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Normalized solutions for nonlinear Schrödinger systems

THOMAS BARTSCH LOUIS JEANJEAN

Abstract

We consider the existence ofnormalizedsolutions inH1(RN ) × H1(RN ) for systems
of nonlinear Schrödinger equations which appear in models for binary mixtures of ultracold
quantum gases. Making a solitary wave ansatz one is led to coupled systems of elliptic equa-
tions of the form 





−∆u1 = λ1u1 + f1(u1) + ∂1F (u1, u2),

−∆u2 = λ2u2 + f2(u2) + ∂2F (u1, u2),

u1, u2 ∈ H1(RN ), N ≥ 2,

and we are looking for solutions satisfying
∫

RN

|u1|2 = a1,

∫

RN

|u2|2 = a2

wherea1 > 0 anda2 > 0 are prescribed. In the systemλ1 andλ2 are unknown and will
appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e.fi(ui) =
µi|ui|pi−1ui, F (u1, u2) = β|u1|r1 |u2|r2 , with positive constantsβ, µi, pi, ri. The exponents
are Sobolev subcritical but may beL2-supercritical:p1, p2, r1 + r2 ∈]2, 2∗[ \

{
2 + 4

N

}
.

Keywords: Nonlinear Schrödinger systems, solitary waves, normalized solutions, variational
methods, constrained linking
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1 Introduction

Elliptic systems of the form

(1.1)





−∆u1 = λ1u1 + f1(u1) + ∂1F (u1, u2)

−∆u2 = λ2u2 + f2(u2) + ∂2F (u1, u2)

u1, u2 ∈ H1(RN )

have been investigated in the last decades by many authors. Surprisingly little is known about the
existence of normalized solutions, i.e. solutions that satisfy the constraint

(1.2)
∫

RN

|u1|2 = a1 and
∫

RN

|u2|2 = a2
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with a1, a2 > 0 prescribed. One motivation to look for normalized solutions of (1.1) are coupled
systems of nonlinear Schrödinger equations

(1.3)

{
−i∂tΨ1 = ∆Ψ1 + g1(|Ψ1|)Ψ1 + ∂1G(|Ψ1|2, |Ψ2|2)Ψ1

−i∂tΨ2 = ∆Ψ2 + g2(|Ψ2|)Ψ2 + ∂2G(|Ψ1|2, |Ψ2|2)Ψ2

in R× RN .

Since themasses ∫

RN

|Ψ1|2 and
∫

RN

|Ψ2|2

are preserved along trajectories of (1.3), it is natural to consider them as prescribed. A solitary
wave of (1.3) is a solution having the form

Ψ1(t, x) = e−iλ1tu1(x) and Ψ2(t, x) = e−iλ2tu2(x)

for someλ1, λ2 ∈ R. This ansatz leads to (1.1) for(u1, u2) with f1(u1) = g1(|u1|)u1, f2(u2) =
g2(|u2|)u2, andF (u1, u2) = 1

2G(|u1|2, |u2|2).
The question of finding normalized solutions is already interesting for scalar equations and

provides features and difficulties which are not present when the normalization condition is being
dropped. Since the scalar setting will of course be relevantwhen treating systems, let us recall a
few facts. Solutionsu ∈ H1(RN ) of

(1.4) −∆u = λu+ f(u),

∫

RN

|u|2 = a,

with a > 0 fixed can be obtained as critical points of the functional

J(u) =
1

2

∫

RN

|∇u|2 −
∫

RN

F (u), with F (s) =

∫ s

0
f(t) dt,

constrained to theL2-sphereSa :=
{
u ∈ H1(RN ) :

∫
RN |u|2 = a2

}
, providedf is subcritical.

The model nonlinearity isf(s) = |s|p−2s with 2 < p < 2∗ = 2N
N−2 . The parameterλ in the

equation appears then as Lagrange multiplier.
The best studied cases of (1.4) correspond to the situation when a solution can be found as a

global minimizer ofJ onS(a) which is the case if2 < p < 2+ 4
N

for the model nonlinearity. This
research mainly started with the work of Stuart [29,30]. A bit later the Concentration Compactness
Principle of P.L. Lions [22,23] was used in this type of problems. The case whenJ is unbounded
from below (and from above) onSa, i.e.2 + 4

N
< p < 2∗ for the model nonlinearity, has already

been much less studied. In this case a mountain pass structure has been exploited in [19] leading to
the existence of one normalized solution. The existence of infinitely many normalized solution has
later been proved in [7] where a "fountain" type structure ontheL2-sphere has been discovered
which is somewhat reminiscent to the one for the free functional from [6]; see also [32]. More
results on normalized solutions for scalar equations can befound in [10, 11, 20]. Technical diffi-
culties in dealing with the constrained functional are thatthe existence of bounded Palais-Smale
sequences requires new arguments, that Lagrange multipliers have to be controlled, and that weak
limits of Palais-Smale sequences a-priori do not necessarily lie on the sameL2-sphere.
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The goal of this paper is to find positive radial solutions of systems like (1.1) under various
growth conditions onf1, f2, F . In order to keep the ideas and the results simple, and in order to
avoid technicalities we only deal with homogeneous nonlinearitiesf1(s) = µ1|s|p1−2s, f2(s) =
µ2|s|p2−2s, andF (s, t) = β|s|r1 |t|r2 . Thus we look for positive radial solutionsu1, u2 ∈ E :=
H1

rad(R
N )×H1

rad(R
N ) of the system

(1.5)

{
−∆u1 = λ1u1 + µ1|u1|p1−2u1 + r1β|u1|r1−2|u2|r2u1
−∆u2 = λ2u2 + µ2|u2|p2−2u2 + r2β|u1|r1 |u2|r2−2u2

which areL2-normalized in the sense of (1.2). Throughout the paper we requireN ≥ 2, p1, p2 ∈
]2, 2∗, [ \

{
2 + 4

N

}
, andβ, µ1, µ2, r1, r2, a1, a2 > 0 with 2 ≤ r1 + r2 < 2∗. Thus we treat

various self-focussing cases and attractive interaction.These constants are prescribed whereas the
parametersλ1 andλ2 are unknown and will appear as Lagrange multipliers. The system comes
from mean field models for binary mixtures of Bose-Einstein condensates or for binary gases
of fermion atoms in degenerate quantum states (Bose-Fermi mixtures, Fermi-Fermi mixtures);
see [1, 5, 14, 25] and the references therein. The most famouscase is the one of coupled Gross-
Pitaevskii equations in dimensionN ≤ 3 wherep1 = p2 = 4, r1 = r2 = 2 modeling Bose-
Einstein condensation. However models for other ultracoldquantum gases use different exponents.

The particular casep1 = p2 = 4, r1 = r2 = 2 of coupled Gross-Pitaevskii equations inR3 is
being treated in the companion paper [8]. In the present paper we deal with general exponents and
distinguish between the casesp1, p2 < 2+ 4

N
, p1 < 2+ 4

N
< p2 andp1, p2 > 2+ 4

N
. The exponent

2 + 4
N

is critical for the normalized solution problem and will notbe treated here. Other results
on the existence of prescribedL2-norm solutions for systems can be found in [2,3,18,26,27,31].
In these papers the solutions obtained are global minimizers of the associated functional (e.g. in
the defocusing repelling caseµ1, µ2, β < 0), or only the case of small massesa1, a2 ∼ 0 has been
treated (as in [27]). In the latter paper the system includeda trapping potential or was defined on
a bounded domain. Requiring the masses to be small is a bifurcation type result.

Up to our knowledge the results of this paper and of its companion paper [8] are the first
results where one obtains normalized solutions for systemswhen the associated functional, here
J , is unbounded from below on the constraint, and when the masses need not be small.

The paper is organized as follows: In Section 2 we state and discuss our results. Section 3
contains some preliminary results, whereas Sections 4 and 5are devoted to the proofs of the
theorems from Section 2.

2 Statement of Results

We fixN ≥ 2, p1, p2 ∈ (2, 2∗), andβ, µ1, µ2, r1, r2, a1, a2 > 0 with 2 ≤ r1 + r2 < 2∗. We seek
for solutions in the spaceE := H1

rad(R
N ) ×H1

rad(R
N ) of pairs of radial functions inH1(RN ).

Our first result on (1.5), (1.2) deals with a case where it is possible to minimize the functional on
the constraint.

Theorem 2.1. The problem(1.5), (1.2)has, for someλ1, λ2 < 0, a solution(u1, u2) ∈ E satisfy-
ing u1 > 0, u2 > 0 in each of the following cases:

a) 2 ≤ N ≤ 4 andp1, p2, r1 + r2 < 2 + 4
N

.
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b) N ≥ 5 andp1, p2 < 2 + 2
N−2 andr1 + r2 < 2 + 4

N
.

We do not know whether Theorem 2.1 a) holds true for allN ≥ 2, i.e. whether the hypothesis
p1, p2 < 2+ 2

N−2 in 2.1 b) can be replaced byp1, p2 < 2+ 4
N

. SettingS(a) = Sa∩H1
rad(R

N ) =

{u ∈ H1
rad(R

N ) : |u|22 = a}, the solution in Theorem 2.1 will be a minimizer of the functional

J(u1, u2) =
1

2

∫

RN

|∇u1|2 + |∇u2|2 dx−
∫

RN

µ1
p1

|u1|p1 +
µ2
p2

|u2|p2 + β|u1|r1 |u2|r2 dx

constrained toS(a1)× S(a2) ⊂ E.
It is easy to prove that any minimizing sequence{(un1 , un2 )} ⊂ S(a1)×S(a2) associated toJ is

bounded. Thus we can assume without restriction that(un1 , u
n
2 )⇀ (u1, u2) weakly inE for some

(u1, u2) ∈ E. From the weak convergence inE we deduce that(u1, u2) satisfies (1.5) for some
associated(λ1, λ2). To prove Theorem 2.1 one still has to show that(u1, u2) ∈ S(a1) × S(a2).
Even if we work in the space of radially symmetric functions this question is, with respect to the
scalar case, challenging as was already observed in [18]. Our proof of Theorem 2.1 ultimately
relies on the use of a Liouville’s type result for an associated scalar equation. This is responsible
for the restriction thatN ≤ 4 in part a), or thatp1, p2 < 2 + 2

N−2 in part b).
Our second result deals with the case wherep2 andr1 + r2 are bigger than2 + 4

N
so thatJ is

unbounded from below and minimization does not work. We require the following hypotheses on
the coefficients.

(H1) 2 < p1 < 2 + 4
N
< p2 < 2∗.

(H2) 2 + 4
N
< r1 + r2 < 2∗, r2 > 2.

Consider the functionalI : H1
rad(R

N ) → R defined by

I(u) =
1

2

∫

RN

|∇u|2 dx− µ

p

∫

RN

|u|p dx

constrained to theL2-sphereS(a). Forp ∈]2, 2∗[ \{2 + 4
N
} we denote bymµ

p(a) the ground state
level, i. e.

mµ
p (a) = inf{I(u) : u ∈ S(a) such that(I|S(a))

′(u) = 0}.
We discuss the properties of this ground state level in Lemma3.1 below.

Theorem 2.2. Assume (H1), (H2) and2 ≤ N ≤ 4. If

(2.1) mµ1
p1
(a1) +mµ2

p2
(a2) < 0,

then, for someλ1 < 0 andλ2 < 0, there exists a solution(u1, u2) ∈ E of (1.5), (1.2), satisfying
u1 > 0, u2 > 0.

As a corollary of Theorem 2.2 we obtain :

Corollary 2.3. Assume (H1), (H2) and2 ≤ N ≤ 4. Then for anya2 > 0 there exists̄a1 > 0 such
that for anya1 ≥ ā1 there exists a positive solution(u1, u2) ∈ E of (1.5), (1.2), for someλ1 < 0
andλ2 < 0. In addition ā1 → 0 asa2 → ∞.
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With respect to Theorem 2.1 the proof of Theorem 2.2 presentsnew difficulties. First one
needs to identify a possible critical levelγ(a1, a2) where one can find Palais-Smale sequences.
The construction of this minimax level, which is of mountainpass type, is the heart of the proof
and is carried out in Lemmas 5.1, 5.2 and 5.3. By Ekeland’s variational principle there exists
a Palais-Smale sequence associated toγ(a1, a2). One then needs to find a bounded Palais-Smale
sequence. We manage to find a special Palais-Smale sequence{(un1 , un2 )} ⊂ S(a1)×S(a2) having
the additional property thatQ(un1 , u

n
2 ) → 0 whereQ : E → R is given by

(2.2)

Q(u1, u2) = |∇u1|22 + |∇u2|22 −
µ1
p1
N

(p1
2

− 1
)
|u1|p1p1

− µ2
p2
N

(p2
2

− 1
)
|u2|p2p2 −Nβ

(
r1 + r2

2
− 1

)∫

RN

|u1|r1 |u2|r2 dx.

The conditionQ(u1, u2) = 0 corresponds to a natural constraint of Pohozaev type on the solu-
tions of (1.5), (1.2); see Remark 5.6. To construct a Palais-Smale sequence having the additional
propertyQ(un1 , u

n
2 ) → 0 we employ similar arguments as in [7,11,19,24]; see also [4,17].

From the property thatQ(un1 , u
n
2 ) → 0 we deduce that{(un1 , un2 )} ⊂ E is bounded. Finally

in order to insure the strong convergence of our Palais-Smale sequence we combine the estimate
(2.1) with the Liouville argument already used in the proof of Theorem 1.1.

In our last result we assume the inequalitiesp1, p2, r1 + r2 > 2 + 4
N

.

Theorem 2.4. Assume thatp1, p2, r1 + r2 > 2 + 4
N

and that2 ≤ N ≤ 4.

a) There existsβ1 = β1(a1, a2, µ1, µ2) > 0 such that ifβ ≤ β1 then(1.5), (1.2)has a positive
solution(u1, u2) ∈ E for someλ1 < 0 andλ2 < 0.

b) There existsβ2 = β2(a1, a2, µ1, µ2) > 0 such that ifβ ≥ β2 then(1.5), (1.2)has a positive
solution(u1, u2) ∈ E for someλ1 < 0 andλ2 < 0.

We would like to emphasize that the proof yields explicit estimates forβ1 from below andβ2
from above in terms ofp1, p2, r1, r2 anda1, a2, µ1, µ2, in particularβ1 andβ2 are not obtained by
limiting processes.

Theorem 2.4 is a generalization of the result from [8] where the caseN = 3, p1 = p2 = 4,
r1 = r2 = 2 has been considered. The proof of Theorem 2.4 a) is based on a two-dimensional
linking on the constraintS = S(a1)×S(a2) whereas the proof of Theorem 2.4 b) uses a mountain
pass argument onS. As in Theorem 2.2 one obtains a special Palais-Smale sequence{(un1 , un2 )} ⊂
S(a1) × S(a2) at the suspected critical levelθ(a1, a2) such thatQ(un1 , u

n
2 ) → 0. This leads in

particular to its boundedness. In order to obtain the strongconvergence an upper bound forβ is
needed in part a), and a lower bound in part b). Concerning estimates forβ1 or β2 we just mention
that in the setting of [8] one hasβ1 → ∞ if µ1 = µ2 → ∞ anda1, a2 being fixed. Similarly,
β2 → 0 if µ1 = µ2 → 0 anda1, a2 are fixed. Since the proof in [8] for the special caseN = 3,
p1 = p2 = 4, r1 = r2 = 2, generalizes easily we simply refer to [8] and do not give anydetails
here.

Remark2.5. The results presented in this paper forN ≥ 2 can be extended toN = 1. The
difference between the casesN = 1 andN ≥ 2 is that the compact embeddingH1

rad(R
N ) ⊂

Lq(RN ) for q ∈]2, 2∗[ only holds whenN ≥ 2. WhenN = 1 the corresponding compactness
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can however be regained by working with Palais-Smale sequences of almost Schwartz-symmetric
functions. In order to avoid additional technicalities we do not deal with the caseN = 1 in this
paper but instead refer the reader to [20] where a similar issue is treated. The results are identical
in the casesN = 1 andN ≥ 2 except that in the caseN = 1 one should require in addition that
r2 > 4 in (H2) (this restriction originates only from the adapted version of Lemma 5.1).

3 Preliminary results

Throughout the paper we denote byH the spaceH1
rad(R

N ) equipped with the standard norm
| · |, soE = H × H. We also denote byS the constraintS(a1) × S(a2). We recall, see for
example [12], that ifun ⇀ u weakly inH thenun → u strongly inLq(RN ) for q ∈]2, 2∗[.

Let us first observe that the functionalJ is well defined. For2 ≤ r1 + r2 ≤ 2∗ there exists
q > 1 with

(3.1) max

{
2

r1
,

2∗

2∗ − r2

}
≤ q ≤ min

{
2∗

r1
,

2

(2− r2)+

}
,

which implies2 ≤ r1q, r2q
′ ≤ 2∗, hence

∫

RN

|u1|r1 |u2|r2 dx ≤ |u1|r1r1q · |u2|
r2
r2q′

<∞.

The Gagliardo-Nirenberg inequality

|u|p ≤ C(N, p)|∇u|α2 · |u|1−α
2 whereα =

N(p− 2)

2p

which holds foru ∈ H1(RN ) and2 ≤ p ≤ 2∗, implies foru1 ∈ S(a1), u2 ∈ S(a2):

(3.2)
∫

RN

|u1|p1 ≤ C(N, p1, a1)|∇u1|
N(p1−2)

2
2 ,

∫

RN

|u2|p2 ≤ C(N, p2, a2)|∇u2|
N(p2−2)

2
2 ,

and

(3.3)
∫

RN

|u1|r1 |u2|r2 dx ≤ |u1|r1r1q · |u2|
r2
r2q′

≤ C|∇u1|
N(r1q−2)

2q

2 |∇u2|
N(r2q

′
−2)

2q′

2

with C = C(N, r1, r2, a1, a2, q).

Lemma 3.1. Assume thatp ∈]2, 2∗[\
{
2 + 4

N

}
, and letµ > 0 be given. For anya > 0 there

exists a unique couple(λa, ua) ∈ R+ ×H solving

(3.4) −∆u+ λu = µ|u|p−2u, u ∈ H1(RN ),

and such thatua > 0 and |ua|22 = a. Moreoverua corresponds to the least energy levelmµ
p(a) of

the functionalI : H → R defined by

I(u) =
1

2

∫

RN

|∇u|2 dx− µ

p

∫

RN

|u|p dx

6



constrained to theL2-sphereS(a). If p ∈]2, 2 + 4
N
[ thenmµ

p (a) < 0 for all a > 0, the map
a 7→ mµ

p(a) is strictly decreasing, andmµ
p(a) → −∞ as a → ∞. If p ∈]2 + 4

N
, 2∗[ then

mµ
p (a) > 0 for all a > 0, the mapa 7→ mµ

p(a) is strictly decreasing andmµ
p(a) → 0 asa→ ∞.

Proof. It is standard (see [21]) that the equation

(3.5) −∆u+ λu = µ|u|p−2u, u ∈ H1(RN ),

has, for anyλ > 0, a unique positive radial solutionuλ. By direct calculations one can show that
uλ is given by

uλ(x) = λ
1

p−2w(
√
λx)

wherew is the unique positive radial solution of

−∆u+ u = µ|u|p−2u, u ∈ H1(RN ).

Since

|uλ|22 = λ

(
2

p−2
−N

2

)
|w|22

for anya > 0 there exists a uniqueλa > 0, explicitely given by

λa =
( a

|w|22

) 2(p−2)
4−N(p−2)

,

such thatuλa
∈ H1(RN ) satisfies|uλa

|22 = a and is the unique positive solution of

−∆u+ λau = µ|u|p−2u, u ∈ H1(RN ).

The solutionuλa
corresponds to a least energy solution of the functionalI : H → R defined by

I(u) =
1

2

∫

RN

|∇u|2 dx− µ

p

∫

RN

|u|p dx

constrained to theL2-sphereS(a). Hereλa > 0 appears as the associated Lagrange parameter.
To prove this statement two cases have to be distinguished:

Case 1 :p ∈]2, 2 + 4
N
[.

The least energy solution corresponds to the energy level

mµ
p(a) = inf

u∈S(a)
I(u).

It is standard [29,30], see also [9], thatmµ
p (a) < 0, that the mapa 7→ mµ

p (a) is strictly decreasing,
and thatmµ

p (a) → −∞ asa→ ∞.

Case 2 :p ∈]2 + 4
N
, 2∗[.

The least energy solution corresponds to the energy level

mµ
p(a) = inf

u∈V (a)
I(u).

7



Here

(3.6) V (a) =
{
u ∈ S(a) : |∇u|22 =

N(p− 2)

2
|u|pp

}

is a natural constraint which contains all the critical points of I constrained toS(a). This has
been proved in [11, Lemma 9.3], see also [19]. Also in [11, Lemma 9.3] it is shown that the map
a 7→ mµ

p(a) is strictly decreasing and thatmµ
p(a) → 0 asa→ ∞.

Lemma 3.2. Let{(un1 , un2 )} ⊂ S be a bounded Palais-Smale sequence ofJ restricted toS. Then
there exist(u1, u2) ∈ E, (λ1, λ2) ∈ R × R and a sequence{(λn1 , λn2 )} ∈ R × R such that, up to
a subsequence:

a) For i = 1, 2, uni ⇀ ui weakly inH and inL2(RN ), uni → ui in Lq(RN ) for anyq ∈]2, 2∗[;

b) (λn1 , λ
n
2 ) → (λ1, λ2) in R× R;

c) J ′(un1 , u
n
2 )− λn1 (u

n
1 , 0) − λn2 (0, u

n
2 ) → 0 in E∗;

d) (u1, u2) is solution of the system(1.5)where(λ1, λ2) are given in b).

In addition ifλ1 < 0 thenun1 → u1 strongly inH. Similarly if λ2 < 0 thenun2 → u2 strongly in
H.

Proof. Point a) is trivial. Since{(un1 , un2 )} ⊂ H × H is bounded, following Berestycki and
Lions [12, Lemma 3], we know that(J |S)′(un1 , un2 ) → 0 in E∗ is equivalent to

J ′(un1 , u
n
2 )−

1

|un1 |22
〈J ′(un1 , u

n
2 ), (u

n
1 , 0)〉(un1 , 0)−

1

|un2 |22
〈J ′(un1 , u

n
2 ), (0, u

n
2 )〉(0, un2 ) → 0

in E∗. Therefore we obtain

J ′(un1 , u
n
2 )− λn1 (u

n
1 , 0)− λn2 (0, u

n
2 ) −→ 0 in E∗

with

(3.7) λn1 =
1

|un1 |22

(
|∇un1 | − µ1|un1 |p2p1 − βr1

∫

RN

|un1 |r1 |un2 |r2dx
)

and

(3.8) λn2 =
1

|un2 |22

(
|∇un2 | − µ1|un2 |p2p1 − βr2

∫

RN

|un2 |r2 |un1 |r1dx
)
.

This proves point c). To prove point b), namely that{(λn1 , λn2 )} ⊂ R×R is bounded, it suffices to
recall that{(un1 , un2 )} ⊂ E is bounded and to use the estimates (3.2) and (3.3). Now from points
b) and c) it is standard to deduce d).

It remains to show that ifλ1 < 0 thenun1 → u1 strongly inH1(RN ), and in particular in
L2(RN ). Since

|un1 |p1p1 → |u1|p1p1 and
∫

RN

|un1 |r1 |un2 |r2 dx→
∫

RN

|u1|r1 |u2|r2 dx,

8



and using the fact that〈J ′(un1 , u
n
2 )− λn1 (u

n
1 , 0), (u

n
1 , 0)〉 → 〈J ′(u1, u2)− λ1(u1, 0), (u1, 0)〉 = 0,

we deduce

(3.9) |∇un1 |22 − λn1 |un1 |22 → |∇u1|22 − λ1|u1|22.

As a consequence of the weak convergenceuni ⇀ ui we obtain

|∇u1|22 ≤ lim inf |∇un1 |22 and |u1|22 ≤ lim inf |un1 |22.

Finally, sinceλn1 → λ1 we deduce from (3.9) that

|∇un1 |22 → |∇u1|22 and |un1 |22 → |u1|22

from which the strong convergence follows. The case ofλ2 < 0 is treated in the same way.

Lemma 3.3. a) Suppose thatq ∈]1, N
N−2 ] whenN ≥ 3 and q ∈]1,∞[ whenN = 1, 2. Let

u ∈ Lq(RN ) be a smooth nonnegative function satisfying−∆u ≥ 0 in RN . Thenu ≡ 0
holds.

b) For 1 < q ≤ 1 + 2
N−2 the inequality−∆u ≥ uq does not have a positive classical solution

in RN .

Proof. a) can be found in [18, Lemma A.2]; b) is due to [16], a simple proof can be found in
[28].

Lemma 3.4. AssumeN ≤ 4, orN ≥ 5 andp1 ≤ 2 + 2
N−2 . If (u1, u2) ∈ E is a solution of(1.5)

with u1 	 0 andu2 ≥ 0, thenλ1 < 0. If (u1, u2) ∈ E is a solution of(1.5) with u2 	 0 and
u1 ≥ 0, thenλ2 < 0.

Proof. In the first case sinceu1 	 0 satisfies

−∆u1 = λ1u1 + µ1u
p1−1
1 + r1βu

r1−1
1 u2

and since all summands on the right hand side are non negativeif λ1 ≥ 0, we conclude by
Lemma 3.3 thatu1 = 0. This contradicts the assumption thatu1 	 0. The proof of the other
part is identical.

4 Proof of Theorem 2.1

Lemma 4.1. If p1, p2, r1 + r2 < 2 + 4
N

thenJ is bounded from below and coercive onS for
anya1, a2 > 0. In addition there exists a bounded Palais-Smale sequence{(un1 , un2 )} ⊂ S which
satisfies(un1 )

− → 0 and(un2 )
− → 0 in H. Here(uni )

− = max{0,−uni } for i = 1, 2.

Proof. Observe thatN(pi−2)
2 < 2 becausepi < 2 + 4

N
, i = 1, 2, and that

(4.1)
N(r1q − 2)

2q
+
N(r2q

′ − 2)

2q′
< 2

9



sincer1 + r2 < 2 + 4
N

. It follows easily from (3.2), (3.3) and (4.1) thatJ is bounded below and
coercive onS.

Now let {(vn1 , vn2 )} ⊂ S be a minimizing sequence forJ on S. By the coerciveness ofJ it
is bounded and also without restriction we can assume thatvn1 ≥ 0 andvn2 ≥ 0. Using Ekeland’s
variational principle [13, 15] we deduce that there exists aminimizing sequence{(un1 , un2 )} ⊂ S
which is a Palais-Smale sequence forJ restricted toS and which satisfies(un1 , u

n
2 )−(vn1 , v

n
2 ) → 0

in E. In particular(un1 )
− → 0 and(un2 )

− → 0 in H.

Proof of Theorem2.1. From Lemmas 3.1 and 4.1 we deduce the existence of a bounded Palais-
Smale sequence{(un1 , un2 )} ⊂ S such that(un1 , u

n
2 ) ⇀ (u1, u2) weakly inE with u1 ≥ 0 and

u2 ≥ 0. We also obtain a couple(λ1, λ2) ∈ R × R for which (u1, u2) is solution of the system
(1.5). To conclude the proof it remains to show thatun1 → u1 andun2 → u2 in H. Indeed if this is
the case then we both haveu1 ∈ S(a1) andu2 ∈ S(a2) and that(u1, u2) is a least energy solution.
In addition by the strong maximum principle, applied separately to each equation, we obtain that
u1 > 0 andu2 > 0. In order to show the strong convergence inH we define

m(a1, a2) := inf
(u1,u2)∈S

J(u1, u2).

Sinceβ ≥ 0 we clearly have

(4.2) m(a1, a2) ≤ mµ1
p1
(a1) +mµ2

p2
(a2) < 0

where the last inequality comes from Lemma 3.1. We now distinguish four cases and we show
that only the last one may occur:

Case 1:u1 = 0 andu2 = 0.
Then|un1 |p1p1 → 0, |un2 |p2p2 → 0 and

∫
RN |un1 |r1 |un2 |r2 dx → 0. Thuslim supJ(un1 , u

n
2 ) ≥ 0 which

contradicts (4.2).

Case 2:u1 = 0 andu2 6= 0.
Then

lim supJ(un1 , u
n
2 ) ≥

1

2
|∇u2|22 −

µ2
p2

|u2|p2p2 ≥ m(ā2)

whereā2 := |u2|22 ≤ a2. By Lemma 3.1 we know thatm(ā2) ≥ m(a2), and sincem(a1) < 0 we
have a contradiction with (4.2).

Case 3:u1 6= 0 andu2 = 0.
Reversing the rôle ofu1 andu2 we obtain a contradiction similar to case 2.

Case 4:0 < |u1|22 = ā1 ≤ a1 or 0 < |u2|22 = ā2 ≤ a2.
Necessarily this case occurs. Now using Lemma 3.4 we deduce thatλ1 < 0 andλ2 < 0. Then
Lemma 3.2 impliesun1 → u1 andun2 → u2 in H. At this point the proof of the theorem is
completed.
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5 Proof of Theorem 2.2

For c > 0 we define the sets

Ac = {u2 ∈ S(a2) : |∇u2|22 ≤ c} and Bc = {u2 ∈ S(a2) : |∇u2|22 = 2c}.
SettingJu1(u2) := J(u1, u2) for u1 ∈ S(a1) we observe that

Ju1(u2) = Ju1(0) +
1

2

∫

RN

|∇u2|2 dx− µ2
p2

∫

RN

|u2|p2 dx− β

∫

RN

|u1|r1 |u2|r2 dx.

Lemma 5.1. There exists a continuous functionc : S(a1) → R, u1 → c(u1), such that

sup
Ac(u1)

Ju1 < inf
Bc(u1)

Ju1 for all u1 ∈ S(a1).

The functionc is bounded, and it is bounded away from0 on bounded subsets ofS(a1).

Proof. Fixing u1 ∈ S(a1) we first observe that foru2 ∈ Ac there holds:

Ju1(u2) ≤ Ju1(0) +
1

2

∫

RN

|∇u2|2 dx ≤ Ju1(0) +
1

2
c.

For u2 ∈ Bc and q as in (3.1), andγ = N(r2q′−2)
2q′ we have, using the Gagliardo-Nirenberg

inequality, see (3.2), (3.3),

Ju1(u2) ≥ Ju1(0) + c− µ2
p2
c(p2, N)|∇u2|

N
2
(p2−2)

2 |u2|
p2(1−

N
2
)+N

2 − β|u1|r1r1q · |u2|
r2
r2q′

= Ju1(0) + c−K1c
N
4
(p2−2) −K2|u1|r1r1q · c

γ

2

HereK1 = K1(N,µ2, p2, a2) andK2 = K2(N,β, r2, a2, q). Observe thatN4 (p2−2) > 1 because
p2 > 2 + 4

N
, andγ > 2 providedq < 2N

2N−r2N+4 . We can chooseq satisfying this inequality and
(3.1) because

2N

2N − r2N + 4
> max

{
2

r1
,

2∗

2∗ − r2

}

which is a consequence ofr1 + r2 > 2 + 4
N

andr2 > 2.

Observe thatK1c
N
4
(p2−2) ≤ 1

8c if c > 0 is small becauseN(p2−2)
4 > 1, andK2|u1|r1r1q · c

γ

2 ≤
1
8c if c > 0 is small becauseγ > 2. More precisely, ifc : S(a1) → R+ satisfies

(5.1) c(u1) ≤ min

{
(8K1)

− 4
N(p2−2)−4 , (8K2)

− 2
γ−2 · |u1|

−
2r1
γ−2

r1q

}
,

then we have foru2 ∈ Bc(u1):

(5.2)

Ju1(u2) ≥ Ju1(0) + c(u1)−
1

8
c(u1)−

1

8
c(u1)

> Ju1(0) +
1

2
c(u1) ≥ sup

Ac(u1)

Ju1 .

Clearly we may define a continuous functionc : S(a1) → R+ satisfying (5.1) and which is
bounded away from0 on bounded subsets ofS(a1). In fact, the right hand side of (5.1) may serve
as definition. By (5.1)c is also bounded above.
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Now we set
A(u1) = Ac(u1), B(u1) = Bc(u1)

and
B = {(u1, u2) : u1 ∈ S(a1), u2 ∈ B(u1)}.

Let u ∈ S(a1) be such that

(5.3) J(u, 0) = min
u∈S(a1)

J(u, 0) < 0.

The existence ofu is insured by Lemma 3.1.

Lemma 5.2. There existv ∈ A(u) andw ∈ S(a2) \A2c(u) such that

max{J(u, v), J(u,w)} < inf
(u1,u2)∈B

J(u1, u2).

Proof. SinceJ(u, u2) → J(u, 0) as|∇u2|2 → 0, in order to obtainv ∈ A(u) it is sufficient to
proveJ(u, 0) < infB J . The functionalJ(·, 0) : S(a1) → R is coercive because2 < p1 < 2+ 4

N
.

ChooseR > 0 such thatJ(u1, 0) ≥ J(u, 0) + 1 if |∇u1|2 ≥ R. Then we have for(u1, u2) ∈ B
with |∇u1|2 ≥ R, cf. (5.2):

J(u1, u2) ≥ J(u1, 0) +
3

4
c(u1) > J(u, 0) + 1 .

By Lemma 5.1 there holds
ε := inf

|∇u1|2≤R
c(u1) > 0

which implies for(u1, u2) ∈ B with |∇u1|2 ≤ R:

J(u1, u2) ≥ J(u1, 0) +
3

4
c(u1) ≥ J(u, 0) +

3

4
ε .

In order to findw ∈ S(a2) \ A2c(u) as required we define for eachu ∈ S(a2) andt ∈ R the

scaled functiont ∗ u by (t ∗ u)(x) = et
N
2 u(etx). Clearly t ∗ u ∈ S(a2) for every t > 0, and

|∇(t ∗ u)|2 → ∞ ast → ∞. Now sincep2 > 2 + 4
N

, fixing an arbitraryu ∈ S(a2) we see that
J(u, (t ∗ u)) → −∞ ast→ ∞.

As a consequence of Lemma 5.2 the set

Γ :=
{
g ∈ C([0, 1],S) : g(0) = (v1, v2), g(1) = (w1, w2),

v2 ∈ A(v1), w2 /∈ A2c(w1), max{J(v1, v2), J(w1, w2)} < inf
B
J
}

is nonempty.

Lemma 5.3. We have
γ(a1, a2) := inf

g∈Γ
max
t∈[0,1]

J(g(t)) ≥ inf
B
J.
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Proof. We just need to show that for eachg(t) = (g1(t), g2(t)) ∈ Γ there exists at ∈ [0, 1] such
thatg(t) ∈ B. The mapα : [0, 1] → R given byt→ |∇g2(t)|22 − 2c(g1(t)) satisfies

α(0) = ||∇v2||22 − 2c(v1) ≤ c(v1)− 2c(v1) < 0

and
α(1) = ||∇w2||22 − 2c(w1) > 0.

Thus there exists at ∈ [0, 1] such thatα(t) = 0, which meansg(t) ∈ B.

For future reference we also need.

Lemma 5.4. Assume that (H1) and (H2) hold. Then for anya1 > 0 anda2 > 0 we have

(5.4) γ(a1, a2) ≤ mµ1
p1
(a1) +mµ2

p2
(a2).

Proof. Let u ∈ S(a2) be such that

J(0, u) = I(u) = min
u∈V (a2)

I(u) = mµ2
p2
(a2)

whose existence and characterization is recalled in Lemma 3.1, withV (a) defined in (3.6). Since
u ∈ V (a2) it is readily seen that

(5.5) max
t∈R

I(t ∗ u) = I(0 ∗ u) = I(u).

We now consider the pathh : [0, 1] → S given byh(t) = (u, hs(t)) where

hs(t)(x) = es(2t−1)N
2 u

(
es(2t−1)x

)
.

Heres > 0 is choosen sufficiently large so that

hs(0)(·) = e−sN
2 u(e−s·) ∈ A(u), hs(1)(·) = es

N
2 u(es·) 6∈ A2c(u) and maxJ(u, hs(1)) < 0.

Thush belongs toΓ. Now using (5.5) andβ ≥ 0 we obtain

max
t∈[0,1]

J(h(t)) ≤ J(u, 0) + max
t∈[0,1]

J(0, hs(t)) = mµ1
p1
(a1) +mµ2

p2
(a2).

Lemma 5.5. Assume that (H1) and (H2) hold. There exists a Palais-Smale sequence{(un1 , un2 )} ⊂
S for J at the levelγ(a1, a2) which satisfies(un1 )

− → 0, (un2 )
− → 0 in H and the additional

property thatQ(un1 , u
n
2 ) → 0 whereQ is given in(2.2).

Remark 5.6. It is possible to prove that any solution(u1, u2) of (1.5), (1.2) must satisfy
Q(u1, u2) = 0. ThusQ(u1, u2) = 0 is a natural constraint. This condition is directly related
to the Pohozaev identity adapted to the presence of the constraint S. Formally it can be obtained
by looking at the functiont 7→ (t ∗ u1, t ∗ u2) for (u1, u2) ∈ S. ThenQ(u1, u2) = 0 corresponds
to the condition that the derivative oft 7→ J(t ∗ u1, t ∗ u2) is zero whent = 1.
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Results in the spirit of Lemma 5.5 have now been proved in a variety of situations [7,10,17,19,
20, 24] and we shall be rather sketchy here, refering the readers to these papers for more details.
We recall the stretched functional first introduced in [19]:

J̃ : R× E → R, (s, (u1, u2)) 7→ J(s ∗ u1, s ∗ u2).

In the sequel we writes∗(u1, u2) := (s∗u1, s∗u2) and recall thats∗(u1, u2) ∈ S if (u1, u2) ∈ S.
Now we define the set of paths

Γ̃ :=
{
g̃ ∈ C([0, 1],R × S) : g̃(0) = (0, (v1, v2)), g̃(1) = (0, (w1, w2))

v2 ∈ A(v1), w2 /∈ A2c(w1), max{J(v1, v2), J(w1, w2)} < inf
B
J
}

and
γ̃(a1, a2) := inf

g̃∈Γ̃
max
t∈[0,1]

J̃(g̃(t)).

Observe that̃γ(a1, a2) = γ(a1, a2). Indeed, by the definitions of̃γ(a1, a2) andγ(a1, a2) this
identity follows immediately from the fact that the maps

ϕ : Γ → Γ̃, g 7→ ϕ(g) := (0, g),

and
ψ : Γ̃ → Γ, g̃ = (σ, g) 7→ ψ(g̃) := σ ∗ g, with (σ ∗ g)(t) = σ(t) ∗ g(t),

satisfy
J̃(ϕ(g)) = J(g) and J(ψ(g̃)) = J̃(g̃).

Proof of Lemma5.5. From the observation that̃γ(a1, a2) = γ(a1, a2) we obtain a sequence
{(un1 , un2 )} ⊂ S such that

max
t∈[0,1]

J̃(0, (vn1 , v
n
2 )) → γ̃(a1, a2).

SinceJ(u1, u2) = J(|u1|, |u2|) we can assume thatvn1 (t) ≥ 0 andvn2 (t) ≥ 0 for t ∈ [0, 1].

Now Ekeland’s variational principle implies the existenceof a Palais-Smale sequence
{(sn, (un1 , un2 ))} for J̃ restricted toR×S at the levelγ(a1, a2) such thatsn → 0 anduni −vni → 0

for i = 1, 2. It follows that(un1 )
− → 0 and(un2 )

− → 0. FromJ̃(s, (u1, u2)) = J̃(0, s ∗ (u1, u2))
we deduce that

(∂sJ̃)(s, (u1, u2)) = (∂sJ̃)(0, s ∗ (u1, u2))
and, foru = (u1, u2), φ = (φ1, φ2):

(∂uJ̃)(s, u)[φ] = (∂uJ̃)(0, s ∗ u)[s ∗ φ].

As a consequence,{(0, sn ∗ (un1 , u
n
2 ))} is also a Palais-Smale sequence forJ̃ restricted to

R × S at the levelγ(a1, a2). Thus we may assume thatsn = 0. This implies, firstly, that
{(un1 , un2 )} ⊂ S is a Palais-Smale sequence forJ restricted toS at the levelγ(a1, a2) and sec-
ondly using∂sJ̃(0, (un1 , u

n
2 )) → 0 thatQ(un1 , u

n
2 ) → 0 holds.
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Lemma 5.7. Assume (H1) and (H2) hold. Then the sequence{(un1 , un2 )} ⊂ S obtained in
Lemma5.5 is bounded.

Proof. This property is directly related to the fact that the functional J restricted to the set
Q(u1, u2) = 0 is coercive. Indeed we can write, for anyε > 0,

J(u1, u2) =
ε

2
|∇u1|22 +

ε

2
|∇u2|22 + a(ε)|u1|p1p1 + b(ε)|u2|p2p2

+ βc(ε)

∫

RN

|u1|r1 |u2|r2 dx+
1− ε

2
Q(u1, u2).

where

a(ε) =
(1− ε)µ1N

2p1

(p1
2

− 1
)
− µ1
p1
, b(ε) =

(1− ε)µ2N

2p2

(p2
2

− 1
)
− µ2
p2

and

c(ε) =
(1− ε)N

2

(
r1 + r2

2
− 1

)
− 1.

The coefficienta(ε) is strictly negative but the corresponding term can be easily controlled by
ε|∇u1|22 using the Gagliardo-Nirenberg inequality once more because p1 < 2 + 4

N
. Next ob-

serve thatb(ε) > 0 holds forε > 0 small enough, becausep2 > 2 + 4
N

. Now concerning the
term βc(ε)

∫
RN |u1|r1 |u2|r2 dx we immediately obtain thatc(ε) > 0 for ε > 0 small. Using

Q(un1 , u
n
2 ) → 0 yields the boundedness of our Palais-Smale sequence.

At this point, using Lemma 3.2 we can assume that(un1 , u
n
2 ) ⇀ (u1, u2) weakly inE with

u1 ≥ 0 andu2 ≥ 0. In order to get the strong convergence, according to Lemmas3.2 and 3.4, we
just need to show thatu1 6= 0 andu2 6= 0.

Lemma 5.8. Assume that (H1) and (H2) hold, and thatγ(a1, a2) 6= 0. Thenu1 6= 0 andu2 6= 0.

Proof. Suppose by contradiction that at least one ofu1 or u2 is zero. Then the strong convergence
in Lq(RN ) for q ∈ (2, 2∗) implies

β

∫

RN

|un1 |r1 |un2 |r2 dx→ 0.

Thus since{(un1 , un2 )} satisfiesQ(un1 , u
n
2 ) → 0 it follows that

(5.6)
J(un1 , u

n
2 ) =

µ1
p1

[
N

2

(p1
2

− 1
)
− 1

]
|un1 |p1p1 +

µ2
p2

[
N

2

(p2
2

− 1
)
− 1

]
|un2 |p2p2

= −D1|u1|p1p1 +D2|u2|p2p2 + o(1).

whereD1 > 0 andD2 > 0. We now distinguish three cases:

Case 1 :u1 = 0 andu2 = 0.
From (5.6) we obtain thatJ(un1 , u

n
2 ) → 0. Thus since we have assumed thatγ(a1, a2) 6= 0 this

case cannot occur.
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Case 2 :u1 = 0 andu2 6= 0.
First note that by Lemma 3.4 we haveλ2 < 0, henceun2 → u2 ∈ S(a2) strongly inH as a
consequence of Lemma 3.2. Usingu1 = 0 it follows from (5.6) that

(5.7) J(un1 , u
n
2 )− I(un2 ) → 0 and J(un1 , u

n
2 ) → D2|u2|p2p2 .

Since(u1, u2) is a solution of the system (1.5) we see thatu2 	 0 satisfies

−∆u− λ2u = µ2|u|p2−2u.

From Lemma 3.1 and (5.7) we deduce thatD2|u2|p2p2 = mµ2
p2 (a2) > 0. Therefore in order to obtain

a contradiction it suffices to show thatγ(a1, a2) < mµ2
p2 (a2). But this is immediate from Lemma

5.4 becausemµ1
p1 (a1) < 0. Thus case 2 is not possible.

Case 3 :u1 6= 0 andu2 = 0.
As in case 2 we can show thatu1n → u1 ∈ S(a1) strongly inH. Now sinceu2 = 0 it follows that

J(un1 , u
n
2 )− I(un1 ) → 0 and J(un1 , u

n
2 ) → −D1|u1|p1p1 .

Arguing as in case 2 we identify−D1|u1|p1p1 with the least energy level of

(5.8) −∆u− λ1u = µ1|u|p1−2u,

namely
−D1|u1|p1p1 = mµ1

p1
(a1).

Therefore in order to avoid that this case happens it sufficesto show thatγ(a1, a2) > mµ1
p1 (a1) =

I(u). But this is precisely what we can deduce from the lemmas 5.1,5.3 and the definition ofB.

Having proved that the cases 1, 2 and 3 are both impossible this concludes the proof of the
lemma.

Proof of Theorem2.2. In view of the lemmas 3.2, 5.5, 5.7 and 5.8, in order to establish the theorem
it is enough to prove thatγ(a1, a2) < 0. We see from Lemma 5.4 that this is the case ifmµ1

p1 (a1)+
mµ2

p2 (a2) < 0. Note also thatu1 > 0 andu2 > 0 follows directly from the strong maximum
principle becauseu1 	 0 andu2 	 0.

Proof of Corollary2.3. From Lemma 3.1 we know thatmµ1
p1 (a1) < 0 andmµ1

p1 (a1) → −∞ as
a1 → 0. Also mµ2

p2 (a2) > 0 andmµ2
p2 (a2) → 0 asa2 → ∞. Therefore the corollary follows

directly from Theorem 2.2.
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