ψrad ∈ H1(R4)

}

=
{
u : (0,∞) → R : u, u′ ∈ L2

r3(0,∞)
}
,

H1
cyl(r

3drdx3) =
{
u : (0,∞)× R → R : u ◦Ψ ∈ H1(R5)

}

=

{

u : (0,∞)× R → R : u,
∂u

∂r
,
∂u

∂x3
∈ L2

r3((0,∞)× R)

}

,

H2
rad(r

3dr) =
{
u : (0,∞) → R : u ◦Ψrad ∈ H2(R4)

}

=

{

u : (0,∞) → R : u, u′,
u′

r
, u′′ ∈ L2

r3(0,∞)

}

,

H2
cyl(r

3drdx3) =
{
u : (0,∞)× R → R : u ◦Ψ ∈ H2(R5)

}

=

{

u : (0,∞)× R → R : u,
∂u

∂r
,
∂u

∂x3
,
1

r

∂u

∂r
,
∂2u

∂r2
,
∂2u

∂x23
∈ L2

r3((0,∞)× R)

}

.

These identities may be well known. For the sake of clarity we explain the last one for
H2

cyl(r
3drdx3) on the level of the derivatives of highest order: u◦Ψ has second order derivatives

in L2(R5) if and only if for all i, j ∈ {1, 2, 3, 4} we have

(4.3)

(
∂2u

∂r2
− 1

r

∂u

∂r

)
yiyj
r2

+
∂u

∂r

δij
r
,
∂2u

∂x23
,
∂2u

∂r∂x3

yi
r
∈ L2(R5).

In view of the fact that
∫

R3

∑3
i,j=1

(
∂2v(x)
∂xi∂xj

)2

dx =
∫

R3 (∆v(x))
2 dx for v ∈ C∞

0 (R3) we see

that

u ◦Ψ,∆(u ◦Ψ) ∈ L2(R5) ⇐⇒ u ◦Ψ ∈ H2(R5)

Hence, for (4.3) it is sufficient to have

(4.4) u,
1

r

∂u

∂r
,
∂2u

∂r2
,
∂2u

∂x23
∈ L2

r3((0,∞)× R)

since the L2-norm of ∂2u
∂r∂x3

may be estimated by the L2-norm of ∆(u ◦ Ψ), i.e., by sums of

L2
r3((0,∞)×R)-norms of 1

r
∂u
∂r
, ∂

2u
∂r2

, ∂
2u
∂x23

. Let us also show that (4.4) is necessary. If we square

all the entries in (4.3) and add them up then we see that

∫ ∞

0

∫ ∞

−∞

((
∂2u

∂r2

)2

+
3

r2

(
∂u

∂r

)2

+

(
∂2u

∂x23

)2

+

(
∂2u

∂r∂x3

)2
)

r3 drdx3 <∞,

which implies that (4.4) is also necessary.
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The spaces carry natural inner products. Instead of listing all of them we just write out
the ones for H2

rad(r
3dr) and H2

cyl(r
3drdx3):

〈u, v〉H2
rad

=

∫ ∞

0

(

uv + u′v′ +
1

r2
u′v′ + u′′v′′

)

r3dr

〈u, v〉H2
cyl

=

∫ ∞

0

∫ ∞

−∞

(

uv +
∂u

∂r

∂v

∂r
+

∂u

∂x3

∂v

∂x3
+

1

r2
∂u

∂r

∂v

∂r
+
∂2u

∂r2
∂2v

∂r2
+
∂2u

∂x23

∂2v

∂x23

)

r3drdx3.

The above identities of spaces have the following implication.

Lemma 9 (Hardy’s inequality).

(i) There exists a constant C > 0 such that for all u ∈ H1
cyl(r

3drdx3)

∫ ∞

0

∫ ∞

−∞

u2

r2
r3drdx3 ≤

∫ ∞

0

∫ ∞

−∞

((
∂u

∂r

)2

+

(
∂u

∂x3

)2
)

r3drdx3.

(ii) There exists a constant C > 0 such that for all u ∈ H2
cyl(r

3drdx3)

∫ ∞

0

∫ ∞

−∞

1

r2

(
∂u

∂x3

)2

r3drdx3 ≤
∫ ∞

0

∫ ∞

−∞

((
∂2u

∂r2

)2

+
1

r2

(
∂u

∂r

)2

+

(
∂2u

∂x23

)2
)

r3drdx3.

Proof. We use the identities of spaces as explained above. Part (i) can be found as Theorem C
in [5] set up in R5 where r = dist(y,K) and K = {y ∈ R5 : y1 = y2 = y3 = y4 = 0}. Note
that H1

0 (R
5 \ K) = H1

0 (R
5), cf. Theorem 2.43 in [14], because as a subset of R5 the set K

has zero 2-capacity, cf. Section 4.7.2 in [12]. Part (ii) is a consequence of (i) when applied to
∂U/∂y5 ∈ H1

0 (R
5). �

Lemma 10. The following identity holds between the group invariant spaces (denoted with
suffix G1) and the spaces of scalar functions with cylindrical symmetry (denoted with suffix
cyl):

L2
G1
(R3) =






u(r, x3)





−x2
x1
0



 : u ∈ L2
cyl(r

3drdx3)







Hk
G1
(R3) =






u(r, x3)





−x2
x1
0



 : u ∈ Hk
cyl(r

3drdx3)






, k = 1, 2.

Proof. Let

U(x1, x2, x3) = u(r, x3)





−x2
x1
0





The identity of the L2-spaces is obvious since
∫

R3

|U(x)|2 dx = 2π

∫ ∞

0

∫ ∞

−∞

|u(r, x3)|2r3drdx3.
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Next we prove the identity of the H1-spaces. Clearly U ∈ H1(R3) if and only if xiu ∈ H1(R3)
for i = 1, 2, i.e., if and only if

uδij +
xixj
r

∂u

∂r
, xi

∂u

∂x3
, xiu ∈ L2(R3).

By squaring, summing from i, j = 1, 2 and rearranging terms this in turn is equivalent to

∫ ∞

0

∫ ∞

−∞

(

u2 +

(

u+ r
∂u

∂r

)2

+ r2
(
∂u

∂x3

)2

+ r2u2

)

r drdx3 <∞.

The above is equivalent to u
r
, ∂u
∂r
, ∂u
∂x3
, u ∈ L2

r3((0,∞)×R). Hardy’s inequality of Lemma 9 tells

us that the L2
r3((0,∞)×R)-norm of the first term is bounded by the norm of the remaining

terms, and hence U ∈ H1(R3) if and only if u ∈ H1
cyl(r

3drdx3). Finally, let us prove the

identity for the H2-spaces. The second derivatives of U lie in H2(R3) if and only if

δij
xk
r

∂u

∂r
+ δik

xj
r

∂u

∂r
+ δjk

xi
r

∂u

∂r
− xixjxk

r3
∂u

∂r
+
xixjxk
r2

∂2u

∂r2
, δij

∂u

∂x3
+
xixj
r

∂2u

∂r∂x3
∈ L2(R3)

for i, j, k = 1, 2. By squaring, summing from i, j, k = 1, 2 and rearranging this becomes

∫ ∞

0

∫ ∞

−∞

(

3

(
∂u

∂r

)2

+

(

2
∂u

∂r
+ r

∂2u

∂r2

)2
)

r drdx3 <∞

∫ ∞

0

∫ ∞

−∞

((
∂u

∂x3

)2

+

(
∂u

∂x3
+ r

∂2u

∂r∂x3

)2
)

r drdx3 <∞
∫ ∞

0

∫ ∞

−∞

(
∂2u

∂x23

)2

r3 drdx3 <∞

Therefore a necessary and sufficient condition for U ∈ H2(R3) is given by

∫ ∞

0

∫ ∞

−∞

(

1

r2

(
∂u

∂r

)2

+

(
∂2u

∂r2

)2

+
1

r2

(
∂u

∂x3

)2

+

(
∂2u

∂r∂x3

)2

+

(
∂2u

∂x23

)2
)

r3 drdx3 <∞

By the relation ‖D2u‖L2(R3) = ‖∆u‖L2(R3) and by Hardy’s inequality of Lemma 9 the above
is equivalent to

∫ ∞

0

∫ ∞

−∞

(

1

r2

(
∂u

∂r

)2

+

(
∂2u

∂r2

)2

+

(
∂2u

∂x23

)2
)

r3 drdx3 <∞

which means that U has second derivatives in L2(R3) if and only if 1
r
∂u
∂r
, ∂

2u
∂r2
, ∂

2u
∂x23

∈ L2
r3((0,∞)×

R). In view of the definition of H2
cyl(r

3drdx3) this establishes the claim. �

Lemma 11. Let V ∈ L∞(R3) and suppose V = V (r, x3) has cylindrical symmetry. Then
the operator L : D(L) := H2

cyl(r
3drdx3) ⊂ L2

cyl(r
3drdx3) → L2

cyl(r
3drdx3) given by (4.2) is

selfadjoint.
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Proof. For u ∈ D(L) we have

(Lu) ◦Ψ = −∆(u ◦Ψ) + (V u) ◦Ψ,
i.e., L coincides with the five-dimensional Schrödinger operator −∆ + V in the space of
functions with cylindrical symmetry. �

Lemma 12. Let V ∈ L∞(R3) and suppose V = V (r, x3) has cylindrical symmetry. The
operator L := (∇ × ∇×) + V (r, x3) defined on D(L) = H2

G1
(R3) ⊂ L2

G1
(R3) → L2

G1
(R3) is

selfadjoint and σ(L) = σ(L).

Proof. First we check the symmetry of L. Let U, Ũ ∈ D(L), i.e., by Lemma 10,

U(x) = u(r, x3)





−x2
x1
0



 , Ũ(x) = ũ(r, x3)





−x2
x1
0





for some u, ũ ∈ D(L). Thus

〈LU, Ũ〉L2(R3) =

〈



−x2
x1
0



 (Lu)(r, x3),





−x2
x1
0



 ũ(r, x3)

〉

L2(R3)

= 2π〈Lu, ũ〉L2
cyl

(4.5)

= 2π〈u, Lũ〉L2
cyl

since L is selfadjoint

= 〈U,LŨ〉L2(R3).

To show that L is selfadjoint it suffices to show that for some µ ∈ R the operator

L − µ Id : D(L) → L2
G1
(R3)

is onto, cf. [11], Theorem 4.2. We choose any µ in the resolvent set of L, e.g. µ = −‖V ‖∞−1.
Let F ∈ L2

G1
(R3), i.e., there exists f ∈ L2

cyl(r
3drdx3) with

F (x) = f(r, x3)





−x2
x1
0



 .

Since µ lies in the resolvent set of L we can find u ∈ D(L) = H2
cyl(r

3drdx3) such that
Lu − µu = f . Defining

U(x) = u(r, x3)





−x2
x1
0





and using (4.1) we get LU − µU = F . This finishes the proof of the selfadjointness of L and
also of the identity of the resolvent sets of L and of L and hence σ(L) = σ(L) follows. �

We assume now that our cylindrical waveguide geometry is 1-periodic along the x3-direction,
i.e., V (r, x3) = V (r, x3 + 1) for a.a. r > 0 and x3 ∈ R. Besides the cylindrical symmetry and
the periodicity in x3-direction, the existence of ground states in the focusing case relies on
the assumption that 0 6∈ σ(L). In the following we will construct an example of a potential
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V = V (r, x3) which is 1-periodic w.r.t. x3, with 0 6∈ σ(L) and with σ(L) ∩ (−∞, 0) 6= ∅.
Recall that the physical significance of the sign of V has been explained at the beginning of
this section.

Let us assume that the linear potential V is separable, i.e.

(4.6) V (r, x3) = W (r) + P (x3).

with W ∈ L∞(0,∞), P ∈ L∞(R) and P (x3+1) = P (x3) for all x3 ∈ R (later we will assume
that P is piecewise continuous in order to have (4.7)). The splitting of the potential implies
a splitting of the operator L as follows (so far we consider this only on a formal level): if
u(r, x3) = v(r)w(x3) then

(Lu)(r, x3) = w(x3)(Lrv)(r) + v(r)(Lpw)(x3)

where Lr, Lp are given by the following differential expressions

Lr = − 1

r3
∂

∂r

(

r3
∂

∂r

)

+W (r), Lp = − ∂2

∂x23
+ P (x3).

We can give these differential expressions the meaning of proper selfadjoint operators by
specifying their domains of definition properly as in the following lemma.

Lemma 13. Let W ∈ L∞(0,∞), P ∈ L∞(R). The operator Lp defined on D(Lp) =
H2(R) ⊂ L2(R) → L2(R) is selfadjoint. The operator Lr defined on D(Lr) = H2

rad(r
3dr) ⊂

L2
rad(r

3dr) → L2
rad(r

3dr) is selfadjoint.

Proof. The statement for Lp is clear. The statement for Lr follows from the observation
that for v ∈ H2

rad(r
3dr)

(Lrv) ◦Ψrad = −∆(v ◦Ψrad) + (Wv) ◦Ψrad,

i.e., Lr coincides with the four dimensional Schrödinger operator −∆ + W (r) with radial
symmetry. �

Now we are in a position to state that for V (r, x3) =W (r) +P (x3) the spectrum of L can
be computed by separation of variables.

Lemma 14. Let W ∈ L∞(0,∞), P ∈ L∞(R) and V (r, x3) = W (r) + P (x3). Then σ(L) =
σ(L) = σ(Lr) + σ(Lp).

Proof. Let us define the subspace

D0 =

{
N∑

k=1

vk(r)wk(x3) : N ∈ N, vk ∈ D(Lr), wk ∈ D(Lp) for k = 1, . . . , N.

}

and the operator Lr + Lp on D0 by

(Lr + Lp)

(
N∑

k=1

vkwk

)

:=

N∑

k=1

(
(Lrvk)wk + vk(Lpwk)

)
.
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The subspace D0 is dense in L2
cyl(r

3drdx3) because D(Lr) ⊂ L2
rad(r

3dr) and D(Lp) ⊂ L2(R)
are dense. Since Lr + Lp is symmetric, it is therefore closable. Let us recall the definition of
the closure of an operator and its domain:

D(Lr + Lp) =
{
u ∈ L2

cyl(r
3drdx3) : ∃(un)n∈N in D0, z ∈ L2

cyl(r
3drdx3) s.t.

un → u in L2
cyl(r

3drdx3) and (Lr + Lp)un → z in L2
cyl(r

3drdx3)
}
.

For u ∈ D(Lr + Lp) one defines Lr + Lp(u) := z. By Theorem VIII.33 and its Corollary from
[24], the selfadjointness of Lr, Lp is passed on and yields selfadjointness of Lr + Lp. Note also

that Lr+Lp = L|D0
and hence Lr + Lp = L|D0

. Since by Lemma 11 the operator L defined on

H2
cyl(r

3drdx3) is a selfadjoint extension of L|D0
and hence also of the operator L|D0

= Lr + Lp
which is already selfadjoint, we find that Lr + Lp = L. Again by Theorem VIII.33 and its

Corollary from [24] we find the claim σ(L) = σ(Lr + Lp) = σ(Lr) + σ(Lp) = σ(Lr) + σ(Lp),
where the last equality holds since the two spectra σ(Lr), σ(Lp) are closed and bounded from
below. �

Next to the periodicity and boundedness of P let us now sharpen the assumption by
requiring additionally that P is piecewise continuous. Then the spectrum of Lp is purely
continuous and consists of the union of countably many intervals

(4.7) σ(Lp) =
∞⋃

k=1

[ν2k−1, ν2k] with ν2k−1 < ν2k ≤ ν2k+1,

see Theorem XIII.90 in [23]. We assume that the first gap is open, i.e.,

ν2 < ν3.

Next we describe the radial part of the spectrum of L under some special assumptions on
the potential W . We start with some properties of Bessel functions.

Lemma 15. Let J1 denote the order one Bessel function which is regular at 0 and K1 the
order one modified Bessel function which decreases exponentially at infinity. Let 0 < j1 <
j2 < . . . be the positive zeroes of J1 and 0 < j′1 < j′2 < . . . be the positive zeroes of J ′

1. Let

η∗ =
√

(j1)2 − (j′1)
2, η∗ :=

√

(j′2)
2 − (j1)2.

Then η∗ < η∗ and for every η ∈ [η∗, η
∗] there exists a unique value ξ = ξ(η) ∈ (j′1, j1) with

the properties

(4.8)
J1(ξ)

ξJ ′
1(ξ)

=
K1(η)

ηK ′
1(η)

and (j1)
2 < ξ2 + η2 < (j′2)

2.

Proof. Define g̃ : (0, j′2) \ {j′1} → R and h̃ : (0,∞) → R by

g̃(ξ) :=
J1(ξ)

ξJ ′
1(ξ)

, h̃(η) :=
K1(η)

ηK ′
1(η)

.

Let us mention that the properties of g̃, h̃ used in this proof are proved in Lemma 23 in the
Appendix. Since g̃(ξ) → 1 as ξ → 0+ and h̃(η) → −1 as η → 0+, the two functions can be
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extended continuously to 0. Moreover, on [0, j′1) the function g̃ is strictly increasing from 1

to +∞, on (j′1, j
′
2) it increases strictly from −∞ to +∞ with a zero at j1. The function h̃

is negative and strictly increases on [0,∞) from −1 to 0. Suppose a value η > 0 is given.

By the strict monotonicity of g̃ we can find a unique solution ξ = ξ(η) of g̃(ξ) = h̃(η) within
the interval (j′1, j1). Now we want to ensure that the pair (ξ(η), η) satisfies the constraint in
(4.8). Since ξ(η) ∈ (j′1, j1) the constraint (j1)

2 < ξ2 + η2 < (j′2)
2 is certainly satisfied if we

impose the following restriction on η:

η2 ∈
(
(j1)

2 − (j′1)
2, (j′2)

2 − (j1)
2
)
= (η2∗, η

∗2).

Note that η∗ > η∗ is equivalent to 2(j1)
2 < (j′1)

2 + (j′2)
2. This inequality can be checked

using the numerical values in Table 9.5 of [2]. Up to an error in omitted digits the values are
j1 = 3.83171, j′1 = 1.84118, and j′2 = 5.33144 so that 2(j1)

2 < (j′1)
2 + (j′2)

2 holds. �

Lemma 16. Assume ν2 < ν3 and choose values µ0,W∞ such that

(4.9) − ν3 < µ0 < −ν2 < −ν1 < W∞.

Let η ∈ [η∗, η
∗] and let ξ(η) be as in Lemma 15. If we define

δ :=
η√

W∞ − µ0

and W0 := µ0 −
(
ξ(η)

δ

)2

as well as

(4.10) W (r) =

{
W0, 0 ≤ r < δ,

W∞, r ≥ δ,

then µ0 is an eigenvalue of Lr. There are no other eigenvalues below the essential spectrum
[W∞,∞) and hence

σ(Lr) = {µ0} ∪ [W∞,∞).

Proof. Due to the form ofW as in (4.10) we have σ(Lr) ⊂ [W0,∞) and σess(Lr) = [W∞,∞).
Now consider the eigenvalue equation

(4.11) − u′′(r)− 3

r
u′(r) = (−W (r) + µ)u.

Let us check that neither W0 nor W∞ are eigenvalues of Lr. First suppose µ = W0 is an
eigenvalue. Note that −W (r)+W0 ≤ 0 on [0,∞) and < 0 on (δ,∞). Multiplication of (4.11)
with a corresponding eigenfunction u and integration with respect to the measure r3 dr on
(0,∞) yields a positive left hand side and a negative right hand side. Hence µ =W0 is not an
eigenvalue. Now suppose µ = W∞ is an eigenvalue and u is a corresponding eigenfunction.
Then −W (r)+W0 = 0 for r ≥ δ so that u(r) = const. r−2 on [δ,∞). But no matter how r−2

extends to [0, δ) the function u does not belong to L2
rad(r

3dr) because
∫∞

δ
r−4 · r3dr = ∞. So

µ =W∞ is also not an eigenvalue of Lr.

Since min σ(Lr) ≥W0 and since neither W0 nor W∞ are eigenvalues of Lr, we are looking
for solutions of (4.11) with W0 < µ < W∞. As W (r) only takes the values W0,W∞, equation
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(4.11) is transformed via u(r) = r−1v(
√
µ−W0r), s :=

√
µ−W0r into

s2v′′ + sv′ + (s2 − 1)v = 0 for 0 ≤ s ≤ δ
√

µ−W0

and via u(r) = r−1w(
√
W∞ − µr), s :=

√
W∞ − µr into

s2w′′ + sw′ − (s2 + 1)w = 0 for δ
√

W∞ − µ ≤ s <∞.

Thus, v(s) = αJ1(s) is a multiple of the order one Bessel function which is regular at 0 and
w(s) = βK1(s) is a multiple of the order one modified Bessel function which is exponentially
decaying at infinity. Altogether we obtain

u(r) =

{
αr−1J1(

√
µ−W0r) for 0 ≤ r ≤ δ,

βr−1K1(
√
W∞ − µr) for δ ≤ r <∞.

We need to choose α, β, µ in order to obtain a C1-function at r = δ. This leads to the
equation

g(µ) :=
J1(

√
µ−W0δ)√

µ−W0δJ ′
1(
√
µ−W0δ)

=
K1(

√
W∞ − µδ)√

W∞ − µδK ′
1(
√
W∞ − µδ)

=: h(µ)

and our choice of W0 and δ such that
√
µ0 −W0δ = ξ and

√
W∞ − µ0δ = η(ξ) guarantees

the C1-matching at µ = µ0. We have therefore verified that µ0 is indeed an eigenvalue of Lr.
It remains to show that there is no other eigenvalue.

We analyze the two sides of the equation g(µ) = h(µ) independently. We have already

mentioned in the proof of the preceeding lemma that K1(x)
xK ′

1(x)
is a negative and increasing

function of x with limx→0+
K1(x)
xK ′

1(x)
= −1. Likewise the function J1(x)

xJ ′

1(x)
satisfies limx→0+

J1(x)
xJ ′

1(x)
=

1, has its zeroes at j1, j2, . . . and its poles at j′1, j
′
2, . . . and is increasing between 0 and j′1 and

between two consecutive poles. The proof of these statements is given in the Appendix.
Thus, as µ runs through [W0,W∞], the function g(µ) starts from the value 1 and increases

up to its first pole at W0 +
(
j′1
δ

)2

. On the interval (W0 +
(
j′1
δ

)2

,W0 +
(
j1
δ

)2
] it increases

from −∞ to 0 and on [W0 +
(
j1
δ

)2
,W∞] it increases from 0 to a positive value. The function

h(µ) stays negative and strictly decreases to the value −1 as µ ranges through the interval
[W0,W∞], cf. Figure 4 for a plot of an example of the two functions. Therefore, on [W0,W∞]
the two functions g, h intersect exactly once provided W∞ lies between the first zero and the
second pole of g, i.e., provided

(4.12)

(
j1
δ

)2

< W∞ −W0 <

(
j′2
δ

)2

.

(4.12) is equivalent to j21 < ξ2+ η2 < (j′2)
2. The latter is guaranteed by our choice of ξ, η and

from Lemma 15. �

As we have seen from Lemma 16, the piecewise constant functionW given in (4.10) together
with the choice of µ0,W∞, the restriction on η and the definition of δ and W0 ensures the
existence of exactly one eigenvalue of Lr below the essential spectrum. Therefore these
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Figure 1. Functions g and h for δ = 1,W0 = 0,W∞ = 20.

conditions can be considered as assumptions that ensure guiding of a single linear mode in
the cylindrical waveguide.

Lemma 17. Assume that P is piecewise continuous, 1-periodic such that σ(Lp) has a bounded
first open gap. Assume that W is as in (4.10) and µ0,W∞, δ and W0 are chosen as in
Lemma 16. Then 0 is not in the spectrum of L.

Proof. Because of Lemma 14, Lemma 16 and (4.7) we see that

σ(L) =
∞⋃

k=1

[µ0 + ν2k−1, µ0 + ν2k] ∪ [ν1 +W∞,∞).

Thus, the inequalities −ν3 < µ0 < −ν2 < −ν1 < W∞ from Lemma 16 guarantee that 0 lies
in the resolvent of L. �

Remark. Let us verify that the constructed potential V takes positive values on sets of
positive measure for r > δ. Since V (x) = −ω2

c2
n2(x), this implies the unphysical situation of

an imaginary refractive index. It is an open problem to construct a negative V = V (r, x3),
which satisfies the condition 0 6∈ σ(L). First note that

ν1 = min σ(Lp) = inf
ψ∈H1(R)\{0}

∫

R
ψ′2 + P (x)ψ2 dx
∫

R
ψ2 dx

< inf
ψ∈H1(R)\{0}

∫

R
ψ′2 + (ess supP )ψ2 dx

∫

R
ψ2 dx

= ess supP,

where the strict inequality comes from the fact that P is a periodic potential which generates
an operator with a true first open gap and hence must be non-constant. Together with
W∞ > −ν1, cf. (4.9) we obtain

ess sup V = W∞ + ess supP > 0.
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5. Ground states in the focusing case

We assume

(H-foc) 1 < p < 5, V,Γ ∈ L∞(R3), ess inf
R3

Γ > 0, and 0 /∈ σ(L).

For the existence of a Palais-Smale sequence our only assumptions is (H-foc). In the previous
section we found examples of cylindrical potentials V of the form V (r, x3) = W (r) + P (x3)
with periodicity of P which produce 0 6∈ σ(L). Nevertheless, also other potentials V may
satisfy this condition. Note that for the potential V from the previous section the resulting
operator L has negative spectrum, positive spectrum and 0 is in the resolvent set. The
analysis of this chapter will, however, work also in the case where 0 < min σ(L).

For the final step of the proof, i.e. the non-triviality of the limit of a suitable Palais-Smale
sequence and the existence of a nontrivial ground state, we use the assumption of cylindrical
symmetry and periodicity in x3 of both V and Γ.

Since L is a selfadjoint operator on

D(L) = H2
G1
(R3) ⊂ L2

G1
(R3)

the spectral theorem yields the existence of a spectral resolution (Pλ)λ∈R and hence of pro-
jections

P+ =

∫ ∞

0

1 dPλ, P− =

∫ 0

−∞

1 dPλ

and of the spectral decomposition H1
G1
(R3) = H+ ⊕ H− wit H± = P±(H1

G1
(R3)). We

define U± = P±U for all U ∈ H1
G1
(R3). Notice that L defines the bilinear form b(U, V ) :=

∫

R3(∇ × U) · (∇× V ) + V (x)U · V dx which is positive/negative definite on the spaces H±

by construction. Therefore, we may define the scalar product

〈U, V 〉 := b(U+, V +)− b(U−, V −) on H1
G1
(R3)×H1

G1
(R3)

which has the property that H+ is orthogonal to H−, i.e., that P± are orthogonal projections.
We denote the norm on H1

G1
(R3) corresponding to 〈·, ·〉 by 9 · 9. It is equivalent to the H1-

norm ‖ · ‖H1 and has the property

9U9 = ±
∫

R3

|∇ × U |2 + V (x)|U |2 dx for all U ∈ H±

such that

9U92 = 9U+ 92 + 9 U− 92 for all U ∈ H1
G1
(R3).

If the potential V has the unphysical property that ess inf V > 0 (imaginary refractive index in
all of R3) then H− = {0}. But in general H− 6= {0} and therefore the functional J has linking
geometry. In any case J is unbounded from below on H1

G1
(R3) so that a direct minimization

is impossible. Therefore we choose to minimize over the Nehari-Pankov manifold

N := {U ∈ H1
G1
(R3) \ {0} : J ′[U ]Φ = 0 ∀Φ ∈ [U ]⊕H−}.
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This approach is analogous to that in [22]. Later, in Lemma 21, we will see that the constraint
set N does not produce Lagrange multipliers. Note also that for U ∈ N

J [U ] =
p− 1

2(p+ 1)

∫

R3

Γ(x)|U |p+1 dx =
p− 1

2(p+ 1)

∫

R3

|∇ × U |2 + V (x)|U |2 dx.

Remarks: (a) Another common approach to obtain a critical point of J is minimization
under the constraint ‖U‖L2 = 1. This however produces a Lagrange multiplier κ, which is
generally nonzero, so that the minimizer does not solve (1.1) but the equation LU + κU =
Γ(r, x3)|U |p−1U .
(b) If H− = {0} then another common approach consists in minimizing K(U) =

∫

R3 |∇ ×
U |2 + V (x)|U |2 dx under the constraint ‖U‖Γ,p+1 = 1. This produces a Lagrange multiplier
which however can be scaled out. If H− is not trivial then one may still find a critical point
of K under this constraint.

Lemma 18. Under the assumption (H-foc) there exist values ǫ1, ǫ2, C > 0 such that

‖U‖H1 ≥ ǫ1, J [U ] ≥ ǫ2, ‖U‖H1 ≤ CJ [U ]
p

p+1

for all U ∈ N .

Proof. For U ∈ N we have

9U+92 =

∫

R3

|∇ × U+|2 + V (x)|U+|2 dx

= 〈U, U+〉

= J ′[U ]U+ +

∫

R3

Γ(x)|U |p−1U · U+ dx

= J ′[U ](U − U−)
︸ ︷︷ ︸

=0

+

∫

R3

Γ(x)|U |p−1U · U+ dx,

where the first term in the last equation vanishes due to the definition of the manifold N .
Hence, by using Hölder’s and Sobolev’s inequality and again the definition of N we obtain

9U+92 ≤
(∫

R3

(Γ(x)|U |p)
p+1

p dx

) p
p+1
(∫

R3

|U+|p+1 dx

) 1
p+1

≤ C1‖Γ‖
1

p+1
∞

(∫

R3

Γ(x)|U |p+1 dx

) p
p+1

‖U+‖H1(5.1)

≤ C2

(
2(p+ 1)

p− 1
J [U ]

) p
p+1

9 U+ 9 .
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We may repeat the above argument with U− and find

9U−92 = −
∫

R3

|∇ × U−|2 + V (x)|U−|2 dx

= 〈U, U−〉

= − J ′[U ]U−

︸ ︷︷ ︸

=0

−
∫

R3

Γ(x)|U |p−1U · U− dx,

and from there the same Hölder- and Sobolev-estimates as before lead to

9U−9 ≤ C2

(
2(p+ 1)

p− 1
J [U ]

) p
p+1

.

Together with (5.1) this establishes the third of the three claims.

To see the first of the three claims, we use (5.1) and the corresponding estimate for U− to
get

9U+92 ≤ C3‖U‖pLp+1 9 U+9, 9U−92 ≤ C3‖U‖pLp+1 9 U−9

from which we obtain 9U9 ≤
√
2C3‖U‖pLp+1. Due to the Sobolev inequality and since 9 · 9

and ‖ · ‖H1 are equivalent we also have ‖U‖pLp+1 ≤ C4 9 U9p. Hence 9U9 ≤
√
2C3C4 9 U9p

and thus ‖U‖H1 ≤ C5‖U‖p. Since U 6= 0 by the definition of N we obtain the first of the
three estimates. Finally, the second estimate follows from the first and the third. �

Lemma 19. Assume (H-foc). The map

G :

{
H1
G1
(R3) \H− → H1

G1
(R3),

U 7→ 〈∇J [U ], U+〉 U+

9U+92 + P−∇J [U ].

is a C1-map. If U ∈ N and XU := [U ] +H− then the map

∂XU
G(U) : XU → XU

is negative definite uniformly with respect to bounded subsets of N , i.e., if N0 ⊂ N is bounded,
then there exists a value δ > 0 such that

〈∂XU
G(U)v, v〉 ≤ −δ 9 v 92 for all v ∈ XU and all U ∈ N0.

In particular ∂XU
G(U) : XU → XU has a bounded inverse.

Proof. For U ∈ N and v ∈ H1
G1
(R3) we have

G′(U)v =〈∇2J [U ]v, U+〉 U+

9U+92
+ 〈∇J [U ], v+〉 U+

9U+92
+ 〈∇J [U ], U+〉 v+

9U+92

− 2〈U+, v〉〈∇J [U ], U+〉 U+

9U+94
+ (∇2J [U ]v)−.
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If we take v ∈ XU = [U ] +H− = [U+] +H−, i.e., v = tU + w with t ∈ R, w ∈ H− then the
above formula simplifies to

∂XU
G(U)v = 〈∇2J [U ]v, U+〉 U+

9U+92
+ (∇2J [U ]v)− = PXU

∇2J [U ]v,

where PXU
: H → XU denotes the orthogonal projection with respect to 〈·, ·〉. Therefore

〈∂XU
G(U)v, v〉 =〈∇2J [U ]v, v〉

=t2
∫

R3

|∇ × U |2 + V (x)|U |2 − pΓ(x)|U |p+1 dx

+

∫

R3

|∇ × w|2 + V (x)|w|2 − pΓ(x)|U |p−1|w|2 dx

+ 2t

∫

R3

∇× U · ∇ × w + V (x)U · w − pΓ(x)|U |p−1U · w dx

and by using U ∈ N we obtain

〈∂XU
G(U)v, v〉 = − 9 w 92 −

∫

R3

Γ(x)|U |p−1
(
t2(p− 1)|U |2 + p|w|2 + 2t(p− 1)U · w

)
dx.

Now we use the identity

t2(p− 1)|U |2 + p|w|2 + 2t(p− 1)U · w = t2
p− 1

p
|U |2 +

∣
∣
∣
∣

√
pw +

p− 1√
p
tU

∣
∣
∣
∣

2

≥ t2
p− 1

p
|U |2

to deduce

〈∂XU
G(U)v, v〉 ≤ − 9 w 92 −t2 p− 1

p

∫

R3

Γ(x)|U |p+1 dx.

Next we obtain from Lemma 18 that J [U ] = (1
2
− 1

p+1
)
∫

R3 Γ(x)|U |p+1 dx ≥ ǫ2 and hence we
find

〈∂XU
G(U)v, v〉 ≤ − 9 w 92 −2t2

p + 1

p
ǫ2 ≤ −C 9 w + tU92

by using the boundedness of N0. This finishes the proof. �

Lemma 20. Assume (H-foc). The set N is a C1-manifold such that

N = G−1{0} and TUN = KerG′(U)

for every U ∈ N .

Proof. As before, for U ∈ N let XU = [U ] + H− and denote by PXU
: H1

G1
(R3) → XU

the orthogonal projection w.r.t. 〈·, ·〉. Recall that the map G : H1
G1
(R3) \ H− → H1

G1
(R3)

satisfies

(5.2) G(XU \H−) ⊂ XU for all U ∈ H1
G1
(R3) \H−.
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Now fix U ∈ N = G−1({0}). There exists an open neighbourhood O of U in H1
G1
(R3) \H−

such that

(5.3) XV ∩X⊥
U = {0} for all V ∈ O.

For V ∈ O we have by (5.2), (5.3) the equivalence

G(V ) = 0 ⇔ (PXU
◦G)(V ) = 0.

This shows that N ∩ O = (PXU
◦ G |O)−1({0}). But the map PXU

◦ G |O: O → XU is a
submersion, i.e., its derivative is surjective at every point of O, because

(PXU
◦G)′(V ) = PXU

◦G′(V ) : H1
G1
(R3)

G′(V )→ XV

PXU→ XU

and the first map G′(V ) : H1
G1
(R3) → XV is surjective by Lemma 19 and the second map

PXU
: XV → XU is an isomorphism by (5.3). Therefore, the submersion theorem of [1],

Theorem 3.5.4, applies and states that N ∩O is a submanifold of H1
G1
(R3) \H− and TUN =

KerG′(U). �

Notice that any nontrivial solution U ∈ H1
G(R

3) of (1.1) belongs to the Nehari-Pankov
manifold N . As a consequence, one can show that the constraint N produces a zero Lagrange
multiplier. The following is a much stronger statement.

Lemma 21. Assume (H-foc). Let N0 be a bounded subset of N . Then there exists a constant
C0 > 0 such that the following holds: if U ∈ N0 and ∇J [U ] = τ + σ where τ ∈ TUN is the
tangential component of ∇J [U ] and σ ⊥ τ is the transversal component of ∇J [U ] then

‖∇J [U ]‖H1 ≤ C0‖τ‖H1 .

Proof. By Lemma 19 the map ∂XU
G(U) : XU → XU has a bounded inverse and hence

a closed range. Moreover, ∂XU
G(U)|XU

= PXU
∇2J [U ] is symmetric as a composition of a

second derivative and an orthogonal projection. Therefore

Rg ∂XU
G(U)|XU

= (Ker ∂XU
G(U)|XU

)⊥ = (TUN)⊥.

If we consider
∇J [U ] = τ + σ with τ ∈ TUN and σ ∈ (TUN)⊥

then there exists h ∈ XU such that

(5.4) ∇J [U ] = τ + ∂XU
G(U)h.

Hence, using h ∈ XU = [U ] +H− and thus 〈∇J [U ], h〉 = 0 we get from Lemma 19

〈∂XU
G(U)h, h〉 = 〈−τ, h〉 ≤ −δ‖h‖2H1 .

Using the Cauchy-Schwarz inequality and the equivalence of the norms ‖ · ‖H1 and 9 · 9 we
get

‖h‖H1 ≤ C0‖τ‖H1 .

By (5.4) and the boundedness of G′(U) on bounded subsets of N this implies the claim. �

By the previous lemma the tangential component of the gradient of J at a point in N
controls the entire gradient. As a consequence there exists special minimizing sequences of
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J |N , where the tangential part of the gradient converges to zero (a consequence of Ekeland’s
variational principle) and hence the entire gradient converges to 0.

Lemma 22. Assume (H-foc). There exists a bounded Palais-Smale sequence (Uk)k∈N in N
such that

J [Uk] → c := inf
N
J, J ′[Uk] → 0 as k → ∞.

Proof. As a consequence of Ekeland’s variational principle, cf. Struwe [25], there exists
a minimizing sequence (Uk)k∈N of J |N such that (J |N)′(Uk) → 0, hence J ′(Uk) → 0 by
Lemma 21. �

Proof of Theorem 3: Let (Uk)k∈N be the Palais-Smale sequence from Lemma 22. If any
subsequence of (Uk)k∈N converges in Lp+1(R3) to zero, then by the definition of the Nehari-
Pankov manifold this sequence also converges to zero in H1(R3). This is impossible by
Lemma 18. Therefore, the concentration compactness principle (cf. Lions [15] or Lemma 1.21
in Willem [29] suitably adapted to the vectorial case) implies that for every radius R > 0

lim inf
k∈N

sup
y∈R3

∫

BR(y)

|Uk|2 dx > 0.

Fix a value R > 0. Then there exists a subsequence again denoted (Uk)k∈N, centers yk ∈ R3

and η > 0 such that

(5.5)

∫

BR(yk)

|Uk|2 dx ≥ η for all k ∈ N.

By possibly adding the value 1 to R we may assume that y3k ∈ Z and (5.5) still holds. Now
we claim that ρ2k := (y1k)

2 + (y2k)
2 is bounded. Assume the contrary. Due to the symmetries

in H1
G1
(R3) we have that

∫

BR(yk)

|Uk|2 dx =

∫

BR(ỹk)

|Uk|2 dx

whenever the point ỹk is such that

(P ) y3k = ỹ3k and (y1k)
2 + (y2k)

2 = (ỹ1k)
2 + (ỹ2k)

2.

Notice that the number of disjoint balls BR(ỹk) with centers ỹk satisfying (P ) tends to infinity
if ρk → ∞ as k → ∞. But this is impossible since the L2-norm of (Uk)k∈N is bounded. Thus,
if we define

ρ := R + sup
k∈N

ρk

then ∫

Bρ(0,0,y3k)

|Uk|2 dx ≥ η for all k ∈ N.

Set
Ūk(x1, x2, x3) := Uk(x1, x2, x3 + y3k).

Then, due to the periodicity of V,Γ in the x3-variable we have

Ūk ∈ N, J [Ūk] = J [Uk] → c, ‖J ′[Ūk]‖∗ = ‖J ′[Uk]‖∗ → 0 as k → ∞
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and ∫

Bρ(0)

|Ūk|2 dx ≥ η for all k ∈ N.

Now we may take a weakly converging subsequence (again denoted by (Ūk)k∈N) with Ūk ⇀
Ū 6= 0 in H1

G1
(R3) for some Ū ∈ H1

G1
(R3). Moreover, for every ϕ ∈ H1

G1
(R3) ∩ C∞

0 (R3) we
have J ′[Ū ]ϕ = limk→∞ J ′[Ūk]ϕ = 0 due to weak convergence and the compact embedding
H1
G1
(R3) → Lq(K), K = suppϕ and q ∈ [1, 6). Hence Ū is a critical point of J so that

Ū ∈ N . Hence

J [Ū ] =

(
1

2
− 1

p+ 1

)∫

R3

Γ(x)|Ū |p+1 dx

≤ lim inf
k∈N

(
1

2
− 1

p+ 1

)∫

R3

Γ(x)|Ūk|p+1 dx

= lim inf
k∈N

J [Ūk]

= c

and therefore “=” holds and Ū is a minimizer of J restricted to N . �

Appendix

Lemma 23. Let J1 denote the order one Bessel function which is regular at 0. Then the
function

α(x) :=
J1(x)

xJ ′
1(x)

satisfies limx→0+ α(x) = 1 and is strictly increasing on the intervals (0, j′1), (j
′
k, j

′
k+1) for k =

1, 2, 3, . . .. Let K1 denote the order one modified Bessel function which decreases exponentially
at infinity. Then the function

β(x) :=
K1(x)

xK ′
1(x)

satisfies limx→0+ β(x) = −1 and is negative and strictly increasing on (0,∞).

Proof. Since J1 is analytic and since J1(0) = 0, J ′
1(0) = 1/2 the relation α(x) → 1 as x→ 0

follows immeadiately. Differentiating α(x), we need to show

x(J ′
1(x))

2 − J1(x)(J
′
1(x) + xJ ′′

1 (x))

x2(J ′
1(x))

2
> 0

and by using the differential equation for J1 this amounts to

x

(

(J ′
1(x))

2 +

(

1− 1

x2

)

J1(x)
2

)

> 0,

i.e.,
x2(J ′

1(x))
2 > (1− x2)J1(x)

2 for x ∈ (0,∞).

If we multiply the differential equation

x2J ′′
1 (x) + xJ ′

1(x) = (1− x2)J1(x)
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by J ′
1(x) and integrate from 0 to x we obtain

∫ x

0

s2
d

ds
(J ′

1(s))
2 + 2s(J ′

1(s))
2 ds =

∫ x

0

(1− s2)
d

ds
(J1(s)

2) ds.

Integration by parts and using J1(0) = 0 leads to

x2(J ′
1(x))

2 = (1− x2)J1(x)
2 +

∫ x

0

2sJ1(s)
2 ds > (1− x2)J1(x)

2 for x ∈ (0,∞)

and hence the result is proved.

Now we turn to the statement for β. First we recall that xK0(x) → 0 (cf. [13], 8.447),
K1(x) → ∞ as x → 0 (cf. [13], 8.451(6.)) and that xK ′

1(x) + K1(x) = −xK0(x) (cf. [13],
8.486(12.)). This implies β(x) → −1 as x → 0. For the monotoniticy of β(x) it suffices by
differentiation to prove that

x(K ′
1(x))

2 −K1(x)K
′
1(x)− xK1(x)K

′′
1 (x) > 0

and using the differential equation this amounts to showing that

x2(K ′
1(x))

2 > (1 + x2)K1(x)
2 for all x ∈ (0,∞).

If we multiply the differential equation

x2K ′′
1 (x) + xK ′

1(x) = (1 + x2)K1(x)

by K ′
1(x) and integrate from x to ∞ we obtain

∫ ∞

x

s2
d

ds
(K ′

1(s))
2 + 2s(K ′

1(s))
2 ds =

∫ ∞

x

(1 + s2)
d

ds
(K1(s)

2) ds.

Integration by parts and using the exponential decay of K1, K
′
1, K

′′
1 at infinity leads to

−x2(K ′
1(x))

2 = −(1 + x2)K1(x)
2 −

∫ ∞

x

2sK1(s)
2 ds < −(1 + x2)K1(x)

2 for x ∈ (0,∞).

This proves the result. �
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[14] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations.
Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1993.
Oxford Science Publications.

[15] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact
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