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Normalized solutions for nonlinear Schrédinger systems

THOMAS BARTSCH Louis JEANJEAN

Abstract

We consider the existence nbrmalizedsolutions inH!(RY) x H!'(R") for systems
of nonlinear Schrddinger equations which appear in modelbihary mixtures of ultracold
quantum gases. Making a solitary wave ansatz one is led gewdgystems of elliptic equa-

tions of the form
—Aup = Muy + fl(ul) + 61F(u1,u2),

7A’LL2 = )\Q’LLQ =+ fQ(UQ) =+ 82F(u1,u2),
ur,up € HY(RY), N > 2,

and we are looking for solutions satisfying

/ |u1|2:a1, / |u2|2:a2
RN RN

wherea; > 0 andas > 0 are prescribed. In the system and A, are unknown and will
appear as Lagrange multipliers. We treat the case of honeogsmonlinearities, i.¢; (u;) =
il P g, F(ug, uz) = Blui|™ Jug|™, with positive constants, u;, p;, ;. The exponents
are Sobolev subcritical but may Bé-supercriticalip;, pa, r1 + r2 €)2,2*[\ {2+ & }.
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1 Introduction

Elliptic systems of the form

—Auy = Muy + fi(ur) + 0 F(ur, u2)
(1.1) —Aug = Aus + fa(uz) + 02F (ug, uz)
uy,uy € HY(RY)

have been investigated in the last decades by many authamsrisingly little is known about the
existence of normalized solutions, i.e. solutions thasiathe constraint

(1.2) / ]u1\2 = a1 and / ”LLQ‘Q = a9
RN RN
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with aq, ay > 0 prescribed. One motivation to look for normalized solusiar (1.1) are coupled
systems of nonlinear Schrodinger equations

. ST inR x RY.
—10, Uy = AUy + ga(|¥2|)Wa + 02 G(|¥1 |7, | Vo |?)¥s

/ |\I’1|2 and / |\I/2|2
RN RN

are preserved along trajectories [of {1.3), it is naturaldsaer them as prescribed. A solitary
wave of [1.B) is a solution having the form

(1.3) {_iat\h = AU + g1 (|U1)T1 + 0 G(|P1]?, [Wo]?) Ty

Since themasses

Uy (t,x) = e My (z) and Uyt z) = e Mluy(z)

for someA;, Ay € R. This ansatz leads t6 (1.1) fou1, uz) with f1(u1) = g1(Jui|)u1, fo(ug) =
g2(Juz|)uz, andF (uy, us) = 5G(jur|?, [uz]?).

The question of finding normalized solutions is alreadyriggéing for scalar equations and
provides features and difficulties which are not presentnithe normalization condition is being
dropped. Since the scalar setting will of course be relewdmgn treating systems, let us recall a
few facts. Solutions: € H'(RY) of

(1.4) — Au= du+ f(u), / lul? = a,
RN

with a > 0 fixed can be obtained as critical points of the functional

J(u) = %/RNWUF—/RN F(u), with F(s) :/Osf(t) dt,

constrained to thé.?>-sphereS, := {u € H'(RY) : [pn [u|> = a?}, provided f is subcritical.
The model nonlinearity igf(s) = |s|P~2s with 2 < p < 2* = 2% The parameteh in the
equation appears then as Lagrange multiplier.

The best studied cases Bf (|1.4) correspond to the situatiem\a solution can be found as a
global minimizer ofJ onS(a) whichisthe case & < p < 2+% for the model nonlinearity. This
research mainly started with the work of Stuart[29,30]. fdtier the Concentration Compactness
Principle of P.L. Lions[[2R, 23] was used in this type of perbk. The case whehis unbounded
from below (and from above) of,, i.e.2 + % < p < 2* for the model nonlinearity, has already
been much less studied. In this case a mountain pass s&inasibeen exploited in [19] leading to
the existence of one normalized solution. The existencefioiiiely many normalized solution has
later been proved iri [7] where a "fountain” type structurettwnL?-sphere has been discovered
which is somewhat reminiscent to the one for the free funalidrom [€]; see alsa [32]. More
results on normalized solutions for scalar equations caolnred in [10/ 11, 20]. Technical diffi-
culties in dealing with the constrained functional are that existence of bounded Palais-Smale
sequences requires new arguments, that Lagrange muktipk&e to be controlled, and that weak
limits of Palais-Smale sequences a-priori do not necégs@ion the samd.>-sphere.



The goal of this paper is to find positive radial solutions ys$tems like [(1.I1) under various
growth conditions oryy, fo, F'. In order to keep the ideas and the results simple, and irr ¢ode
avoid technicalities we only deal with homogeneous noalitties f1(s) = u1|s[Pr~2s, fa(s) =
pa|s|P22s, and F'(s,t) = f|s|"|t|"2. Thus we look for positive radial solutions,us € F :=

H! (RN) x HL (RY) of the system
(1.5) —Auy = Mg + pafug P2+ Blua [ ug| 2w
. —Auy = Mug + pio|ua P> 2ug 4 roflut| fug| > ?uy

which areL?-normalized in the sense ¢f(1.2). Throughout the paper weaire N > 2, pi, ps €
12,2, [\ {2+ +}, and B, 1, p2, 71,72, a1, a2 > 0 with 2 < 71 + 7o < 2*. Thus we treat
various self-focussing cases and attractive interaclitiese constants are prescribed whereas the
parameters\; and A, are unknown and will appear as Lagrange multipliers. Théegysomes
from mean field models for binary mixtures of Bose-Einsteimaensates or for binary gases
of fermion atoms in degenerate quantum states (Bose-Feixbines, Fermi-Fermi mixtures);
see [[1, 5,14, 25] and the references therein. The most fagaassis the one of coupled Gross-
Pitaevskii equations in dimensiaN < 3 wherep; = p; = 4, r1 = ro = 2 modeling Bose-
Einstein condensation. However models for other ultragalhtum gases use different exponents.

The particular casg; = p, = 4, 1, = ro = 2 of coupled Gross-Pitaevskii equationsRA is
being treated in the companion pager [8]. In the presentrpa@eleal with general exponents and
distinguish between the cages p, < 2+ %, p1 < 2++ < p2 andpy, p» > 2+ +. The exponent
2+ % is critical for the normalized solution problem and will rwd treated here. Other results
on the existence of prescribéd-norm solutions for systems can be found[ii 2,3/ 18,26, 2], 3
In these papers the solutions obtained are global minimiakthe associated functional (e.g. in
the defocusing repelling cagg, 1z, 5 < 0), or only the case of small masses as ~ 0 has been
treated (as in[27]). In the latter paper the system inclual&@dpping potential or was defined on
a bounded domain. Requiring the masses to be small is a &ifoinctype result.

Up to our knowledge the results of this paper and of its cornigmapaper [8] are the first
results where one obtains normalized solutions for systehen the associated functional, here
J, is unbounded from below on the constraint, and when the eésassed not be small.

The paper is organized as follows: In Sectidn 2 we state aszlig$ our results. Sectibh 3
contains some preliminary results, whereas Secfions 4 lbawe Slevoted to the proofs of the
theorems from Sectidd 2.

2 Statement of Results

We fix N > 2, P1,P2 € (2,2*), andﬁ,ul,m,n,m,al,ag > 0 with 2 <ri+mry <2 We seek
for solutions in the spac®& := H! ,(RY) x H! ,(RY) of pairs of radial functions iri7!(R").

Our first result on[(1]5)[(112) deals with a case where it Bsjile to minimize the functional on
the constraint.

Theorem 2.1. The problem{L.8), (1.2) has, for some\;, A2 < 0, a solution(uy, us) € E satisfy-
ing u; > 0, us > 0 in each of the following cases:

a) 2< N <4andpi,ps,r +12 < 2—{—%



b) N25andp1,p2<2+%andn+r2<2+%.

We do not know whether Theordm R.1 a) holds true fonall> 2, i.e. whether the hypothesis
p1,p2 < 2+ 5> inZ b) can be replaced by, p» < 2+ %-. SettingS(a) = S,NH} ,(RY) =

rad

{ue H ,(RY) :|u} = a}, the solution in Theorem 2.1 will be a minimizer of the fuoctal

1
T (ur,uz) = 5/ Vur 2 + |V |? de —/ P P 4 B2 g2 - Bl |7 )™ dee
RN RN P1 D2

constrained t&'(a;) x S(az) C E.

It is easy to prove that any minimizing sequek¢e?, u5)} C S(a1)xS(az) associated td is
bounded. Thus we can assume without restriction ttus ) — (uy, u2) weakly in £ for some
(u1,u2) € E. From the weak convergence Biwe deduce thatu,, us) satisfies[(15) for some
associated )\, \2). To prove Theorem 211 one still has to show that, us) € S(aq) x S(asg).
Even if we work in the space of radially symmetric functiohstquestion is, with respect to the
scalar case, challenging as was already observed in [18].pf@of of Theoreni 2]1 ultimately
relies on the use of a Liouville’s type result for an ass@datcalar equation. This is responsible
for the restriction thafV < 4 in part a), or thap,ps < 2 + ﬁ in part b).

Our second result deals with the case wherandr; + ro are bigger tharR + % so thatJ is
unbounded from below and minimization does not work. We iregthe following hypotheses on
the coefficients.

(H1) 2 <p1 <2+ 4 <py <2
(H2) 2+ 4 <7y +79 < 2%, 79 > 2.

Consider the functional : H!, ,(RY) — R defined by

1
I(u):§/RN |Vu|2dac—%/RN ulP d

constrained to thé&>-sphereS(a). Forp €]2,2*[\{2 + +} we denote byn) (a) the ground state
level, i. e.
mh(a) = inf{I(u) : u € S(a) such thai(I;g(,) (u) = 0}.

We discuss the properties of this ground state level in Le@delow.

Theorem 2.2. Assume (H1), (H2) and < N < 4. If
(2.1) mp(ar) +mb2(az) <0,

then, for some\; < 0 and X2 < 0, there exists a solutiofw;, us) € E of (1.B), (1.2), satisfying
up > 0, ug > 0.

As a corollary of Theorem 2.2 we obtain :

Corollary 2.3. Assume (H1), (H2) an2l < N < 4. Then for anyz; > 0 there exists; > 0 such
that for anya;, > a; there exists a positive solutidm,us2) € E of (L.8), (1.2), for some\; < 0
and )y < 0. In additiona; — 0 asay — oo.



With respect to Theorefn 2.1 the proof of Theorem 2.2 presesis difficulties. First one
needs to identify a possible critical leve{a;, a2) where one can find Palais-Smale sequences.
The construction of this minimax level, which is of mountpass type, is the heart of the proof
and is carried out in Lemmas 5[1, 5.2 5.3. By Ekeland’'&@tiranal principle there exists
a Palais-Smale sequence associated &9, a2). One then needs to find a bounded Palais-Smale
sequence. We manage to find a special Palais-Smale sequefice})} C S(a1)xS(az) having
the additional property tha (v, u5) — 0 where@ : E — R is given by

QU ua) = Vol + Vsl ~ 0 (2 1) sl

M2 P2 r1+ 12
——N(——l) PN —1 " ug|"? da.
p2 \2 fualps = N6 ( 2 > /RN | o™ d

(2.2)

The conditionQ(u1,u2) = 0 corresponds to a natural constraint of Pohozaev type ondllbe s
tions of [1.5), [(1.R); see Remdrk5.6. To construct a P&aisde sequence having the additional
propertyQ(uf', uy) — 0 we employ similar arguments as I [7) 11119, 24]; see alsb/}K,

From the property tha®)(u}, u}) — 0 we deduce thaf(u},u%)} C E is bounded. Finally
in order to insure the strong convergence of our Palais-Ssetdiuence we combine the estimate
(2.2) with the Liouville argument already used in the probTheorem 1.1.

In our last result we assume the inequalitigsps, 71 + 1o > 2 + %

Theorem 2.4. Assume thapy, p2, 71 + 72 > 2+ 4+ and that2 < N < 4.

a) There exist®; = B1 (a1, as, p1, p2) > 0 such that if3 < p; then(@.8), (I.2) has a positive
solution (uy,us) € E for somer; < 0 andAg < 0.

b) There exist®y = fa(a1, as, i1, 12) > 0 such that if3 > S, then(@.8), (I.2) has a positive
solution (uy,ue) € E for some\; < 0 and A2 < 0.

We would like to emphasize that the proof yields expliciirastes for3; from below ands,
from above in terms by, po, 71, 72 anday, as, 11, po, in particulars; andgs are not obtained by
limiting processes.

Theoren 2.4 is a generalization of the result from [8] whéedaseN = 3, p; = ps = 4,
r1 = ro = 2 has been considered. The proof of Theofem 2.4 a) is basedwn+-dirhensional
linking on the constraint’ = S(a;) x S(a2) whereas the proof of Theordm R.4 b) uses a mountain
pass argument afi. As in Theoreni 2]2 one obtains a special Palais-Smale seg{ier{’, u)} C
S(a1) x S(ag) at the suspected critical lev@{a;, a2) such thatQ(u},uy) — 0. This leads in
particular to its boundedness. In order to obtain the sticomyergence an upper bound fis
needed in part a), and a lower bound in part b). Concerningnatas fors, or 5, we just mention
that in the setting of_ [8] one ha$, — oo if u1 = pus — oo andas, as being fixed. Similarly,
B2 — 0if u1 = pe — 0 anday, as are fixed. Since the proof inl[8] for the special cdse= 3,
p1 = p2 = 4, r1 = ro = 2, generalizes easily we simply refer td [8] and do not give details
here.

Remark2.5. The results presented in this paper fér > 2 can be extended t&/ = 1. The
difference between the casds = 1 and N > 2 is that the compact embeddirg;, ,(R") C
Li(RN) for ¢ €]2,2*[ only holds whenN > 2. WhenN = 1 the corresponding compactness
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can however be regained by working with Palais-Smale sexgseof almost Schwartz-symmetric
functions. In order to avoid additional technicalities weertbt deal with the cas® = 1 in this
paper but instead refer the reader(to[20] where a similaeisstreated. The results are identical
in the casesV = 1 and N > 2 except that in the cas¥ = 1 one should require in addition that
r9 > 4in (H2) (this restriction originates only from the adaptextsion of LemmaJ5]1).

3 Préliminary results

Throughout the paper we denote I the spaceFI}ad(]RN ) equipped with the standard norm
|- |, sOF = H x H. We also denote by the constraintS(a;) x S(ag2). We recall, see for
example[[12], that ifu,, — u weakly in H thenu,, — u strongly inL4(RY) for ¢ €]2, 2*[.

Let us first observe that the functiondlis well defined. FoR < ri + ry < 2* there exists
g > 1 with

2 2% 2% 2
3.1 <g< -
(3.1) max{r1 2*—7‘2} q < mln{ (2—r2)+}’

which implies2 < ryq, r2¢’ < 2*, hence

lé\mmmw%m<mmwywhw<m.
The Gagliardo-Nirenberg inequality

N(p—2)

lul, < C(N,p)|Vul§ - [ul3™® wherea = 5
P

which holds foru € H'(RY) and2 < p < 2%, implies foru; € S(a1), uz € S(az):

N(Pl 2) N(p2—2)
(32) / ' < CWpLa)Vuly * o [ el < Vo)V, T
R
an
N(r19—2) N(roq'—2)
(3.3) / " ol d < Jur |7y - [wal2, < C|Vualy ® |Vual,
RN

with C = C(N,r1,72, a1, as,q).

Lemma 3.1. Assume thap €]2,2*[\ {2+ <}, and let > 0 be given. For any: > 0 there
exists a unique couple\,, u,) € R* x H solving

(3.4) — Au+ u = pluf?u, ue HY(RY),

and such that, > 0 and|u,|3 = a. Moreoveru, corresponds to the least energy levelf (a) of
the functionall : H — R defined by

1
I(u):§/RN ]Vu\de—%/RN |ul? dx
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constrained to thel2-sphereS(a). If p €]2,2 + [ thenm}(a) < 0 for all @ > 0, the map
a + mhy(a) is strictly decreasing, andny(a) — —oco asa — oo. If p €]2 + +,2*[ then
mh(a) > 0forall a > 0, the mapm — mj(a) is strictly decreasing aneh), (a) — 0 asa — .

Proof. It is standard (seé [21]) that the equation
(3.5) — Au+ = pluf?u, ue HYRYN),

has, for anyA > 0, a unique positive radial solutiom,. By direct calculations one can show that
uy is given by
1
ux(z) = A2 w(VAz)

wherew is the unique positive radial solution of
—Au+u = plulP2u, ue H(RY).
Since
uay = AT g
for anya > 0 there exists a uniqug, > 0, explicitely given by

2(p—2)

a — —
)\a:( )4 N(p 2),

w3

such thatuy, € H*(RY) satisfiegu,, |2 = a and is the unique positive solution of
—Au+ Au = plulP2u, ue H(RY).

The solutionu, corresponds to a least energy solution of the functidnalf — R defined by

1
I(u):§/RN |Vu|2dx—%/RN ulP d

constrained to thé.?-sphereS(a). Here), > 0 appears as the associated Lagrange parameter.
To prove this statement two cases have to be distinguished:

Case 1ip€]2,2+ +[.
The least energy solution corresponds to the energy level

mh(a) = ueig{a) I(u).

Itis standard([29,30], see al$d [9], thaf (a) < 0, that the ma — m} (a) is strictly decreasing,
and thatm/, (a) — —oo asa — oo.

Case 2 p €]2 + +,2%[.

The least energy solution corresponds to the energy level

mp(a) = ueir‘}lza) I(u).

7



Here

(3.6) V(a) = {u € 8(a) : [Vul3 = W\u@}

is a natural constraint which contains all the critical p®iof I constrained to5(a). This has
been proved in[11, Lemma 9.3], see alsa [19]. Alsdin [11, ben®.3] it is shown that the map
a — ml(a) is strictly decreasing and that),(a) — 0 asa — oo. O

Lemma3.2. Let{(u},u4)} C S be abounded Palais-Smale sequencé aéstricted toS. Then
there existu;,us) € E, (A1, A2) € R x R and a sequencé(A\}, \5)} € R x R such that, up to
a subsequence:

a) Fori=1,2,u? — u; weakly inH and in L2(RY), u? — u; in LY(RY) for anyq €]2,2*[;
b) (A7, A\8) = (A1, A2) INR x R;

c) J'(uft,ul) — N (ul,0) — N5(0,ul) — 0in E*;

d) (u1,us9) is solution of the systeid.5) where(\, \2) are given in b).

In addition if \; < 0thenu}] — w; strongly inH. Similarly if Ay < 0 thenuf — s Strongly in
H.

Proof. Point a) is trivial. Since{(u},u)} € H x H is bounded, following Berestycki and
Lions [12, Lemma 3], we know thdt/|s)’(u], uy) — 0in E* is equivalent to

1 n n n n 1 n n n n
<J/(ulau2)? (uf,0))(uf,0) WU/(UMUQ), (0,u5))(0,uy) — 0

J/(u?aug) -
ug 3

[uf[3

in £*. Therefore we obtain

J'(uf, uy) — AT (uf,0) = A3(0,u5) — 0 in E

with
n 1 n|ri n|re
(3.7) Al =——3 ‘ |Vuy| — /H’Ul ﬁn ’Uﬂ luy | dx
2
and
n 1 n|re n|ri
(3.8) Ay = | | |Vug| — M1|U2 57“2 |U2| lut | dx | .
Ug'12

This proves point c). To prove point b), namely thax?, \5)} C R x R is bounded, it suffices to
recall that{ (u},u5)} C E'is bounded and to use the estimafesl(3.2) (3.3). Now foonisp
b) and c) it is standard to deduce d).

It remains to show that iA; < 0 thenu} — wu; strongly in H'(RY), and in particular in
L?(RM). Since

2 s g2 and / ]uﬂ”]u?!”dw%/ ™ s "2 d,
RN RN
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and using the fact that/’ (uf, ul) — AT (u?, 0), (uf,0)) = (J'(u1,u2) — A (u1,0), (u1,0)) =0,
we deduce

(3.9) Vi3 — ATt |3 — V|3 — Mfua f3.
As a consequence of the weak convergemite—~ u; we obtain
|Vuy|3 <liminf [Vuf|3 and |ug]3 < liminf [u}[3.
Finally, sinceA} — A\, we deduce fron(3]9) that
IVull3 — [Vuils and |3 — |uil3
from which the strong convergence follows. The casgxk 0 is treated in the same way. [J

Lemma3.3. a) Suppose thaj €]1, s%5] whenN > 3 andq €]1,00[ whenN = 1,2. Let
u € Li(RY) be a smooth nonnegative function satisfyindu > 0 in RY. Thenu = 0

holds.

b) Fori<g¢<1+ % the inequality— A > u? does not have a positive classical solution
in RN,

Proof. a) can be found in_[18, Lemma A.2]; b) is due to [16], a simplegbrcan be found in
[28]. O

Lemma3.4. AssumeV < 4,0r N > 5andp; < 2+ 2. If (u1,u2) € E is a solution of (LB)
withw; = 0 andug > 0, thenA; < 0. If (u1,u2) € E is a solution of (I.5) with up = 0 and
u1 > 0, then)\y < 0.

Proof. In the first case since; = 0 satisfies

—Au; = Mug + ,Ullulfl_l + 7“1,8u7£1_1u2
and since all summands on the right hand side are non neghtive > 0, we conclude by
Lemma[3.8 that:; = 0. This contradicts the assumption that = 0. The proof of the other
part is identical. O

4 Proof of Theorem 2.1

Lemma 4.l If p1,po, 71 + 719 < 2+ % then.J is bounded from below and coercive &nfor
anyai,az > 0. In addition there exists a bounded Palais-Smale sequéficg )} C S which
satisfies(u})™ — 0 and(uy)~ — 0in H. Here(u})” = max{0, —u}} fori =1,2.

Proof. Observe thatw < 2 because; < 2+ 4,i=1,2, and that

N(riq—2) n N(raq' — 2)

4.1
(4.1) 2 27

<2




sincer; + 1o < 2+ %. It follows easily from [[3.2),[(3]3) and (4.1) thdtis bounded below and
coercive ons.

Now let {(v}",v5)} C S be a minimizing sequence fof on S. By the coerciveness of it
is bounded and also without restriction we can assumevthat 0 andvi > 0. Using Ekeland’s
variational principle[[18, 15] we deduce that there existsiaimizing sequencé(uf,us)} C S
which is a Palais-Smale sequence faestricted taS and which satisfiegu!', u3) — (v, vy) — 0
in E. In particular(u})™ — 0 and(uy)~ — 0in H. O

Proof of Theoren2.1 From Lemmas 311 arld 4.1 we deduce the existence of a boundkd-Pa
Smale sequenc§uf,uy)} C S such that(u}, uy) — (ui,ug) weakly in E with u; > 0 and
ug > 0. We also obtain a couple\;, A2) € R x R for which (u1,u2) is solution of the system
(1.5). To conclude the proof it remains to show that— u; andu} — wus in H. Indeed if this is
the case then we both have € S(a;) anduy € S(az) and that(ug, uz) is a least energy solution.
In addition by the strong maximum principle, applied seteyato each equation, we obtain that
uy > 0 andus > 0. In order to show the strong convergencednve define

m(ai,az) == inf  J(up,u2).
( ! 2) (u1,u2)€ES ( ! 2)
Sinces > 0 we clearly have

4.2) m(a1,az) < mht(ar) +mp2(az) <0

where the last inequality comes from Lemmal 3.1. We now djsish four cases and we show
that only the last one may occur:

Case 1:u; = 0anduy = 0.
Then|u?[p} — 0, [uf]h; — 0 and [ |uf|™[uf]™ dz — 0. Thuslimsup J(u},uy) > 0 which
contradicts[(4.R2).
Case 2:u; = 0 andusy # 0.
Then
. 3 n . n 1 2 K2 D2 —
lim sup J(uf, uy) > §|Vu2|2 - E|U2|p2 > m(az)

whereas := |uz|3 < az. By Lemma 3.1 we know thati(az) > m(az), and sincen(a;) < 0 we
have a contradiction with(4.2).

Case 3:u; # 0 andug = 0.
Reversing the réle af; anduy we obtain a contradiction similar to case 2.

Case 4.0 < ’ul‘% =a1 <ayori0< ’UQ‘% = a2 < as.

Necessarily this case occurs. Now using Lenimé& 3.4 we dethatat < 0 and)\, < 0. Then
Lemmal[3.2 impliesu! — w; anduy — wug in H. At this point the proof of the theorem is
completed. O
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5 Proof of Theorem 2.2

Forc > 0 we define the sets
A, = {ug € S(ag) : |[Vugl3 < ¢} and B, = {uy € S(az) : |Vus|3 = 2¢}.
SettingJ,, (u2) := J(u1,u2) for u; € S(a;) we observe that
1

Juy (u2) = Jyuy (0) + 5/ |Vu2|2d:v — &/ |ug|P? do — B/ |ug|™ Jusg|™ da.
RN b2 JrN RN

Lemma5.1. There exists a continuous function S(a;) — R, u; — ¢(uy), such that

sup Jy, < inf J,, for all u; € S(ay).
A Bc(u )
c(uq) 1

The functiorc is bounded, and it is bounded away frénen bounded subsets 6{a; ).
Proof. Fixing u; € S(a;1) we first observe that foiy € A. there holds:

1 1
T (u2) < Jus (0) + —/ Vs dz < J,, (0) + ~e.
2 RN 2

Forus € B. andgq as in [31), andy = N(%:”) we have, using the Gagliardo-Nirenberg
inequality, see(3]12)[(3.3),

N (py—2 1-)4N
Jul<u2>zJu1<o>+c—%e(pz,mwuﬂ;(” Nug 2072 _ glug|mr - ug)

r1g r2q’
ol
2

= Ju (0) + ¢ — K1eT®2=2) _ Folug |7 c

r19q

HereK; = K1 (N, 2, p2,a2) andKy = Ko(N, 8,72, a2, q). Observe tha{}(pg—Q) > 1 because
p2 > 2+ %, and~y > 2 providedq < m. We can choose satisfying this inequality and

(3.3) because
2N < 2 2%
2N —roN + 4 7“172*—’1“2
which is a consequence of + ry > 2 + % andry > 2.

Observe thaf ¢ 72~ < Lcif ¢ > 0 is small becausé =2 > 1, andKo|uy 7!, - ¢3 <
%c if ¢ > 0is small because > 2. More precisely, ifc : S(a;) — R satisfies

4 _ 2
(5.1) ¢(uq) < min {(8K1)N<p22)4, (8K2)_% gy } ,
then we have forp € B, (,,):

Tur () > g (0) + eur) — Sem) — e(un)

(5.2) 1
> Jyu, (0) + §c(u1) > sup Jy,-

Ac(uy)

Clearly we may define a continuous function: S(a;) — RT satisfying [5.1) and which is
bounded away fror on bounded subsets 8{a;). In fact, the right hand side df (5.1) may serve
as definition. By[(5.l1} is also bounded above. O
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Now we set
A(ul) = Ac(ul), B(ul) = Bc(ul)

and
B = {(u1,u2) : u1 € S(ay), uz € B(u1)}.

Letu € S(a1) be such that

(5.3) J(u,0) = min J(u,0) <0.
u€eS(ar)

The existence of; is insured by Lemma3.1.

Lemma5.2. There exist € A(u) andw € S(az) \ Ase(y) SUCh that

max{J(u,?),J(u,w)} < inf J(ug,ug).
(u1,u2)€EB

Proof. SinceJ(u, u2) — J(u,0) as|Vug|z — 0, in order to obtairv € A(u) it is sufficient to
prove.J(u,0) < infg J. The functional/(-,0) : S(a;) — Ris coercive because< p; < 2+ +-.
ChooseR > 0 such that/(u;,0) > J(u,0) + 1 if |Vui|s > R. Then we have fofu;,us) € B
with |VU1|2 > R, cf. @)

3
J(ur,uz) 2 J(u1,0) + Feur) > J(w,0) +1.

By Lemmd5.1 there holds

e:= _inf c(uy) >0
[Vui|2<R

which implies for(u;,u2) € B with |Vuy|s < R:
3 3
J(ul,u2) > J(ul,()) + Zc(ul) > J(Q,O) + Z&.

In order to findw € S(az) \ Ay as required we define for eache S(a2) andt € R the

scaled functiont x u by (¢ * u)(z) = et%u(etx). Clearlyt « u € S(a2) for everyt > 0, and
|V (t*u)|s — oo ast — co. Now sincep, > 2 + +, fixing an arbitraryu € S(a2) we see that
J(u, (t*u)) - —oo ast — oo. O

As a consequence of Lemmals.2 the set

r:.= {g € C([07 1]78) :g(O) - (U17U2)7 9(1) = (w17w2)7
vy € A(v1), wa & Age(y), max{J(vi,ve), J(wi,wa)} < i%f J}

iS nonempty.
Lemma5.3. We have

, := inf J(g(t)) > inf J.
(a1, az) Inf max (9(1)) = in

12



Proof. We just need to show that for eaglY) = (¢1(¢), g2(t)) € T there exists @ € [0, 1] such
thatg(t) € B. The mam : [0, 1] — R given byt — |Vga(t)|3 — 2c(g1(t)) satisfies

a(0) = ||Vual|3 — 2¢(v1) < e(vy) — 2¢(v1) < 0

and
a(l) = ||Vw2||% — 2¢(wq) > 0.

Thus there exists aic [0, 1] such thaix(t) = 0, which meang(t) € B. O
For future reference we also need.

Lemma5.4. Assume that (H1) and (H2) hold. Then for any> 0 andas > 0 we have
(5.4) (a1, az) < mgll(al) + mgzz(ag).
Proof. Letu € S(ag) be such that

J0.0) = 1@ = min 1) = m}2(a)

whose existence and characterization is recalled in Lemfiyasdh V («) defined in[(3.5). Since
u € V(ag) itis readily seen that

(5.5) IileE[LRXI(t*ﬂ) =I1(0xw) = I(u).

We now consider the path: [0, 1] — S given byh(t) = (u, hs(t)) where
hs(t)(x) = es(%_l)%ﬂ(es(%_l)x).
Heres > 0 is choosen sufficiently large so that

hs(0)(-) = e*sgﬂ(e*‘q-) € A(u), hs(1)(-) = e*2u(e’:) € Ageqy) and max J(u, hys(1)) < 0.

Thush belongs td". Now using [5.b) and? > 0 we obtain

e J(h(t)) < J(u,0) + max J(0,hs(t)) = mip (a1) + my; (az).

O

Lemmab.5. Assume that (H1) and (H2) hold. There exists a Palais-Snegjeence (u}, u})} C
S for J at the levely(ay, as) which satisfiegu})~™ — 0, (u§)~ — 0in H and the additional
property thatQ(u}, uy) — 0 whereQ is given in(2.2).

Remark5.6. It is possible to prove that any solutiofu;,us) of (L.H), [1.2) must satisfy
Q(u1,uz) = 0. ThusQ(u1,u2) = 0 is a natural constraint. This condition is directly related
to the Pohozaev identity adapted to the presence of theraonist. Formally it can be obtained
by looking at the functiort — (¢ x uy,t * ug) for (uy,us) € S. ThenQ(uy, uz) = 0 corresponds
to the condition that the derivative 6f— J(t * u1,t % ua) is zero whert = 1.

13



Results in the spirit of Lemnia 5.5 have now been proved inietyaof situations[[#,10,17,19,
20,24] and we shall be rather sketchy here, refering theeread these papers for more details.
We recall the stretched functional first introduced_inl [19]:

J:RxE =R, (s, (up,ug)) — J(s*ui,s*us).

In the sequel we writex (u1,ug) := (s*kuq, sxuy) and recall thak (uy, ug) € Sif (uy,uz) € S.
Now we define the set of paths

f = {g € C([O’ 1]’R X S) : 5(0) = (0’ (1)1,2}2)), g(l) = (0’ (w1’w2))
vy € A(v1), wa & Age(w,), max{J(vy,v2),J (w1, w2)} < i%f J}

and N
(a1, a2) := inf max J(g(t)).
ger te[O,l]
Observe that/(ai,a2) = v(a1,a2). Indeed, by the definitions 6f(a1,a2) and~(a1,asz) this
identity follows immediately from the fact that the maps

p:T =T, g pg) == (0,9),

and N
Y:I' =T, g=(0,9) = ¥(g) =0 x*g, with (o *g)(t) = o(t) *g(t),
satisfy N N
J(p(g)) = J(g) and J(4(g)) = J(9)-

Proof of Lemm&.8 From the observation thaj(a;,as) = ~(a1,a2) we obtain a sequence
{(u},us)} C S such that

max J(0, (v}, vy)) = (a1, az).

te[0,1]

SinceJ (uy,u2) = J(|u1|, |uz|) we can assume thaf (¢) > 0 andvi (t) > 0 for ¢ € [0, 1].

Now Ekeland's variational principle implies the existenoé a Palais-Smale sequence
{(sn, (u,uy))} for J restricted taR x S at the levely(a;, a2) such thats,, — 0 andu —v* — 0

fori = 1,2. It follows that(u})~ — 0 and(u%)~ — 0. FromJ(s, (u1,us2)) = J(0, s * (u1,ug))
we deduce that

(0sJ) (s, (ur,u2)) = (9sJ)(0, s * (u1,usz))
and, foru = (uq,u2), ¢ = (¢1, P2):

(0uT)(s,u)[9] = (9uJ)(0, s * u)[s * ¢].

As a consequence{(0, s, * (u?,u}))} is also a Palais-Smale sequence fbrestricted to
R x S at the levely(a;,az). Thus we may assume that = 0. This implies, firstly, that
{(u},uf)} C Sis a Palais-Smale sequence fbrestricted toS at the levely(a;,az) and sec-
ondly usingd,J (0, (u?, u2)) — 0 thatQ(u?, u}}) — 0 holds. O
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Lemma 5.7. Assume (H1) and (H2) hold. Then the sequefi@eé!,u5)} C S obtained in
Lemmdb.5is bounded.

Proof. This property is directly related to the fact that the fuocdl J restricted to the set
Q(u1,u2) = 0is coercive. Indeed we can write, for any> 0,

g g
J(ur,uz) = §!VU1!§ + §!VU2!§ + a(e)ur [Br + b(e)|ug b2
1—¢
+ ﬁc(a)/ " s dz + = Q(us, us).
RN 2

where

w(&_l)_& b(g):w(@_l)_m

alg) = ’
(€) 2p 2 D1 2po 2 D2

and

() = (1 —;)N (7“1 ;rQ B 1) Y

The coefficienta(e) is strictly negative but the corresponding term can be easihtrolled by
e|Vuy |3 using the Gagliardo-Nirenberg inequality once more beeays< 2 + %. Next ob-
serve thab(¢) > 0 holds fore > 0 small enough, becauge > 2 + % Now concerning the
term Be(e) [pn |u1]™ lup|™ dz we immediately obtain that(c) > 0 for e > 0 small. Using
Q(uf,ul) — 0 yields the boundedness of our Palais-Smale sequence. O

At this point, using Lemma_3l2 we can assume thét, uj) — (u1,u2) weakly in E with
ui > 0 andus > 0. In order to get the strong convergence, according to Lenffithand 3.4, we
just need to show that; # 0 andus # 0.

Lemma5.8. Assume that (H1) and (H2) hold, and thgia;, a2) # 0. Thenu; # 0 andug # 0.
Proof. Suppose by contradiction that at least one0br u5 is zero. Then the strong convergence
in LI(RN) for ¢ € (2,2*) implies

5 [l ur do o
RN

Thus since{(uf, u)} satisfiesQ(uf, ul) — 0 it follows that

noony _ M1 N(m ) n 2 N(m ) n
J =P (B o) —rf e+ B2 (22 1) =1 g
s 0 =25 (5 [t + 223 (2 317

= —D1|U1 g} + DQ|U2 g; + 0(1)
whereD; > 0 and Dy > 0. We now distinguish three cases:

Case 1 :u; = 0anduy = 0.
From (5.6) we obtain thaf (v}, u5) — 0. Thus since we have assumed théi;, az) # 0 this
case cannot occur.
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Case 2 :u; = 0andus # 0.
First note that by Lemma_3.4 we hawg < 0, henceu} — us € S(az) strongly inH as a
consequence of Lemrha 8.2. Usiag= 0 it follows from (5.8) that

(5.7) Jl uy) —I(uy) =0 and J(u},ul) — Dalug gg.
Since(u1,u2) is a solution of the systerh (1.5) we see that> 0 satisfies
—Au — Agu = pg|ulP2?u.

From Lemma&3]1 and(3.7) we deduce thafus [ = mb2 (az) > 0. Therefore in order to obtain
a contradiction it suffices to show thata;, az) < mb: (a2). But this is immediate from Lemma
becausen,; (a1) < 0. Thus case 2 is not possible.

Case 3:uy # 0andus = 0.
As in case 2 we can show that — u; € S(aq) strongly inH. Now sinceuy = 0 it follows that
Jut,uy) —I(u}) =0 and J(u},usy) = —Diluy g}.
Arguing as in case 2 we identify D1 |u; |b: with the least energy level of
(5.8) — Au— M = i |ufPr 2,
namely
—D1|u1 113} = mj’;ll (al).

Therefore in order to avoid that this case happens it suff@wshow thaty(a;, as) > mjp; (ay) =
I(u). But this is precisely what we can deduce from the lemimd$531and the definition oB.

Having proved that the cases 1, 2 and 3 are both impossildecdimcludes the proof of the
lemma. O

Proof of TheoreriZ.2 In view of the lemmas 3|2, 5.5, 5.7 dndl5.8, in order to esthlthe theorem
itis enough to prove that(a;, as) < 0. We see from Lemnia5.4 that this is the casejf (a;) +
mh2(az) < 0. Note also thats; > 0 anduy > 0 follows directly from the strong maximum
principle because; = 0 anduy = 0. O

Proof of CorollaryZ:3 From Lemmd-3]1 we know thath; (a1) < 0 andmb} (a1) — —occ as
a; — 0. Alsomb:(az) > 0 andmp?(az) — 0 asay — oo. Therefore the corollary follows
directly from Theorenh Z]2. O
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