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Multi-bubble nodal solutions to slightly subcritical
elliptic problems with Hardy terms

Thomas Bartsch, Qiangiao Guo*

Abstract The paper is concerned with the slightly subcritical elliptic problem with Hardy term
—Au — ,ui = |u)? " in Q,
||
u=20 on 0f),

in a bounded domain Q ¢ RY with 0 € €, in dimensions N > 7. We prove the existence of multi-bubble
nodal solutions that blow up positively at the origin and negatively at a different point as ¢ — 0 and
u=¢e% with a > %. In the case of €2 being a ball centered at the origin we can obtain solutions with
up to 5 bubbles of different signs. We also obtain nodal bubble tower solutions, i.e. superpositions of
bubbles of different signs, all blowing up at the origin but with different blow-up order. The asymptotic

shape of the solutions is determined in detail.
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1 Introduction

The paper is concerned with the semilinear singular problem

u oo :
—Au — MW = |u)* "% in €,

(1.1)
u=0 on 0f,

where @ ¢ RN, N > 7, is a smooth bounded domain with 0 € Q; 2* := ]\2[—572 is the critical Sobolev
exponent. We study the existence of nodal (i.e. sign changing) solutions that have multiple blow ups as
0<e—0and pu= poe®, with o > 0 and a > 0 constants.

The blow-up phenomenon for positive and for nodal solutions to problem (1.1) has been studied
extensively in the case 4 = 0. It was proved in [8, 18, 22, 27, 28] that as ¢ — 07, the positive solution
u. blows up and concentrates at a critical point of the Robin’s function of Q. In [3, 29], the existence
of positive solutions with multiple bubbles was considered. In convex domains a positive solution cannot

have multiple bubbles, see [20]. The existence of nodal solutions with k bubbles at k different points was
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proved in [4] in the case k = 2, in [5] in the case k = 4 when () is convex and satisfies a certain symmetry,
and in [6] in the case k = 3 when 2 is a ball. On the other hand, nodal solutions with tower of bubbles
were obtained in [25, 26]. All these papers only treat the regular case pu = 0.

When p # 0, the Hardy potential ﬁ cannot be regarded as a lower order perturbation because it
has the same homogeneity as the Laplace operator and does not belong to the Kato class. This makes
the analysis much more complicated compared with the case p = 0. For the problem with Hardy type
potentials and critical exponents, much attention has been paid to the existence of positive and nodal
solutions, see e.g. [9, 10, 14, 17, 19, 21, 23, 30, 31, 33]. However, few results are known about the existence
of positive or nodal solutions with multiple bubbles to the problem involving Hardy type potentials and

critical exponents. We are only aware of the papers [15, 16], dealing with the problem

A #“ = k(z)u?

(1.2)
u € DY2RY), w>0in RV \ {0};

here DV2(RV) := {u € L¥ (RN)| |Vu| € L2(RN)}. In [16] the existence of positive bubble tower solutions

o (1.2), blowing up at the origin, was proved as € — 0, when k(x) = 1 4+ K (z) with K(z) a continuous
bounded function. These solutions, called fountain-like in [16], are superpositions of positive bubbles. In
[15] the existence of a positive solution to (1.2) blowing up at a critical point of k(x) was obtained as
p# — 0%, In [11] Cao and Peng investigated the asymptotic behavior of positive solutions to (1.1) in a
ball.

In this paper we are interested in the existence of multi-bubble nodal solutions to problem (1.1) as
g, — 0. Compared with [15, 16] the location of the bubbles does not depend on the shape of a coefficient
function k(x) but on the subtle influence of the geometry of the domain. We obtain two types of solutions
depending on the exponent « in the relation p = pge® where pug > 0. If a > % we prove the existence
of nodal solutions blowing up at different points, positively at the origin and negatively at other points.
The bubble tower solutions exist for o = 1, that is, when u has the same order as € when € — 0. In that
case, on any smooth bounded domain, we obtain nodal solutions that are superpositons of bubbles with
different signs, all blowing up at the origin. The proofs are based on the Lyapunov-Schmidt reduction

scheme.

In order to state our results we introduce some notation. By Hardy’s inequality, the norm

, U2 3
lull, = < [ vl u—2>dsc)
Q |$|

is equivalent to the norm [Jullo = ([, [Vu[*dz) Y2 on H(Q) provided 0 < p < . This will of course be
the case for u = poe® with € > 0 small. As in [17] we write H,,(£2) for the Hilbert space consisting of
H}(Q) functions with the inner product

(u,v) := / (Vqu - uu—U2> dzx.
Q ||

It is known that the nonzero critical points of the energy functional

1 u? 1 .
Je(u) == 5/9 <|Vu|2 - MW) dx — Cr— /Q |u|* ~Sdx



defined on H,(2) are precisely the nontrivial weak solutions to problem (1.1).

Next we introduce two limiting problems. The first one is

—Au = |ul* "%u in RY,
(1.3)
u—0 as |z| — oo.
It is well known that the nontrivial least energy (positive) solutions to (1.3) are the instantons
5 N—2
2
Use =Co | o——
e (52 e <|2)
with 6 > 0, ¢ € RY and Cp := (N(N —2)) NZQ, cf. [1, 32]. These solutions minimize
Vul?d
S = min fRNl *u| ’ -
ueDL-2(RN)\ {0} (f]RN |u|2 d.’L')2/2
Moreover there holds
N N
/ [VUs,¢|*dz =/ |Us|* dz = S5
RN RN
The second limiting problem is
u 2" -2 . mN
_AU_MW:W U in RY,
v (1.4)

u—0 as |x| — oc.

For 0 < p < @ we know from [12, 33] that all positive solutions to (1.4) are given by

N-—2

0- 2
Vo =G (JQI:CI"I T |z|ﬂ2)
N—2

with 0 > 0, f1 := (VE— VE— )/, B2 := (VE+ VE—p)/VE, and C, = (%)T These

solutions are minimizers of

S (V2 = 1) de

min ,
weDL2RNN(0}  (fpn [uf?dz)?/2”

Vv, |2 . x
/ (|VVU|2—M| | )dac:/ V|2 de = Sz .
RN || RN

The Green’s function of the Dirichlet Laplacian can be written as G(z,y) = W — H(x,y),

Sy =

and they satisfy

for z,y € Q, where H is the regular part. These functions are symmetric: G(z,y) = G(y,z) and
H(z,y) = H(y,z). We need the map

o(z) = H?(0,0)H? (z,2) + G(,0).
If the domain satisfies the symmetry condition

(S1) Q is invariant under the reflection (z1, ') + (x1, —2'), where z; € R, 2/ € RVN—1,

then we definea < 0 < bby I := {(£,0,...,0):a <t <b} C Qand I = {(a,0,...,0),(b,0,...,0)} C IN.

For a < s,t < b we set

g(t,s) .= G((¢,0,...,0),(s,0,...,0)), h(ts):=H((tO0,...,0),(s,0,...,0)),



and
() 1= (t,0,...,0) = h>(0,0)h3 (t,1) + g(t,0).
Observe that () — co as t — a or t — b. In particular, ¢ has a minimum in (a, b).
Now we state the main results of the paper. Throughout the paper let Q@ C R, N > 7, be a smooth
bounded domain. We begin with the existence of nodal solutions with bubbles concentrating at different

points, one being the origin.
Theorem 1.1. Let p = poe™ with po > 0 and o > % fized.

a) There exists g > 0 such that for any € € (0,&¢), there exist a pair of solutions *u. to problem
(1.1) satisfying

) = (e ) Ta (e =er) T 09

where 55 = \e ™7, 0 = X e¥ 7, and for some n > 0 small enough, |€%| > n, dist(£5,00) > n, A°,

X e, %) Moreover, £& — £ with (&%) = mg%n ©.

b) If (S1) holds there exist solutions as in a) with & = (t°,0,---,0) and t* — t* as e — 0 where t* is
a (local) minimum of ¢(t) in (a,b) \ {0}.

We can obtain more solutions if = B(0,1). More precisely, for k = 2,3 we obtain the existence of

solutions with k£ + 1 bubbles, one positive and k negative.

Theorem 1.2. Let Q = B(0,1) C RN, pu = poe® with po > 0 and o > % fized. Fork=2 and N > 7,
or k=3 and N large enough, there exists g > 0 such that for every e € (0,e¢), there exist two pairs of
solutions +ul, +u? of problem (1.1) satisfying

N_2 N-2

) O? 2 k 5; 2
ul(z) =Cy, <(a§)2|x|ﬁ1 m le"2> ~Co )y ((55»)2 - (55)”2) + o(1), (1.6)

i=1

where 05 = )\§le*2, (538)1 = (62’”\/?1/’“85,0), Ej € B® .= {z = (x1,22,0,---,0) € B(0,1)}, o5 =
1

stNfZ, and for some n > 0 small enough, n < |«§j€| <1-=mn, A5, Xj € (n, %), 1=1,2,...,k, j=1,2.

We would like to point out that the idea of Theorem 1.2 is not applicable for k = 4; see Remark 3.6
and Proposition 3.7. It seems very difficult to prove the existence of nodal solutions with the shape as in
(1.6) to problem (1.1) for k£ > 4. However, for Q = B(0,1), the existence of solutions with 5 bubbles, 3

being positive and 2 being negative, can be proved.

Theorem 1.3. Let Q = B(0,1) C RN, N > 7, u = poe® with uo > 0 and o > % fized. Then there
exists eg > 0 such that for any e € (0,¢), there exist one pairs of 5-bubble solutions +u. to problem (1.1)
satisfying

N-2 4 . N-2

w0 =0 (o) | oY (G ae) | o0

%

where 6" = )\i’%ﬁ, AL = \32 \2e = \be (€9), = (627”‘/__1/7“55,0), E‘E € B?) ¢ = Xasﬁ, and for
some 1 > 0 small enough, n < |§~5| <1—mn, A= X" e (n, %), i=1,...,4.



The assumption that a > % is critical to obtain the existence of nodal solutions with multiple

bubbles concentrating at different points since it can be seen from the reduction procedure in Section 3
that the reduced function has no critical point if 0 < o < %. It is natural to ask, whether there exists
i(e) > 0 for € > 0 small, such that problem (1.1) admits positive or nodal solutions with multiple bubbles
concentrating at different points when 0 < p < fi(e).

Now we state a result about the existence of nodal solutions that are towers of bubbles concentrating

at the origin.

Theorem 1.4. Let p = poe with puo > 0 fized. For any given integer k > 0 there exists eg > 0 such that

for any € € (0,e9), there exist a pair of solutions tu. to problem (1.1) satisfying that, as € — 07,

0.6

o) =G () | O (Erhar) | 0

€ e 2=l e e € N . € P Lt
where 07 = NjeN=2, £ = §5(F, (F e RY, i =1,2,...,k, 0° = Xe ~¥2 |, and for some n > 0 small

enough, A;?,XE € (77, %) and |CF| < % fori=1,... k.

We assume N > 7 in this paper for technical reasons and in order to not to make the presentation too
heavy. The results can be extended to the case N = 6. For N < 5, there would be technical difficulties.
The paper is organized as follows. In Section 2, we give some notations and preliminary results.
Section 3 is devoted to the proofs of Theorems 1.1 and 1.2, that is, the existence of nodal solutions
with multiple bubbles blowing up at different points. The proof of Theorem 1.4, the existence of nodal
bubble tower solutions, is given in Section 4. At last, some useful technical lemmas are collected in the

appendices.

2 Notations and preliminary results

Throughout this paper, positive constants will be denoted by C, c.
As in [15] let ¢* : L2N/(N+2(Q) — H,(Q) be the adjoint operator of the inclusion ¢ : H,(Q) —
L2N/(N=2)(Q), that is,
(u) =w = (v,0) = / u(z)p(x)dz, for all ¢ € H, (). (2.1)
Q

This is continuous, i.e., there exists ¢ > 0 such that

@l < cllullanyra) (2.2)
Then problem (1.1) is equivalent to the fixed point problem

w= 1 ([ () u € H(9),

where f.(s) = |s|* ~2°s.

To continue, we show an eigenvalue problem first.

Proposition 2.1. Let A;, i1 =1,2,..., be the eigenvalues of

—Au — Wiz = AV, |? ~2u in RV, 23)
lu| =0 as |x| = 400



Vs
Oo *

in increasing order. Then A1 = 1 with eigenfunction V,, Ao = 2* — 1 with eigenfunction

aava are eigenfunctions corresponding to 1 and 2* — 1,
(o8

Proof. Direct computations give that V, and
respectively. Now as in [34], it is enough to prove that the eigenfunction u corresponding to the eigenvalue
A < 2* — 1 has to be radial.

Denote by v;, i = 0,1,2,..., the sequence of spherical harmonics, which are eigenfunctions of the

Laplace-Beltrami operator on S™V~1:
—Agn-1tp; = T
It is well known that 70 =0, 71,...,7v = N — 1, 7y4+1 > 7. We prove that for every ¢ > 1,
/ u(r, 0)y;(6)do = 0.
SN*I
Setting @;(r) = [qn_. u(r,0)1;(0)d0 we have:

Ap; = AMPiZ/ Avu(r,0);(0)do
SN*I

- [ B - [ (D avE o)) v
SN*I

r

Tiu(r, ) -
/SN,l 7 Vi(0)do - /SM (5 +AVZ ) ulr, 0):(0)d0

r 72

(%q(%+Aﬁ“%)%@)

This implies for any R > 0:

oV, 7 o _o T oV,
Ayp; —+A — =) pi—
/BR(O) i or +((r2+ Vo ) TQ)SO or
oV, 7 o _o T oV, oV, 0Oy 9%V,
A (S Bopavz—2) - 1), 0 e T,
/BR(O)('D ( or ) + ((r2 AV ) T2) Yoy + 2Br(0) \ Or  Or P o
N -1 GVG 0 Vo- 2% _1 12 2% _9o Ti 6VU
rm e R R A oA _ iy, Ze
Jruo o5 o (o v ) (e ) - B) oy
/ (GVU Op; GQVU)
+ o or P
ABRr(0) (97" (97" (97"

N—-1-7 0V, .
= ——— i+ (A (2 1))V ?
/BR(O) r? or (A= )

AV, Oy 0%V,
aBgr(0) \ Or  Or or

Now let R be the first zero of ¢;; R := 400 if ¢; is never zero. Without loss of generality we assume
@i(r) > 0 for r € (0, R). Then %(R) < 0, and we finish the proof. O
Let us define the projection P : H*(RY) — H}(Q), that is, APu = Au in Q, Pu = 0 on 9.

0

o o\ 2V
or * 3 7

Proposition 2.2. Let 0 € Q be a smooth bounded domain. Denote ¢, :=V, — PV,. Then

—Via—Vi—nu

0<¢, <V,, wherep;(z)=Cud (x)H(O,:c)J% + hg; (2.4)

here dint < d < dsup, dins = dist(0,09) = inf{|x| : x € 0N}, dsup = sup{|z| : x € N}, and h, satisfies

the uniform estimates

sy Ohe
do

v|Z

O(c2). (2.5)



Proof. It is easy to see that ¢, satisfies

Ago(z) =0 in 0\{0},
Po(@) = Vo(2) = Culrppiamrs) 2. on 00
Then the first part of (2.4) holds by the maximum principle.
Consider the function H satisfying
AH(0,2) =0 in Q\{0},
H(0,z) = m% on 99.

Notice that on 012,

—_ — —2 —2 1 d\/ﬁ_ VHTH 2
e = Cudipf VIIHO0,2)07 T = Cuo v - 12 0007,
(0[] + [x|?2) 72 2]
and
— —2 —2 1 db\{lﬁ7 H—H 2
0o — CudYEVITRH(0,2)0" T = Cho™ 7 | e ]<O0(0 )
(0|z[r + [x|?2) "2 2]
Then the maximum principle and direct computations yield the second part of (2.4) and (2.5). O
Remark 2.3. a) If 4 — 07, then
N-2 N2
0o () = CoH(0,2)07 2 +O(puo™2 )+ hy. (2.6)
b) Let us recall the similar results for Us ¢ obtained in [28], that is
N—2
0<wse:=Use—PUse <Use, 056 = CQH(f, 6T 4+ hs.e, (2.7)

N+2

where fis e = O(§ 2

).

3 Solutions with multiple bubbles concentrating at different
points

3.1 The finite dimensional reduction

We introduce some notation. Fix an integer k& > 0. For A = (A1, Aa,..., \p, A) € Ri—kl and ¢ =
(615625 s ,Ek) S Qk we define

k
Weae = Ker (—A 2 - 1)U§;;2) + Ker (A - # @2 - 1)V,3*2) :
=1

where §; = \;e¥ 7, 0 = Ae ¥ 2. From [7], the kernel of the operator —A — (2* — 1)U52:;_2 on L?(RY) has

dimension N + 1 and is spanned by 6Ua‘5§j§i, 66[{2%')?7 j=1,2,...,N, where (&) is the j—th component

of &. Combining this with Proposition 2.1, we have

Were :span{q/g, W, T, i=1,2,...,k j=1,2,...,N},



where for i =1,2,...,kand j=1,2,...,N:
; OUs, ¢, oUs, e, — OV,
Pl = s gl 06 g T
¢ 6(«51)3 ’ * 00; ’ Jdo

For n € (0,1) we define
O, :={(\& eRIT x Q% \; € ™), N e (n,n™h), dist(&,09) >,

|£Z| >77) |€l1 _€lz| >77’ iailai2:1a2a"'ak7 il 7&22}

Let us introduce the spaces

Ke e = PWe e,

and

K e ={0 € H,(Q):(4,PT) =0, for all U € W, ¢},
and the (-, -)-orthogonal projections
e ne o= Hu(Q) = Kexe,

and

Iy ei=1d— e Hy(Q) = K2y

Solving problem (1.1) is equivalent to finding n > 0, € >0, (A, ) € O, and ¢. r ¢ € K;:A,g such that:

Iy e (Vere + dene — 5 (fe(Vere + dene)) =0,

and
e xe (Vere +dene — 0 (fe(Vere + dene))) =0,
where .
‘/;3,/\75 = _ZPU5¢7€¢ + PV,

i=1

or
k .
Vore = Y _(=1)'PUs, ¢, + PVs.
i=1

(3.1)

(3.4)

In the rest of this section, we only consider V; ¢ as in (3.3) because the argument for the solutions of

the form (3.4) is similar.

We prove (3.1) first. Let us introduce the operator L, » ¢ : Kj:)\’g — Kj:)\’g defined by

Ls,A,§(¢) =¢— Hé‘,,\,gL* (fé(‘/s/\f)¢)

Proposition 3.1. For any n > 0, there exist g > 0 and ¢ > 0 such that for every (A, &) € O, and for

every € € (0,e9):
1Lere@lln > eIl for all ¢ € Kz e

In particular, L x ¢ is invertible with continuous inverse.



Proof. We argue by contradiction, following the same line as in [24]. Suppose there exist n > 0,

sequences € > 0, (A", &™) € O, ¢" € H,(Q) such that ¢ — 0, A" = (A7, .. .,/\Z,Xn) = (A1, Ak, A),

=&, ... &) = (&, &), as n — oo, and

¢" € Ko yneny 16", =1, (3.5)
Len yn gn(¢™) = A", with ||h"||,, — 0. (3.6)
Thus we have
¢n —_ L*(fé(‘/gn7)\n7£n)¢n) = hn — Han,kn,gn (L* (fé(‘/en,kn,gn)qﬁn)) (37)
Setting
S =AleW 3, gl =\ eN
and p p
; Usn en Usn en — OVgn
U, o= ——=28 for j=1,2,...,N, (¥9),:=—24, (U), = —2
( 7,) a(é-;q)] OI‘] »r e ’ ’ ( 7,) 66:7, ’ ( ) aa,n7

where (£7')7 is the j—th component of £, we obtain

N
w" = —Ten s en (1 (Fo (Ve angn)0™)) = D> el P(U]) + e P

),
1=1 j=0
for some coefficients ¢}';, cj. Now we argue in three steps.
Step 1. We prove
i [l = 0. (3.8)
Multiplying (3.7) by AP(¥}),, + ,up(“i"{;)", we get
Q¢ AP(\IIZ )n +p |:C|2 - QL (fO(Vf"',k",ﬁ")qﬁ ) AP(\IIZ )n t+ |1.|2

- o) o s )

and then

= (¢", P(®)n) = (¢ (S5 (Ver xrg0)@"), P(®])n) = (h", P(T])n).

From Lemma A.1 we deduce:

CZhEerh (5;)2 +o ((5;)2) = _([’* (f(/)(‘/&",)\"',f")(bn)’ P(\I];L)n)a (39)

where ¢}, > 0 is a constant.

Proposition 2.2 implies

n p(ph "
0 = (6" P(I),) = /Q vva(\lf?)nu%
n h
- vwvw)nﬂfig)uou)
Q 575|

- / F(Us ) (W)™ + (1),



and then
— (F(fo(Ven an gn)™), P(U])n) = —/Qfé(%n,m,sn)qﬁ”P(‘If?)n

<

/Q (F6(Ven an en) = foUsp p)) @™ (9] )n

; ‘ /Q Fo(Vr s ) 8" (P(ED), — (1)) | + 0(1)
=o(1)

by Lemma A.2 and Lemma A.3.

Combining the above inequality with (3.9) yields 'y, = 0 as n — oo. Similar arguments show that
cg — 0 as n — oo, and nhHH;O lw™],, = 0 follows.

Step 2. Let x : RN — [0,1] be a smooth cut-off function, such that y(z) = 1 if |2| < n/4, x(z) = 0 if
|z| > n/2, and |Vx(z)| < % We set

o (x) = ((En)a1)¥¢n((5")alx + &M x(eM™a), xeQ = S()E;g:, i=1,...,k,
and
(@) = (€))T g (e n)x((€")2x), = e = %

where aq, ag are positive constants which will be determined later. Since ¢! is bounded in D2(RY), we

may assume, up to a subsequence,
o — ¢ weakly in DV2(RY), i =0,1,2,..., k.
Now we claim that
¢ (x) =0, i=0,1,...,k. (3.10)

Firstly we prove (3.10) for i = 1,..., k. Notice that [Vx((e")* z)| = |(e")1 Vx(-)| < €<= = o(1).
Thus we have for any ¢ € C§°(RY):

N-—2

(€)™ [ V() 2) (6" () 4+ )V — pV (€)™ + €9) = o(l).  (3.11)

On the other hand, taking oy = ﬁ and noticing N > 7, we get:

2-N L* /VE" e " - Zn y;%zl
| (F§(Ver o ()" () (o — €000 (£ ):O(l)_ 812)
Q

ly[?

10



By (3.11), (3.7), (3.6), (3.8), (3.12) and (2.7), we have for any ¢ € C§°(R™):

| verve
oy
= (@) [ (TenEnma+ @)Vl )
+ V(M) 2) (6 (€)™ + ) VO = pVe" (") e + €1)) )

N—-2

— (&)™)

| v Eema+ @)V (o) + o)

2

—2

= ()T [ B3V e (€0 £ )87 ()0 4 ) V() )

N-—2

+ ((gM)™) 2

/Q V() + )V (x(() 2)0)
() / () + €T ) + of)

= (@) [V (Ve €) 87 () + €0) T () 0))

=T e @)y~

B /|< ")ral<n/2 (U o@) (€)°%) T 6" ()2 + () ) o(a) +0(1)

= [ B o) @)i(e) + (1),

(3.13)
Therefore ¢° is a weak solution of
— NG = f3(Un, 0)¢°  in DV*(RY). (3.14)
In ord i denote W) = 20 for j—1,... N, and ¥ , = 220 N lai
n order to continue we denote N0 T Tagr for g =1,..., N, an 2,0 = ~an. - Now we claim
that
/ Vo (2) VT, o(x) =0, j=0,1,...,N. (3.15)
RN '

11



In fact,

(3.16)

/m Fo(Unp 0(2)) 67 (@) 83, o ()

/ RO 0@ (€))7 9 () () )W o)

Lo (v e @) () T e () - @) ol - i)
()10 : (")

17n)(!1

Noticing that

then
(3.16)
— /(8n)a19 fo <U,\§"a(f§?§x—1($)> ((™)™) Mt ¢ (€)™ ) (x (™)™ — 1) — 1)\11&?70 <x - (Ef};al ) |
+o(1)
) /‘ S (U, @) (@) T o ()0 W o (2= S )‘
+ 0(1)

IN \ B
N-—-2
3
< Cllo™ g, ( / v (U g @) )
|”” <n>a1‘ oL 18
[ () )
X B
|zi%‘2% A%L0 (En)ou

(

Therefore (3.15) holds. Using this and (3.14) we conclude that (3.10) holds for i = 1,..., k.

Now we turn to the proof of ¢3° = 0. Setting as = - Wwe obtain as in (3.13):
2-N
[ VT = () [ e @) N () 9) + o)
"

2—N

= ((6")“2)T/|yl<n/2 ( ZPUan & (y) + PVon(y )) " (Y)x(y)((e") ") +o(1)

2—N

e /W/Q 5 (Vo (1)) 6" ()X ()0 (™) 2) + 0(1)

/ Use o)) (7)°) 767 () =) (")) (@) + o(1)

\(8")“2w\<77/2

= f ,\0@5807/} ()

RN
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Therefore ¢3° is a weak solution of

- Agy® = fo(Us )‘250 , in DV?(RY). (3.17)
Similarly to (3.15) there holds
/ v¢g°(:c)w§ (@) =0, forj=0,1,...,N, (3.18)
RN ’
where \II%O = aamj ,forj=1,...,N, and \IJ%O = aa)\ This shows that ¢3° = 0 as claimed.

Step 3. We obtain a contradiction.

First we claim that

lim / F (Ve xo e () (6" ()2 = 0. (3.19)

n—oo

In fact, (2.6) and (2.7) imply:

k
/Q Sy (Ve s e (1) (6" ()2 = /B <o&>uigm,4> ; sren(®) + Vi () | (67(0))2 + 0(1).

Notice that fo(Uxr o) € L= (RY) and (3.10) imply

n 2 _ / e n 2
Lo ZUa SV | G0 = [ S @) 0 o)
3.20
[ )@@ ey
[(em)1z|<F
= o(1).
Similarly we obtain:
Lo B ZUan 5 0) +Vor () | (6 (0))? = o(1). (3:21)
Now we obtain (3.19) from (3.20) and (3.21).
On the other hand, (3.7), (3.6), and (3.8) imply:
[ 196 = [ VeV snesnver + [ v+ [ vurver
Q Q Q
/ (fO( n An gn)¢n)v¢n /Q (fO( E"li’ll2f">¢ )¢ + 0(1)
= [ (Ve 2 0) (€ 0))? + o(0),
which contradicts (3.19) using (3.5). O

Proposition 3.2. For every nn > 0 there exist eg > 0 and co > 0 with the following property: for every
(AN &) € O, and for every € € (0,e0) there exists a unique solution ¢. ¢ € KEJ:A{ of equation (3.1)
satisfying

N a
[denelln < co (E“Ng) te ) ) (3.22)

and ®. : Oy — K;:A,g defined by ®.(\,€) := ¢ r¢ is CL.
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Proof. As in [4] solving (3.1) is equivalent to finding a fixed point of the operator 7. » ¢ : K- e K
defined by

TE,/\,£(¢): ;,\g e/\g( (fa( ,\,¢ +¢) fo( 5/\5)¢) _Va)\,i)-

We claim that T; ) ¢ is a contraction mapping.

First of all, Proposition 3.1, Lemma A.4 and (2.2) imply

ITexe(@lln < Cle(fe(Vere +0) — f5(Verg)d) — Ve

k
<C (fa( Vere +0) = fo(Vere)od ( Z (Us, &) + fo(V )))
i=1 Iz
k
v <Zf0(U5“E-L) +f0(va')> - ‘/E,A,f
=1 "
SO fo(Vere +0) = fo(Vere)d < > foUs,e.) + fo(V. ))
=1 2N/(N+2)
k N—2 1
+ 3 0(us) +0 ((MUT)2)>
i=1
S CO|fe(Vere +0) = fo(Vere) = fL(Vere ¢H2N/(N+2 + C||(fE(Vere) — fé(Va,,\,g))qﬁHQN/(NJrg)
+ CHfE(VE«\,&) - fO(Ve,/\vﬁ)HzN/ (N+2)
k
C || fo(Vene) ( Z (Us, &) + fo(Ve ))
i=1 2N/(N+2)
k N-—-2
+ 3 0(us) +0 ((uo ™)) .
=1
(3.23)
By using Lemma (A.5) and noticing that
If-(Vere +0) — fe(Verg) — FL(Vere)dllanyvrz) < CllolI2 2,
we deduce
* N+2 k N+2 k N—2_ 1
ITere(@)llu < ClISIE ™" + Cellgll + Ce+ 002 ) + 08,7 ) + > O(usi) + O((no = )?)
=1 =1
= Cl|¢]Z " + Cellgll + O(72) + O(e5%).
The remaining argument can be obtained by standard arguments, see e.g. [4]. O

Now we consider the reduced functional

I (N &) = Je(Vere + dene)-

Proposition 3.3. Let (A, &%) with \° = (\Y,..., AQ,XO) and &% = (£9,€3,...,&Y) be a critical point of
I. (N, €). Then there exists a family of solutions to problem (1.1) of the form

Ue = Ve e + d)s,/\,{-

14



Proof. It is enough to prove that (3.2) holds. Let Js denote one of Oy,, Oy, O, @ = 1,...,k,
j=1,...,N. As in [25], equation (3.1) implies:

I.(N&) = JVene + dene)(0sVere + 0sene)

= Z ZC” PO OV ye + Oshene) + co(PV,05Vene + Oshene).

1=1 j=0
Now it remains to prove that ¢;; =0 fori =1,...,kand j =0,...,N, and ¢y = 0, provided € > 0 is
small enough.

If (X, €) is a critical point of I (), ), then

k
Z i j(PU) O Vene + 0sene) + co(PU, 0,V n ¢ + Dsere) = 0. (3.24)
i=1 j=0
Observe that
8,\ £,\,& _—gﬁP\II?, 6;1/87,\,5:5ﬁP§, a(&)j‘/&-’)\é:—P\Iﬁg, jZl,...,N. (325)

On the other hand, (P\I/g, ¢ere) =0for j=0,1,..., N, Proposition 3.2 and Lemma A.6 imply
(P, 05en6) = = (0, P¥], 60 6) = O(|0, PY] |ul| e nell) = 0|0, P¥]|],0) = o(6;72).

Similarly,
(PT, Ds¢enc) = ol[|0s PT|,,) = o(e T 207 2).

Now Lemma A.1, (3.24) and (3.25) yield

kN
0= Z ZC'J (PW],05Vene) + co(PU, 05V ne) + 0(5ﬁ0_2)

=0

k N

=ev= [ 37N "6 j(PU, PU) + ¢o(PT, PT) | +o(ev-2072)
i=1 j=0

= 00505m o2 (1 + 0(1)),
which implies ¢g = 0. Similar arguments show that ¢; ;j =0fori=1,...,k, j=0,1,...,N. O

Y

3.2 Proofs of Theorems 1.1 and 1.2

k
In this part, we consider V; ¢ = — > PUs, ¢, + PV,. The reduced energy is expanded as follows.
i=1
Lemma 3.4. For e — 0" there holds

I.(\ &) = a1 + ase — aze® —agelne + (A, &)e + o(e) (3.26)

N
in compact sets of Oy. The constants are given by a1 = (k: +1)S7,

N
2

L_uniformly with respect to ()\ «E)
ag = k+1 f]RN Uloanlo (2* S
by

1S 2 Suo, and ag = 2 2* f]RN U1 0~ The function v is given

k

k N-—2 N—-2
Y(XE) = biHO, O)XN72 T Z H(&, &)Y 72 12 Z G(&, 00\ = X 7
i1

=1

-2 Z GEENN T A7 ) —baln(Ads.. AN T

1,7=1,1<g

15



with by = 1Cq foun Utg " and by = 5 [on UL,

Proof. Observe that

1 2 |Vs,A,§|2
Je(Vere) = 5 [ (IVVerel” —p—25—) (3.27)
2 Jo ||
1 ”
o Q|V5,A,§| (3.28)
1 ). .
+(27 Q|Vs,A,§| - )- (3.29)

By Lemma A.7, Lemma A.10, and noticing pu = poe®, € — 07, we obtain

k
1 |PV,|? s |PUs, ¢ |?
3.27) = —/(vpvﬁ—u )+§ (VPU(;M — g
( 2 /o | | |:C|2 i | f| |1,|2

|

a PU&,&PU&'@
VPUgiygiVPUgjygj — MT

1,j=1,1<j
k

N N N-2__ 1 *_ - -
al ayl / Uzt <—H(O,O)UN P H(& &)
RN

PV, PUs, ¢,
(VPVUVPU%& - “TH)

SO 2 S,uos + 200
i=1

u N-2 N-2
_zza +2 > G(&,)8, 7 6,7 | +ole).
i,j=1,i<j

By Lemma A.8 and Lemma A.10, and again observing p = ge®, € — 0T we obtain:
k

N — .
(3.28) = (k:+1>S +—S ™ Sppe® + Co / Uto ' (H<0,0>0—N—2+ZH<&,@>6£”
RY i=1
—l—QZo’ =5, S G(6,0) — 2 Z G(&,6)0 . +o(e).
=1 1,j=1,1<j
Next Lemma A.8, Lemma A.9 and Lemma A.10 yield:
9 o* e o*
(329) = -=3 + o7 [ [Verel” Im[Voxel+o(e)
2* 2 2* Q
e, N-2 « N-—=2 x
= - k 15’2 — Ino - Ve — In(d1...6k) - U
2)<+> fetg e [ V-G [ U2
+/ V2 v +k/ UZoInUi ) + ofe)
RN RN
£ N (N -2 .
= - k+1)S7 — ——— Uy -In(d1...6
(2*)2( + ) 0 9. 9% /]RN 1,0 n( 1 kO’)
k+1 .
+(+7)€/ Ui oInUi o+ ofe).
2% RN ’

Arguing similarly to Lemma 6.1 in [25], we deduce from Proposition 3.2, (2.6), (2.7), and Lemma A.5
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that

1 V.
Je(Verg + Gene) = Je(Vere) = 5ldenclly + / (VVereVoene - u$>
Q

e+ el TE = [Vere ) (3.30)

= o(e).

Now (3.27), (3.28), (3.29) and (3.30) imply (3.26). Actually, (3.26)) also holds C'-uniformly with
respect to (A, €) in compact sets of O,; see for example [25, Lemma 7.1]. We omit the details here. [

Proof of Theorem 1.1. The reduced function ¥ (), §) from Lemma 3.4 becomes (here k = 1):

-2

(A€ = by (H(o,())XN H(EL )N 2 +26(61, 000, 7 XNQZ) — by ln(\N) T

Now the first part is almost the same as the one in [4, Theorem 1]. We therefore omit it here.
Now we prove the second part. The symmetry assumption (S;) and the principle of symmetric

criticality (see e.g. [5, Lemma 2.4]) allow us to consider the constrained function of (), §) as follows:

— —N— N-2_N-—-2 _
B = by <h<o,0>AN 2 h(t AV 4 29(6, 000, 7 A 7 >b21n(>\1>\) ;

For t € (a,b) \ {0}, let

(Nt Noa_n_2\ (N —2)b
wa(Af ) _ (N —2)by <h(t,t)A1N—3 +g(t, 00N\, 7 N ? ) - (T)? =0, (3.31)
and _
OY(A,t - N_2 N —2)b
w{(ﬁ’ ) (N~ 2, (h(0,0))\ L ghON TN T ) - % ~0. (3.32)
Then it is easy to obtain a unique A1 (t) > 0 and a unique A(t) > 0 with
N-—2 1 b2
(Au(t) 7 = \/ ; e (3.33)
(t)\ L
h(t,t) + g(t, 0)(]1(070))2 2by
and
— N-—2 1 b2
M) T = -2 3.34
) W(o 0) + g(t,0)(r) 201 &30
Now an easy computation using (3.31) and (3.32) shows that:

0%h(\ 1) Nea  N-—4 N_o_N_2 (N —2)by
— = (N—=2)by ( (N —3)h(t,t)A —g(t,0)A 2 X ? —
ol o = =20 (= T on, + T

N -2 N_o_n-2
= (N-2)b <(N2)h(t,t)A1N—4+ 5 9(L0)A T AT )
and
(At ~N-4  N-—4 N2 _N_6 N —2)b
LQ’) = (N-2h ((N—3)h(O,O)AN oA TN 2 )+(T)2
an: Iu=xm3=x@) 2 2X
—N N -2 N-2_ N—_6
= (N -2)b ((N— 2)h(0,0)N "+ — gt 0N T X ) ,
2h(\,t N —2)? N-a_ N4
o\t R L) PP S
OXONT  IA1=21 (), A=X(¢) 2
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It follows that the Hessian matrix Dil,X_()" t)] A=A () X=X(t) is positively definite and therefore nonde-
generate.
Now we consider the reduced function
N-—2

v(t) == (A (1), A(t), 1) = ba —baIn (A (H)A(t)) F =bs —boln Qb—;l + by In (1),

where we used (3.31), (3.32), (3.33), and (3.34). Now observe that

so, using that ¢* is a (local) minimum of ¢(¢) in (a,b)\{0}, then it is also a (local) minimum, and therefore

a nondegenerate critical point of v(t). O

When Q = B(0,1), we consider the existence of solutions with k + 1 bubbles, one positive and k
negative for k = 2,3. We also show that the idea for k£ = 2,3 is not applicable for k = 4. Notice first
that the principle of symmetric criticality (see e.g. [5, Lemma 2.4]) allows us to constrain the problem on

B® = {z = (21,22,0,...,0) : 2 € B(0,1)} and then to place the bubbles at
&.&u1 € BY, g =e™V R fori=1,... k- 1. (3.35)

Here we used complex coordinates in B®) ¢ R? x {0}.

For z,y,z € Q,z # y # z, let

~G(2,0) + /G2(x,0) + 4H(0,0)(H (z,2) — G(z,y))

aq (ZL',y) = 2H(0,0) ’
ﬂl(zay) = H(SC,SC)7G(1‘,’IJ)4’G(SE,O)O&1(Z‘,’IJ),
_ —2G(x,0) + \/4G?(2,0) + 4H(0,0)(H (z, ) — 2G(z,y))
ag(z,y) - 2H(0,0) ’
ﬂQ(zay) = H(SC,SC) *2G(1‘,’IJ)+G(1‘,O)O&2(£L‘,y)7
_ =3G(x,0) + /9G?(z,0) + 4H(0,0)(H (z,z) — 2G(z,y) — G(x, 2))
Ozg(SC,y,Z) - 2H(0,0) )
Bs(x,y,z) = H(z,z)—2G(z,y) — G(z,2) + G(z,0)as(z,y, 2).

Then we have the following lemma.

Lemma 3.5. Let Q@ = B(0,1) and k = 2,3,4. If (A, &) = (A\1,..., A, N, €1, ..., &) is a critical point of
P(X, &) such that (3.35) holds, then
A== A (3.36)

Moreover we have for k = 2:

N2 N-2 1 b2

T o—a(@n N, A = EE T 6 GE,6) >0 (3.37)

N-2 N-2 b
A =), AT = mQ—;a H(&,61) — 2G(&,62) > 0; (3.38)
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and for k = 4:

N—2

_N-2 N— N-2 1 b
A7 =03(8,8,8)M 7 T s AL \/

Bs(€1,6,83) 2by’ H(&1,61) —2G(&1, &) — G(61,€3) > 0. (3.39)

Proof. If k = 2 and (A, ) is a critical point of (), £), then the equations 61{%’5) = aapa(;\l,g) = 6%(;2’5) =0,

imply
_N—2 N-2_ N-2 N—2_N-2 ba
H(0,0)A + G0N 2 A2 +G(&,000,2 N2 = EToR (3.40)
1
N-2 N2 hn2 N2 A2 ba
H(&, )M "+ G0N 2 A 7 =G L) 7 A2 = W, (3.41)
N—2 M—Ngz N_2 N—2 ba
(G &M+ G607 X 7 — G A7 = o (3.42)
1

Notice that (3.35) yields
H(&lv 51) = H(§2, 52)5 G(gla 0) = G(&Qv 0)5
0 (3.41) and (3.42) imply

(5 ) (H(&,&) (7" 27 +G(§1,O)XN22> 0.

Since H(&1,&) > 0, G(£1,0) > 0, Ay > 0, Ay > 0, and X\ > 0, we obtain A\; = Ay, and (3.37) follows by

an easy computation.

If k =3 and (), ¢) is a critical point of (A, ), then

—N— N-2_ N-2 N-2_ N-2 N-2_ N-2 b
HO,0N 2+ GELOAN T A 2 +G(E,00,7 X 2 +G(&,00M,7 X 2 =5 (343)

1

N—9 N22 N22 N2—2 2 N2—2 b2
H(&,E)A "+ G(61,0)A0, % A (51,52) (€1a§3) = 2 (3.44)

N2 N2 N2 N2 NEZ bo
H(&2,82)A 7 + G(£2,0)0, 7 A (51,52) (€2a§3) = 5 (3.45)

_ No2 N-2 N-2 N-2 N-2 N-2 b
H(&,&)A) 72+ G(&5,00A5% A —G(&1,83)A 7 A37 —G(62,8)0 7 A3? :2—;1- (3.46)

The ansatz (3.35) gives

H(&,61) = H(62,82) = H(&3,83), G(61,0) = G(§2,0) = G(&3,0), G(&1,62) = G(§2,83) = G(&1,83).

We can see from (3.44) and (3.45) that

(27 =N ) (HE@)0T +A7 ) +GE0X 7 —GE,&) ) =0.
Assume that
HEL6) (A7 +07 ) +GE@,0X 7 —Glé &) =0, (3.47)
Multiplying this by /\1N772 and combing it with (3.44), we obtain
2 N N— N-2 b
(51,51) )7 G(&, )M\ % )\2 — o2 =0
2by

which is obviously impossible. Therefore A2 = A1, and similarly A3 = A;. Finally, (3.38) can be computed
directly.
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If k =4 and (), ¢) is a critical point of (A, ), then

4
—N—-2 N—2_ N_2 bo
H LOA 2 AT =2 4
(0,0)2 +;G<§Z,O>A1 A TR (348)
N-2 _N-2 N-2 N-2 b
H(&, 8)M T2+ G007 X7 =D G, &N 7 A2 :j, (3.49)
i£1 1
N-2 N2 _N-2 b
H(&2,62) N, G(§2,0)), B ;G §2,6) A7 N7 = T (3.50)
b
N-2 _ b2
H(&, &)\ 72 + G(&,0) =D G )N N = b (3.51)
i#3
N-—-2 =2 b
H( 60N 2 4 G(en 0N 2 X 7 ~Y Gl N T :i. (3.52)
i#4 1

The ansatz (3.35) gives

H(&1,61) = H(§2,62) = H(&3,83) = H(64,64),  G(61,0) = G(§2,0) = G(&3,0) = G(&4,0),

and

G(flaé?) = G(§27§3) = G(§3a§4) = G(§4a§1)7 G(§1,§3) = G(§2554)'

Then using the same argument as the one in case k = 3, (3.49) and (3.51) imply Ay = A3. Similarly we
obtain Ay = A4. Substituting this into (3.49) and (3.50), we then get Ay = 2. At last, (3.39) follows by

direct computation. O

Proof of Theorem 1.2. For k = 2, by (3.35) we can assume £ = —§3 = (¢,0,...,0),0 <t < 1. Then
by (3.36) in Lemma 3.5, the reduced function (A, t) becomes

-~ —N— N-2_ N-2 _ N=-2
fid, A t) = b ("(O,O)AN 22 ONY T+ 4g(L 00N, 7 A T — 24(t, t)Ai”) —baln (ATX) * .

The remaining argument is the same as the one in [6].
Now we consider the case k¥ = 3. As a consequence of (3.35) we may assume & = (¢,0,...,0),
& = (f%, @,0, .. .,0), & = (f%, f@,o, . .,0) , 0 <t <1 Then Lemma 3.5 allows us to consider

the function

F2(0, 3 8) = by (H(o, N2 4 BH(E, E)ANY 2 + 6G(EL 0N T X T — 6G(Er, E)AY ‘2)

N-—2

—boln (AX) 7

Setting
1 2 2

(1—)N-2 (V3t)N-2 + (t4+ 2 + 1)N;

7(t) = H(&,6) —2G(61,&) =

and
Tl(t) = G(El,()) = Wj — 1,
a direct computation shows that v{(t) > 0, y1(t) — —occ as t — 0%, and 71(3) > 0. Thus there exists
t* € (0,1) such that
7M@) =0, () >0forallte(t"1). (3.53)
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Then for ¢ € (t*,1) there exist unique A;(t), A(t) such that
Ofa( A1, A\ 1) 0 fa( M, A\ 1)

=0, = =0, 3.54
oM oA (3:54)
where \; (t), A(t) are from (3.38). Moreover, a direct computation shows that
82f2()‘1(t)ax(t)7t) N—4 N —4 N 0
a)\% = 3(N - 2)b1 ((N — 3)’71(t))\1 + 5 Ty ) + 2)\2
= 3(N-2)h <(N —29mHAY T+ ¥T )

02 fo(M\ (), N(¢),t —N-4 3(N—-4 N-2_N_6 N —2)b
PO o (- 90,03+ %nuw )
oA 2

N N -2 N_2_N_6
= (N-2)b ((N “oym,03 4 3 5 N S ) ,
9 fa(A (1), A\(t), 1) 3(N —2)? N4 _N_d
— = bimi(H)A 2 A * .
AN O

It follows that the Hessian matrix Di +f2(A1 (1), A(t), 1) is positively definite and therefore nondegenerate.
1,

Then it is enough to consider the function

N-—2

vi(t) == fo (M (£), A(),t) = 2ba — baIn (AT ()A())
As in [6, (3.4)] there holds

lim 21(t) = —c0 and lim 14 (t) = +o0. (3.55)

t—(t*)t t—1-
Now we prove v{(3) < 0 for N large. Setting
Oég(t) = 042(61,62):—7'1(25)-1- T%(t)-i—’yl(t),

where we used H(0,0) = 1, we obtain

df2(M (1), A(t),1)
t

vi(t) = = 3b1 (71 (1) + 202(t)7 (1)) A7 2.

Then by letting ¢1() = {(t) 4+ 2aa(t)r{(t), we need to show ¢ (1) < 0 for N large enough. Since
7(3)
7 (3)

D

< 1 for N large we see as in [6, (3.9)] that

An(z)
(2 <A~M(4) + 27011y,
1(2) —71(2) 57_1(%) 1(2)
A direct computation gives for N large:
3

- _ 5 11(N - 2) -
0 4\N—-1 2 \N-2 2 4\N—-1
ni) = (N-2) <(§) +4HF) T T ﬁ> < (37,

V3 (1—6+Z+1)2 10
m(3) = —(N-22"7
4YN-2 _9( 2 \N-2 2

71(%) _ (3) ( 3) (&+i41)72 11 (%)N‘2
m1(3) 2N-2 1 12 2N-27

which yield ¢1(2) < 0 for N large enough. Then we have t1,t2 € (t*,1), t1 # t2 such that v{(t1) = 0,

Vi (t2) = 0, and we conclude as in [6].
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Remark 3.6. a) For k = 3, N = 7, numerical computations show that one cannot find ¢y € (t*,1) such
that v (t9) = 0. Therefore we can only consider N large enough in this case.

b) For k = 4, the idea above also cannot give the existence of solutions with & + 1 bubbles, one
positive at the origin and k negative. In fact, following the above idea, with the ansatz (3.35) we may
assume &1 = (¢,0,...,0), & = (0,¢,0,...,0), & = (—t,0,...,0), and & = (0,—¢,...,0),0<t < 1. Asa
consequence of Lemma 3.5 we need to consider the function

N—-2__ N—-2

A 1) = by (H(O, O 2 FAH (&, &)AN 2+ 8G(&,00A, 2 A

N-—2

—8G (€1, &)AY 2 —4G(&1, )M %) — b In(AN) 2 .

Now let 71(¢) be the same as above and define

Y2(t) = H(&,6) —2G(6,&%) — G(&, &)
1 2 2 1 1

T-o7 =2 (a2 e @ @

A direct computation shows that

2t 2 4t° 1 2t
') = (N — 2 - - 0.
72( ) ( ) ((1 _t2)N—1 + (\/Q)N_th—l (t4 + 1)g + 9N—24N-1 (t2 + 1)N—1> >
Clearly y2(t) — —oc as t — 07, and 9 (\%) > 0. Then there exists t* € (0, \%) such that

Yo (t*) = 0,72(t) > 0, Ve (t,1). (3.56)

=371 (1) +1/977 () +472(t)
Set 1o(t) := v4(t) + 2a3(t)7i(t), where as(t) = as(&1,82,83) = S B+ 92 4920 1t we can prove
that ¢2(tg) = 0 for some to € (t*,1), then problem (1.1) admits a solution with 5 bubbles, one positive at

the origin and 4 negative. But the following proposition shows that ¢y does not exist.
Proposition 3.7. For any t € (t*,1),N > 7, it always holds that 12(t) > 0.

Proof. We first show that t* > M, where ¢* is from (3.56). In order to see that we prove
12 (Y6592 < 0. Since 22/5 - 2(L52)2 < 1 < (LE5¥2)1 4 1, we have

2

1 2
> N-—2
(VI SOV T (Lo2)1 4 1)

, forall N >7.

On the other hand, it is easy to see that

1 1 1 1
(1— (\/6—\/5)2)1\/_2 (ﬁ(\/g—ﬂ))N—2 (2(\/5—\/5))N—2 ((\/E—\/ﬁ)2 +1)N-2

62y < .

Now we prove t2(t) > 0 for ¢t € (t*,1) C (‘/65‘/5, 1). Tt is easy to see that for t € (‘/6
holds

and we conclude o (

5

, 1) there

2t 1

Ya(t) > (N —2)- A=) 72(t) < (LR



Then for all t € (t*,1) and N > 7:

1
Lg(t) 2t 1 1 4- (1—t2)N—2
> —3——=-1)- 1+ ——" 1
N-2 = G-y ? i

2t 3 4, 2 1
> — . 1+ (——\WN-2.___ ~— ____1].
IO S R S <\/ +9(1—t2) (1—tN=2)2 )

Setting T' := % it is enough to prove that

2 4 1
A Sy | 1+--TN-2.
3 = \/ 9 12
which is equivalent to
(TN +37)- (1 —tNV=2%)2 > 1. (3.57)
It is easy to see that
37-(1—-tN"2H2>31-t°)2>1 ifte [55.8) (3.58)
and
TN . (1 —tV=2)2> 17N . (1 -1¢)? a ™2 > (%)4( () )P >1ifte [4 1) (3.59)
(1= (1—-1t)° = . (2 i = 1). .
- (1+4+1)2 41— (2)? 5’
Now it is left to prove (3.57) for ¢t € (t*, f) First of all, if t € (‘/67‘/5, %), then T € (\/52*1, 1).
Setting
T N-—-2
— _4N-2y2 _ _ 2
FT) = 3T (1= V2 =371~ () )%,

a direct computation shows that

(- ()

f1(T)

(7)) e () )
(BT 6 o6 ) o

—2

where in the second inequality we use the fact that 3 — 3(%) —3(N - 2)(%) - 1 is increasing

145
in N. Now we conclude that
V3 N
f(T)>3 V3 1| —2=— >1 forall N >T7. (3.60)
2 14 31
Combining (3.57), (3.58), (3.59), and (3.60), the proof is finished. O

Remark 3.8. Let p = poe®, po > 0, a > N large enough. For k = 2,3, we can also consider smooth

N 27
bounded domains with the following symmetry condition.

(Sy) If (Z,2') € © C R? x RV~=2 then (e2"V~1/*%,2') € Q, and (F, —2') € Q.

We assume further that



(S3) The map ¢y : Q) := {T € R?: (7,0) € Q} — R, defined by
- ((@,0), (2771743, 0))

B2, ((7,0), (e2mV=T1/k%,0))

o(7) =

admits a nondegenerate critical point at §~* € Q3 such that
H ((€,0),(€.0)) = (k= 1)G ((€7,0),(~€",0)) >0

Then for k = 2,3, and using the same methods as in Theorem 1.2, one can show that there exists ¢y > 0
such that for any € € (0,¢q), there exists a pair of solutions +u. to problem (1.1) satisfying

N-2
> k

ue(x) = C, (( il ) —Co ;(WL)NZZ +o(1),

7P Jal + alP? o€

where §° = \ee~-2, € = (eXV-L/kge ), &5 € Q@) o° = Ne~-2, and for some 5 > 0 small enough,
n < |§~5| <1—mn, XX €(n, %) Moreover &5 — £* as € — 0.
The question is what kind of domain, besides B(0, 1), satisfies the assumption (S3)?

3.3 Proof of Theorem 1.3

k .
In this part, we turn to solutions of the form V. y¢ = > (—1)'PUs, ¢, + PV,. Then the reduced
i=1
function in Lemma 3.4 becomes
" N2 & N—2 1 N-2_ N-2
GAE) =01 [ HO,0X "+ H(&, &) +2Z VTG (&, 000 X 2
i=1 i=1
2 N-—2 — —2
+2 Z DG, )0 T AT | —ba (Mg .. AN

1,j=1,1<g

where b1, by are as in Lemma 3.4.

Proof of Theorem 1.3. Here we have k = 4. Due to the ansatz (3.35) we may assume & = (¢,0,...,0),
& =(0,t,0,...,0), & = (—t,0,0,...,0), & = (0,—t,0,...,0), 0 <t < 1. It is obvious that

H(&1,61) = H(&2,82) = H(&3,83) = H(64,64), G(&1,0) = G(£2,0) = G(£3,0) = G(&4,0),

and
G(flaé?) = G(§27§3) = G(§3a§4> = G(§4a§1)7 G(§1,§3) = G(§2554)'

As in the proof of Lemma 3.5 we have
A1 = A3, A2 = Ay,

which allows us to consider the function

—2 —2 _N-2

fia e, A t) = b (H(0,0>XN‘2+2H(§1,§1)(A1N-2+A2N‘2>+4G<§1,0) (v a7 )3

N-—2

HSG(ELEIAN T AyT — 266, 6N 266, 6 2) — baln (NDAZN) T
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Now suppose V, s fa(Ad, A2, \,t) = 0. Then we have

H0, 08 2 4 26(6, 000\ T = AT )N T = Qb—;l (3.61)
(H(6.6) - GleL &I 2+ GlE 0N X T +26EaNT AT = 32 (3:62)
(H(E,6) — G, )N 2 = GEL,0A T X T +2G(EL&)N 7 A = ;—jl (3.63)
From (3.62) and (3.63) we deduce
AT SIS (3.64)

CH(&,6) — G, &)
which combined with (3.61) implies:

-2 H(£1,61) — G(61,&3) b2

T H(&,6) — Gl€1,6) — 2G2(€1,0) 20, (3:65)
As a consequence of (3.64) we get
N-2 N-2 G(&1,0 2 N
R i e o RN
and then (3.62) and (3.63) yield:
N2—2 N2—2 B 1 . b_2
M TG ) - G 6) 2060 6) 2 (3.6
and
N—2 | \N—2 _ 1 b < G(&,0) >2XN2
MR T g e 12066 b A -cea) B
Let 71(t) be as above, and set
1 1 1
Y3(t) := H(&, &) — G(&1,83) = -2 @2 + R
and
1 1

Ya(t) = G(&1,62) =

(\/§t)N—2 - (t + 1)N;2-
A direct computation shows that v4(t) > 0, v3(t) — —oc as t — 01, 43(t) — 400 as t — 17, and
v3(3) > 0. Thus there exists ¢] € (0,1) such that

v3(t7) =0, ~3(t) <0 forall t € (0,¢7).

On the other hand, (y3(t) — 272(t))" > 0, y3(t) — 272(t) — —oc0 as t — 0, y3(t) — 272(t) — +o0 as
t — 17, and y3(3) — 272(2) < 0. Thus there exists ¢ € (3, 1) such that

v3(t5) — 277 (t5) =0, ~s(t) —277(t) > 0 for all ¢ € (t5,1).
It follows that for every ¢ € (0,%}) U (t5,1) there exist unique \;(t), A2(t), A(t) such that

VALAQ,XfZL(Al(t),)\Q(t),X(t),t) =0,
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where A1 (), A2 (t), \(t) satisfy (3.64), (3.65), (3.66) and (3.67). Moreover, a direct computation using
(3.61), (3.62), and (3.63) shows that

0% fa( M, A2, A\ 1)

N-6_N_2
i = (7 = 2 (209 - 3 (ON T+ (= (N TR
1
Noo N2y (N —2)b
F2N = (A * A, ) + ( )2 e
1
N—-6 N-2 —6 N-—-2
(N —=2)%y <273(t)>‘iv ! A7 A7+ 2u()A 7 A2 ) ,
D2 f1( A1, Ao, N t B N_¢_ N2
% = (N —2)b, (z(N —3)s(t)A) = (N =4)m (A= A 7
2

Plilada ) _ oy, <(N —BHO,0X T (N = r ()T AT A T )

oA

= (N —2)°h (H(OvO)XN_4 +nH T A7 )N T >

w — (N _ 2)2b171(t)>\¥XN;4
OAOA 1 ’
w — 7(N _ 2)2b171(t)>\¥XN;4
6)\6)\2 2 ’

(92f4(>\1 A 2 t) 9 N—4 N-4
2 =N —2)% A2 A2 .
a)\la)\Q ( ) 174() 1 2

For simplicity, we introduce the notation

N-—2 N—-2 N-—-2

Xi=X72, Yi=N7, Z:=)".

In order to show that the Hessian matrix Dil N +fa(A1, Ae, A, t) is nondegenerate for any t € (0,t)U(t5, 1),

it suffices to show that the matrix

X+n@®Y - 2) T (t)Y ¥ X N2 ()2 X N2

N—4 2 N—4 2
HOYNEXNZ 2y ()Y + 1 (D)X + 274(8)Z 2, (t)Y =2 Z~
—n(t)Z N2 X 7 2y, (1)Y ™2 Z N2 2v3()Z — ()X + 274 (t)Y

is nondegenerate. Using (3.61), (3.62) and (3.63) this is equivalent to show that the matrix

% + 4bT21 . % Tl(t)Y NZ—ZX%:;L 7T1(t)ZN2*2X%:3
N—4 2 b 1 N-—4 2
Tl(f)YN*ZXN*Z ’73(t)Y+ﬁ7 2’}/4(f)YN*2ZN*2
N-—4 2 N—

NS

_Tl(t)ZN—ZXN—Z 2/}/4(t)YN272ZN ,73(15)2 + QbTQl . %

is nondegenerate. A direct computation, using (3.66), shows that the determinant of the above matrix

has the same sign as y3(t), and hence is nondegenerate.
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Now in order to finish the proof, we look for to € (0,¢}) such that v4(tg) = 0, where
vo(t) := fa(Mi(t), Aa(t), A(2), ).

Observe that

Vi (t) = 9 fa(M (1), gi (1), A(t),t)

_N-2 N-2
2

N-2 N-2 N-2
=2, (*yg(t) (A 24+ 0072 + 27 (1) (Al R W ) N T AN TN, >

where A1, Ao, \ satisfy (3.64), (3.65), (3.66) and (3.67). Therefore, v4(t) = 0 for ¢ € (0,t}) is equivalent

to
13(t) =5 () (2v3(t) (ya(t) — 277 (1)) + 72(8) (y3(t) + 274(2))) — 271 (E) 71 (£) 3 (t) (v3(t) + 29a(t))
+ Ay ()3 () (vs(t) — 271 (2))
—0.

It is easy to check that t3(t) — —oo as ¢ — 0T and ¢3(t7) > 0 since V4 (¢}) > 0, y4(t5) > 0 and ~3(¢5) = 0.
Hence there exists to € (0,t}) such that t3(tg) = 0, which finishes the proof. O

Remark 3.9. It seems that there also should exist ¢y € (¢3,1) such that ¢3(t9) = 0. This is not considered

here because the computations get enormous.

4 Solutions with tower of bubbles concentrating at the origin

In this section we prove Theorem 1.4 where @ = 1. We use the same notations in similar settings as

Section 3.

4.1 The finite dimensional reduction

We fix an integer & > 0. For A = (A1,...,\, \) € RF! we set §; = )\is%, fori=1,...,k, and
consider ¢ = ((1,--.,Ck) € (RV)F such that

E=(Erse s &) = (6161, -, 0Gi) € Q8.

— 2(k41)—1

We also set 0 = Ae” ¥-2 . Now we define for n € (0,1):

i~ _ 1
On{(M)GR’i“ x (RN € (mn™t), Xe (™), ICiISE, ZL---Jf}-

We also recall the sets We x ¢, Kene, K-y ¢» and the projections II¢ ¢, It ¢ as in Section 3. Now we

want to find n >0, >0, (A\,() € O, and ¢. r¢ € Ka%k,i such that:

IO e (Verg + dene — 0 (fo(Vere + dene))) =0, (4.1)
Hene (Vere + dene — 0 (fe(Vere + 0ene))) =0, (4.2)
where
k .
Vore =Y _(1)7'PUs, ¢, + (-1)FPV,. (4.3)
=1
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Next we take p > 0 small enough and let

AkJrl = B(O,\/5k+15k), Az = B(O,\/&-(Si,l)\B(O,\/51-5“1) for i = 1,...,]€; (44)

here 5y = g, dk+1 = o; cf. [25]. Finally recall the operator L. » ¢ from Section 3.

Now we first solve (4.1).

Proposition 4.1. For any n > 0, there exist €9 > 0 and ¢ > 0 such that for every (X, () € O,, and for
every e € (0,e9):
[Lexe(@)ll = cllgll for all € Koy (4.5)

Consequently, L. x ¢ is invertible with continuous inverse.

Proof. Arguing by contradiction, we assume that there exist n > 0, sequences €™ > 0, (A",(") € O
¢" € H,(Q) with e® — 0, X — A\i, X' — X, {* — (i, as n — oo and such that

5

" € Ksj;l,)\"',fna o™l = 1, (4.6)
and

here A" = (A, AL XY, € = (CPyee GP), €0 = (€0, &) = (B0C1, 058, ..., OpGH) € QF, 67 =
)\?E?VZ:; fori=1,2,...,k, o" = anzoﬂf\ﬁ);l. We need the sets

A =B(0,/6,,67), Ap:=DB(0,/670;_) \ B(0,\/0rd,,), i=1,2,...,k,

2
where §f := g’—?, Oy =0m.

Thus we have:

" — U (fo(Ven an,gn)@™) = B — Ten an en (V5 (fo(Ver pnen)@™)) . (4.8)

Then we obtain as in Proposition 3.1

N
w = Ien pongn (5 (f (Ve angn)@™)) = D D P8+ G P(T),,

1=1 j=0
for some coefficients c}';, cf, where (\Ilz)n, j=1,...,N,(9Y),, and (¥),, are defined as in the proof of
Proposition 3.1.
Step 1. We claim that
lim ||w"||, =0. (4.9)

n—00

Multiplying (4.8) by AP(¥}),, + MP(\II;I)"', using Lemma B.1, Lemma A.2, Lemma B.2, and arguing as

[

in the proof of Proposition 3.1, we deduce ¢, — 0, for [ = 1,....k, h = 0,1,..., N, and ¢f — 0, as

n — oo. The claim lim |w"||, = 0 follows.
n— o0

Step 2. As in [25], we use cut-off functions x7', 7 = 1,...,k + 1, with the properties

Xi'(w) =1 if \JO7of, < o] <[00y
[5TgT
XHz) =0 if [z] < zTZH or x| > 2,/6761 ;

i o1—10

4
- dlvV2y® < -
e V)] <

7 7 21—1

Vi (2)] <
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fori=1,...,k, and

XZ—H(:C) =1, if |z| < \/5121-1-151?5
Xig1(x) =0, if [2| > 24 /o7, 07

1 4
VX1 (@) € — ==, and [Vxj(2)] € o
k+1 62+167kl k+1 6k+16k

The function ¢} defined by

B n n n n n Q .
o (y) == (07) = ¢"(0y)x1(0)y), forye QF == 50 1=1,...,k+1.

3

is bounded in D%?(RY). Therefore we may assume, up to a subsequence,
P — ¢° weakly in DM(RY), i =1,2,... k+1.

Now we prove

¢ =0 fori=1,....k+1. (4.10)

As in Proposition 3.1, using (4.8), (4.7), (4.9), we have for any ¢ € C§°(RY), and for i = 1,...,k:

[ 7o @vew =@ [ 9 0@ @) 9 (@ (5 )) +on

2

= (67)"

* [ 0 @) e ot () + o)
=GP [ Ve 2 07 2000 0) + 1)

= [ 55 e ) ¢ o) + ol
Hence ¢5° is a weak solution of

~A¢ = fy(Urg)oi, in DV(RY).

. : OUL ¢, . U,
Setting ¥ . = B(C;ifj, for j=1,...,N,and W9 . := —5

5=1 we obtain as in [25, Lemma 3.1]:

/RN Vo (x)V]  (x) =0, j=0,1,2,...,N, i=1,2,... k.

Then (4.10) holds for i = 1,...,k. The proof of ¢35 ; = 0 is similar.
Step 3. A contradiction arises as in Proposition 3.1 and [24]. O

Proposition 4.2. For any n > 0, there exist ¢9 > 0, co > 0 such that for every (A, ¢) € O, and every

€ € (0,¢0), there exists a unique solution ¢ x¢ € KEJ:A,f of equation (4.1). Moreover, we have

2k+3

), (4.11)

_Nt2
||¢E,>\,£||u S CO(EZ(N—Q) +e
and the map ®. : O, — K;A,g defined by ®.(\,€) := ¢er ¢ is of class ol
Proof. As in [4], we define the operator T} y ¢ : KE{-/\{ — KEJ:A,E by

Tene(®) = Loy T e (F(fe(Vere +6) — fo(Vere)d) — Vere):
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Now we prove that T; »¢ is a contraction mapping. Proposition 4.1, (2.2) and Lemma B.3 imply as in

(3.23):

[Tene(@lu < CONfe(Vere + ) — fe(Vere) = fL(Verne)dllany/(v+2)
+ ON(fL(Verne) = fo(Vere))dllan/(v+2)

+ O fe(Vere) = fo(Vere)llan/vr2)

i=1

k
Cll fo(Vere) — <Z(1)i1fo(U&,§i) + (1)kf0(va)>

2N/(N+2)

k 1
+ZO(M5¢) +0 ((ua T ) ) .
i=1
Using Lemma (B.4) and observing that
1 f(Vere + 0) = fe(Vere) = FL(Verg)dllany (v2) < CllolZ 1,

we have

k 1
. N2 —2\ 2
ITer ()]l < Cllg|1 1+C’€||¢)|H+C€+O(52<N2))+ZO(M5Z‘)+O<(MU ) )

=1

=0l

2 Cellgll 0 (V) 1 0 (75,

The remaining part of the argument is standard. 0

For A= (A1,...,A\g, A) and ¢ = ({1, - - -, (k) we now consider the reduced functional

I.(N\ Q) = J-(Veae + dene)-

Proposition 4.3. If (\°, (%) is a critical point of I. then there exists a family of solutions u. to problem

(1.1) having the shape
ue(@) = Verge + dene, (4.12)

where Ve x ¢ is the one stated in (4.3).

Proof. We omit the proof because it is similarly to the one of Proposition 3.3. |

4.2 Proof of Theorem 1.4

For convenience, we use the notation A\;y; := A in this subsection.

Lemma 4.4. For ¢ — 0T, there holds

I.(\¢) = a1 +ae—aselne+ 9P\ e+ o(e) (4.13)

N

Ct-uniformly with respect to ()\,C) m compact sets of O,. The constants are given by a1 = k—]'\’}le ,
as = (kH) Jan Ut Oln Upo— J{)lQS = 18’ 7 S,uo, and as = (k2+21*) Jan U?, o- The function ¢ is given by

N-2
Zb3h2 G) —baln(Ar.. A1) 7,

i=1

k
YOO = AT 1Y by ()
i=1 ¢

30



with by = 1Co fon Uty ' ba = C3", by = $C3pu0, ba = 5= [ UZy, and

/ ! ha(G) = / L
R 4 GIN 2L+ ) e A GPA+ PN

h1(Gi)

Proof. Observe that

p 1 o Venel? 4.14
c(Verne) = 3/, IVVerel” — 2] (4.14)

1
— [ ™
2*/Ql W
# (5 [ 1vene = 5 [V ). (4.16)
2" Ja 2" —¢ Jo

For k > 1 Lemma B.5 and Lemma A.10 yield

o

(4.15)

[

1 N n-2_ 1 . 1
A1) == (k+1)S2 — ~5 75 _—CQHO,OAZH/ T
( ) 2( ) 0 4 "0 Ho€ 90 ( ) 1 N (1+|z|2)N2+2

k
1 2/ 1

-5 E poC — €
27070 Jon [P+ [y — GIPHN2

Meag\ T 1 1
_02*( k+1) / . .
EANPY B (14 [y12)"% (14 |G[2)=

= P 1 1
* i+1
- Z Cg ( )\+ ) / N+2 N—z2 € + 0(5)'
) RN (

i=1 L+y2)™= (1+]G[*)™=

From Lemma B.6 and Lemma A.10 we deduce:

1 N N-—-2 N-2_ * 1
(4.15) = —2—*(k+ 1)S? + TSO T Suoe + C3 H(O,O))\{Vd/ —— €
ke (14 ]2P)
NSV 1
+C¥ ( iH) / €
’ ; Ai R YN =2 (14 Jy — G2
k
. Nig1 (N2 1 1
EBIE Sl ; et o)
i ; As RY (14 [y[2) 37 (141G
By Lemma B.7 and Lemma A.10,
€ x  (N-2) .
(416) = — (2*)2 (k + 1)S02 - W /]RN UI,O . 111(51 N 5k0)
E+1 N
BV [ 2 U, + ofe)
2 RN ’
€ N (N —=2) . -
— k+1)S2 — ——— “In(Ar . AR
S5 = Gt [ UEe )
k+ 1) . k+1 .
_k+D / Ufo-glns—i—( + )/ UtoInUig-e+ole).
2 * 2* RN ’ 2* RN ’ ’
Using Proposition 4.2, (2.6), (2.7)), Lemma B.4, we get:
Je(Vere + 0ene) = Je(Vere) = ofe). (4.17)

Now we conclude the proof for k£ > 1 by (4.14), (4.15),(4.16), and (4.17).
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The case k = 0 can be easily dealt with using (A.27), (A.47) and (4.17). Observe here that (4.13)
holds C'-uniformly with respect to (), ¢) in compact sets of O,; see [25, Lemma 7.1]. O

Proof of Theorem 1.4. By the change of variables

N-—2 N-—2

A A2 T _ Mo\ T _
1 = 81, )\—1 =82, ..., )\—k —SkJrl,

¥(A, €) can be rewritten as

(s,¢) *b151+zbzsz+1h1 Gi) sthz G) = baln(sytlsh . spga),

i=1 i=1
where s = (s1, 82, .., Sk41)-
Suppose (%f) =0fori=1,...,k+ 1, and let 5(¢) = (51(¢),.-.,5k+1(¢)) be the corresponding
critical point. Then

=R (k + 1)b4 N kby =R by
=\/—, S9=7—"7"7"77, ..., S = —,
! 20, > bohi(G) M b (Ce)

V)

and it is easy to show that 5({) is non-degenerate. Plugging these into @(s, ¢) gives

b F N k+1)b
B¢ = L Zb3h2 (- (L G
b
+;ilnlb—:)+;b4(k+1fi)lnhl((i) (4.18)

K
=Ci+ Zgi(Ci)v
i=1

where

(k +1)%by Bl k+1 zb4
Ch 5 b 5 Ly E

and

1 1
()= bl ) BY |y + GIN=2(1 + |y[2) "= ? Jen Ty + GPA+ [yP)N2

A direct computation shows that ¢; = 0 is a critical point of g;(¢;) such that

0? gz(Cz)
agﬂad
and
0%9:(G) 2N -8 b3 -
o T TN e WP+ RN T

Consequently ¢; = 0 is a nondegenerate local minimum of g;, hence ¢ = 0 is a C'-stable critical point of
J(§(§), ¢). In particular, small C'-perturbations of J(§(§), () still have a critical point, close to 0. Thus

we conclude the proof. O
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A  Appendix

In this part, we give the lemmas used in Section 3.

Take 0 < n < mm{|§z|,dlst(§z,8Q), |§Zl — §i2|,i,i1,i2 = 1,2, ..

we obtain the following.

Lemma A.1. Fori,l=1,2,..

where ¢o > 0,¢; 5 >

(P, PY)
(PV, PV)
(Pw], P¥))
(P, PU})

0 are constants.

Il
e)
o
|
+
=}
—~
()
~—

Il
=}
—~
~—
—~
=)
3
ISH
)
—~

.k, and j3,h=0,1,...,N, it holds

) ifiAlor#

h,

., k}. Similarly to Lemma A.5 in [25],

Proof. We only prove (A.1) and (A.2) as j = 0. (A.2) as j # 0 is similar. (A.3) and (A.4) are from

Lemma A.5 in [25].

To prove (A.1), noticing that W is an eigenfunction to (2.3) with A = 2* — 1, by Proposition (2.2), we

have

T Po —o |PUP
(P\II,P\I/):/ VP — p—
—___ WPV  (PY-U)PU
VUVPY — p—m — 5
0 Ed ||
e . p— PU —¥)PY
(2 — 1)/ V2 (2 - 1)/ V2 2g(T — PT) —u%
(2" — 1) / V225 4 (0 2F)
Q
(N2_4)C}2i / 02 'O’N_4 (|x|ﬂ2_02|x|ﬂ1)2 —I—O(O‘N;Z)
4 q (0%[z|? + |z|P2)? (02[x|Pr + [x|P2)N
N2 —4)C? 1 B2 _ |y|B1)2 L, .
( . )G / ) (Iy1” = [y|™) 40T (2= oY)

B
=

(N2 —4)C2

/.

o 1 o(L),
“ 3 0(02)

1 (gl = Jyl)?
o (JylPr + [y]P2)2+N
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for a positive constant ¢y. Similarly,
— 0 — 0 PV . PO
(PY,PV))= [ VPV .VPY, — HW
Q x

vpPwY  (PU - U)PDY
2 H 2
|| ||

= /( VIVPY) — p
)]

N —

22)

* 2 N -2 _ B2 _ 52| p|P1
= G2 *1(2&1)/ . B" e nza (|27 = o7a L
o (0|27 +[x)P2)> 2 (02|t + |2]%2) =

= (2" - 1)/ V22000 + O(o
Q

— N—-4 — 2—2 N-—2
Nozpes (eoGP o) oo
2 @ l-aP)®

s ).

)

)(and o

= 0(

Eqe

Lemma A.2. Fori=1,2,...,k, and j =0,1,..., N, it holds

[PU] — ! |lany(v_z) = (A.5)

[P = ¥lon/v—2y = Oc7=). (A.6)

Proof. (A.5) can be proved as Lemma B.4 in [24]. (A.6) can be obtained similarly by using Proposition

2.2. O
Lemma A.3.
k
1(£6(=>_ PUs, & + PVa) = f5(Us,e)) ¥} vy (n+2) (A7)
=1
0(c™7*) + 3065, %) if h=1,2,....N,
S izlk N—2 N—4
O™ )+ > 0,2 )+0(5, 7)) if h=0;
i=1,i#l
k —_
I(£6(=>_ PUs, e, + PVo) = f5 (Vo)) ¥ lan/(v+2) (A.8)
=1
N—4 k N-2
< O = )+) 0(5,7)
=1
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Proof. We only prove (A.7).

/|f0 ZPU&,gnLPV) Fo(Us )7 PN/ (VH2)

i=1

k
/B(5 7) |(f6(*ZPU5i7§i + PV,) — f(l)(Ual,gl))\PﬂQN/(NH)
1

=1

k
+/ k |(f(/)(7 ZPU&;,& =+ PVG) - fé(U5lyfl))\Il?|2N/(N+2)
BO,3)U U B(&,3) i=1

- Z PUs, ¢, + PVs) = fé(U5L,fz))\I];L|2N/(N+2)'

i=1

4 / .
N(BO.HU U B(&3)

First of all, by (2.4), (2.7),

k
/B(5 7) |(f6(_ZPU5i,5i + PV,) — fé(U617£l))lI/;I|2N/(N+2)
L3

i=1
; / h|2N/(N+2) N(N-2) k NV —2)
: /B@ g, (FoPUse) = folUaa)) 1] +OERE )+ Y 0, )
" i=1,i#l

N(N— 2) N(N— 2)

< 0_ N1 +ZO(5 NF2

For i #£ [, we have

k
/B(5 n)l(fé(*ZPUgi,gi 4 PV,) — fo(Usy.e)) Uh2N/N+2)

=1

- / (F)(PUs, ) + O(0™5"
B(&:

)+ Z O3, ) + O(57))wf PN/ (V+2)
)

(NS

J=L,#4,5#1
N(N—=2)
O(5l AR if h=1,2,...,N,
= N(N—4)
O(5l RN if h=0.
At last,
k
/ ZPU‘Sufz + PVU) fO(U5z & lIlh|2N/(N+2)
2\B(0,7) L:JIB(& 7 i—1
N(N-2) AN k AN
0@, “7 )O(e ™) + Y 06X 7))  if h=1,2,...,N,
S N(N—4) AN 1?1 AN
0, 7 )0 ¥a) + . 067) it h=o.
=1
Then (A.7) follows. U
Lemma A.4.
k k N— 1
165(= " folUsie) + fo(Va)) = Verellu <D O(udi) + O((po = )5). (A.9)
i=1 i=1
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Proof. By Definition (2.1), there holds
[V Vo) otV — P — o [ LN Z V)

Q |z[?
- /Qfo(Va)(L*(fo(Va))*PVU)-

{APVG = AV, = pes + fo(Vo) i,

It also has

PV, =0 on 0f).
Then

/ VPV (fo(Va)) — PV,) — / vgu*(fo(lgg)) ~ PV,)
Q Q

= fO(VU)(L*(fO(VU)) _PVU)'

Combining with (A.10) and (A.11) it holds

/|v o(Va)) — PV :u/ (L*(fo(va))v(,')(T:(fo(vg))pva)-
Q x
By (2.4),
R U R e S ()

Similarly to (A.10), (A.11), we also have
0 ' (fO(U(siafi))v(l’* (fO(U5¢7€i)) - PU5i,fi)

M/ v (fo(Us; &) (" (fo(Us,.e.)) — PUs, e)

jz?

/fo (Us, &)(¢* (fo(Us,.&,)) — PUs, ¢;)

and

/Q VPUs, V(" (foUs,e.)) — PUs,c,) = / FolUs, € (foUs. c.)) — PUs, c.)-

Then

196 Goie)) = PUs e = [ S Cs U Tne)) = PUnc),

Q |[?

Therefore, by Holder’s inequality and Hardy’s inequality,

1o Us.e.)) — PUs.c.lln = (ﬂ/ﬂPUzsi,gi(L*(fo(I|J$,s|i2,gi))1DU51.7§1_))é
PUs. )2 1 * Us ¢)) = PUs. )2 1 4
< [ PUnelyy [ U Onel) - Plne) sy

< C(pdille* (folUs,.e)) — PUs, . 11)%,
which implies
HL*(fO(U(sm&)) - PU5i,fi||H < O(lu’él)

Hence, (A.9) follows from (A.13) and (A.17).
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Lemma A.5.

I(FL(Vere) = Fo(Vere)dllanivezy = Celloll, (A.18)
[fe(Vere) = fo(Vene)lonyivt2y = Ceg; (A.19)
k k N+2
1fo(Vere) = (= folUs,e) + foVo))llanyinvay = O@ 5 )+ 06,2 ). (A.20)
=1 =1

Proof. (A.18) and (A.19) can be seen in [4].
By (2.6), (2.7),

k
(/B(o,g) [fo(Vore) — (= ; fo(Us,.e,) + fo(Vo)) PN/ (N+2)(N+2)/2N

k
< C(/ |(PVU)2*_1 _VUQ*—1|2N/(N+2))(N+2)/2N+ZO(6iN2+2)
B(0,7) i=1
k
_ " N+2
- CJNQz(/ (V) —2 2N/ (N+2))(N+2)/2N +ZO(5i > )
B(0,3) i=1
N+2 k N+2
= 0™ )+ Y0 ),
=1
k
(/ [fo(Vere) = (=D fo(Usi ) + fo(Vo)) PN/ (VH2)(NH2)/2N
B(&i,3) i=1
21 2°—12N/(N+2)\(N+2)/2N N+2 . e
< Of  PUse)T T - UE ) Lo Y 06T
B(&i,3) oL
N2 & Ntz
= 0@ )+) 00, %),
=1
k
(/ A [fo(Vere) = (=D fo(Us, &) + fo(Vo)) [P/ (N +2)) (NH2)/2N
Q\(B(0,7) _L:JIB(&%)) i=1
N+2 k N+2
= O™ )+>_0(5, %),
=1
then we deduce (A.20). O
Lemma A.6. Fori=1,2,...,k, there hold
|Ox, P¥ |, = O(~™=262), j=1,2,...,N; (A.21)
10y PYI1l = 0%, j=1,2,...,N; (A.22)
10y PN, = O®6;?), jl=1,2,....,N,j#I; (A.23)
lox, PEl, = O(e¥257%):; (A.24)
10y PEFNl = O07%), j=1,2,...,N; (A.25)
105PT[, = O(ev2072). (A.26)
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Proof. We only prove (A.21) and (A.26) here.
lox PO = ex= 05, PYI?
< Cent: /Q Vs, WiV, PV
= Cevo / (2" = 1)(2" = 2U; W) + (2" — )US 205, 0])05, PV
= O(v25"),

then (A.21) is obtained.

|o5PP[; = e¥=2 0, PPl

0,0, PY  9,PV(9,¥ — 0, PV)
R EE

= evo / V0, ¥V, P¥ —
Q

_ Em(/ ((2* _ 1)(2* o 2)‘/62*73(@)2 + (2* _ I)VUQ**Q(?UE)@UPT‘F 0(1))
Q

= O(ev—20"1),
which yields (A.26).

Lemma A.7. As pu — 07,
|PVy|?

VPV, — pu
f,vEver -t
N “ 1
= 87 —CoCy ' H(0,0)0N 2 / vz + O(uo™ =) + O(a™);
'Y (2] 4 J2]2) 3
PV,PUs, ¢,
/ VPV,VPUs, ¢, — uilxlf“&
Q

. N_2 N-2 C}(éZ 0) N_2 N-=2 N-2 N—2
= CyCZ o274, 2 / ———5 +O0(po 2 6,% )+o(oc 2 §,?% )
0~ RN (|Z|ﬁ1 + |Z|ﬁ2) ; (M ) ( )

|PUs, ¢, |2 035.2/ 1 y
= AT — T O(ud;);
o TP G Jon Tr PN T OWo)

PUgh iPU5j7 J N_-2 N-2
o [ PSPt _ o,

|1.|2 J

N
2

/Q [V PUs, ¢,1* = S5

* 1
—CQH&,EHSZN*Q/ — 406 7?);
o H(&, &) e 1 ( )

« N-2 N-2 1 N-2 N-2
VPUs, e, VPUs, e, = C3 G(&,85)6, 6, ° / (7,”2 +o(6; % 0,7 ),
Q RN

1)

where 1,7 =1,2,...,k,i# j.

Proof. The proofs of (A.31) and (A.32) are from [2]. We prove the remaining.
(1). Proof of (A.27).

Integration by parts yields

PV,|? PV, |?
/ |VPV,|? —ul 2' :/(—AVU)PVU —u' 2'
0 || Q ||

. V, PV, — |PV,|?
Q ||

* * o'VU* o
= [vE - [vE s [ £zl
Q Q Q ||
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As (B.19) in [2], to continue, let us first show the following.

/ V2 TH(0, x) (A.33)
Q

N+2

=)

VZIH(0,2) + O(o

Il
5
=

5]

— H(0,0)/ VZl L0 )
B(0,%)
(expanding H (0, z) near z = 0)
N+2
o2 Ni2

= H(0,0C% !

+0(c72)
B0,4) (022 + |a]P2) 5

. oV &
— H(0,0)Cﬁ —1/ s — +O(J¥) (0 Vrriz=2z)
B30~ Vm) (|27 4 [2]72) 7
* B 1 N+2
= H(0,0)C? —1am/ ~4+0( 2 ).
H RV (|2]B + |2]B2)F

So, by using (2.6),

(A.34)

N+2

2161+ |21P) 3

* * VENEHVE=R) 1
/ Vi lp, = COCE “1H(0,0)0" ik /
Q RN (

VENE+VE—1)
+O0(uo ™ VT ) 4 0(0™)

. 1
= CoC?~'H(0,0 N*Q/ O(uo™=2) + 0(a).
0~ ( ) )J RN (|Z|ﬁ1 T |Z|ﬁ2)N2+2 + (/LO— )+ (U )

On the other hand, since

SVE—VE—R
|/ d (x)H(0,x) 1 1 (A.35)
Q

||? (o2|z|Br + |x|ﬁz)¥ B |x|ﬁ+ﬂw)|
o 2 VI — (ol + [2]) T
VIt T 0 — — —
BOoviT) [T (02]a|fr + |z]B2) T |a|VA+HVE—E
1 [a| VEHVETI (02| 4 |z]f2) 2

IN

+C

)|

Q\B(O,o’%) |SC|2 (0'2|.I'|ﬂ1 + |$|52)¥|J]|\/ﬁ+\/ﬂ
C 1 O’N72|z|\/ﬁ*\/ﬂ
/B(O,a%) |W O’N72|1‘|\/ﬁ*\/ﬂ|z|\/ﬁ+m|

IN

1 |x|‘/ﬁ+m02|x| 72\/\/%77

NB 0,0y |22 [a| VATV | VAt ViR

VEWE-VED)
= O(c" Vv ) +0(c%),

+C

then

V=i~
0o Vo _ 2 _N-2 d (.Z‘)H(O,l‘)
,u/Q FE (1+0(1))uCLo /Q e (A.36)

= O(uo™?).

It is also easy to see that )

Po N-2
— A.
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/ V2 =57 +0@). (A.38)
Q

Hence (A.34), (A.36), (A.37), (A.38) yield (A.27).
(2). Proof of (A.28).
By using (2.7), integration by parts yields

PV, PUs, ¢,
jz?

N . Us. ¢, — ©s. ¢,
= / Vc72 _1U5¢7€¢ _/ Vo2 _1()06i7€¢ +M/ 900( bonks B} @61,51).
Q Q Q |z|

/ VPV,VPUs, ¢, — pt
Q

/Vf**lU,;i,& = (/ +/ +/ W2 U;, e, (A.39)
Q B(0,2) JB(&,2) J\B(0,2)UB(,D)

4

N+2

« N-2
= ([ [ e 06 ),
B(0,4) B(&i,1)

4

wS

As p— 0T,
*_ *_1 Nt2 N—-2 1 1
/ VGQ 1U6i’§i - 0003 fo 5i ’ / n 2|61 B2\ N2 . 62 _ e N2
B(0,%) B(0,3) (o?|z|Pr +[z]P2) 27 (67 + ]z —&[*) 2
. N-2 1 1
— ac e 2< )
' B3 (2] + |r]#) 57707 + (&)
N-2 1 1 T N-2

+0(U ”7”61' 2 )a

- 0002*—10%5%/
g b Sy (|2)8 + J2]P) T &IV 2

2% _1 o _1 N+2 N=2 1 1
| Us, e, = COCH oz 61‘ : Ntz o N-_2
B(& B(0,]) (0%z + &% + [z +&[P2) 72 (67 + |2[?) 2

then
(A'39) = 0002*710'%5:;2/ : N+2 11V 2 +O(U\/ffu6;v;2).
g RN (|Z|ﬁ1 —+ |Z|ﬁ2) 5 |§Z| -
On the other hand,
/ v (A.40)
Q

N N-2
2

- / Vﬁ*_l(p(si,gi-i-O(O’ ;261 )
B(0,3)

* 2 N-2 H i N+2
= COCZ _IO'N; 61 2 / (6 :E) N+2 +O(U E 61 : )
B(0.3) (07 |z]fr + |z[P2) "=

= 0002*710_1\7;26;\’;2/ H(&,O) - +O(0-N2+26iN;Z)
. B(0,2) (0?|z|Pr + |z|P2) 2

- i — ; I —2
— 0002 710_ﬁ5'N22/ H(&Z,O) - Jro(o_\/%d]vz )
1% A +2 i
mY (2] + [2]2) 5

Similarly to (A.35), we have

i
[ (@)HO.z) ! - <o@ (A.41)

0 || (02 + o — &[2) "=
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which yields

@UU&;, i

oo N;25N2—2 / EﬁiVﬁ*#(x)H(O,x) +of N;25N2—2>
= o . o\uo

S A Sl

— N—-2
= O(uo = 6,7 )
It is also easy to see that
Po'Ps;,&; N2 N2

By (A.39), (A.40), (A.42), (A.43), we conclude (A.28).
(3). Proof of (A.29).

UZ .
ot A .44
I (A44)
= 025?“2/ ! :025N*2(0+/ ! )
O Jo 2P0+ |p -GN 0 Be,, 1) 122 (07 + |z — &2)N =2

. ' . 14 0(zf2)
= 025.N20+/ 2025.N20+/
00O [ oy ETER@ e =0T [ TR )Y

| 5N | O(|z]2)
= 0255V*2C+ _/ +/ S S / B Lol NV
E P ooy T e TP TR S g @ i)

)

G 1 4
= (e fou T 00D
On the other hand,
o2
/ 51‘,2& _ 0(51.]\7*2); (A45>
o |7l
/‘PJifiU;iqfi _ 0(511\7*2) (A46>
Q ||

Then (A.44), (A.45), (A.46) yield (A.29).
(4). Proof of (A.30).
We omit it here since it is similarly to (A.29). O
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Lemma A.8. Aspu— 0T,

/|PVG

Q

/lPU6i7€i|2*
Q

N
2* _ 2
— 5F -

. 1
2*CoC? ~YH (0,0 N*Q/
G OO L G T

+O(ur™2) + 0(o™);

« N_2 1
—2°C§ H(&,&)5; ° / PR = +0(5));
B (o)

w[z

So

k
/ - ZPU5iafi +PVO’|2*
Q=1

N
2 _

= 5

x 1
2*CoC2 ~'H(0,0 N*Q/
e AR

k
* N-—2 N-2 G i)o
—2* E COCI% o732 0, ? / ( (€ ) Nt2
i=1 RN

2] 4 |2]02) 3
k N 1
+ > [S¢ —Q*CQ*H(@,&)@N*Q/ ——
; ’ ’ Y (14 [22) "%

N-—2
2

k N—2 . .
+2° Y ¥ o7 o, / 7“‘5“523”
=1, RY (1+]2]2)72

—2*cuc§*—1aN525.N52/ _Gle)
BV (14 [2]%) 2

N-—2

i=1 J=1,j7i
Proof. (A.48) is from [2].
By (A.34),

/ |PV,|* = / vy - / VZ o, + 0(™)
Q Q Q

N " 2% _1 VE(VEAVE— W) 1
= SF 27O I H (0,000 TR
Y (|2]%1 +12(%)

N+2
2

VENEHVE=1) N
+0(puo vir )4+ 0(c™).

Now we turn to (A.49). By (2.6), (2.7), (A.39), (A.40),

/ (PV,)? "' PUs, ¢, = / (V4 O(V2 200 (Us e — 05.c.)
B(0,1) B(0,7)

72

2% —1 VE(N=2+vE—p) N-2
Vo (Uéiafi — 0s,.6.) + O(o Vi—p 5.2
B(0

'3)

)

* N—2 N-2 G i;O N—2 N-2
= C()Cﬁ 710’ 2 51- 2 / (5 ) N2 + O(U 2 51' : )
R (e + [2]2)
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—2 k N—2
+3 (00 T 6 T )+ D 007 6,7 )+ 0(N) + O(uo™72) + O(o

(A.47)

(A.48)

(A.49)

N).

(A.50)



Then by (A.47),

k
/B(O Y | - ZPU&',& + PVG’|2* (A51)

=1

k k
- / PV — 2y / (PV,)* ' PUs e + 3 O / (PV,)2 "2(PUs, ¢, )?)
B(O,g) p— B(O,g)

i=1 B(0,7)

w[z

. 1
= 52 —2*CyC? *1H(o,0)aN*2/
' " By (|2]8 + [2]82) 2

k . _o N-2 .
_Q*ZCOCE —10,N2 61 2 / G(glao) s
i=1 RV (|2|01 + |2]P2) 72

k
+Y 00" 5 T ) + 0oV ) + O ™).

i=1

We also have

k
/ | - ZPU5i,fi + PVU|2* (A52)
B(&:,%)

i=1
k
/ \ |PU5¢7€¢ + Z PU5]‘751 - PV<T|2
B(::3) =1
k
PU;s. ¢ )> +2* PU;s. ¢)? “'PU;s. ¢. — 2°(PUs. ¢.)* ~'PV,

i n3 ¢ ¢

B(gug) ’ ) VELY] 19817

J=1.#i

k
0([  (PUET - Y PUsg + PV
B(¢

1) J=1j#i
N « 1
_ 2 o* . ANSN—-2 N
- SO 2 C’O H(fuéz)éi /]RN (1+ |Z|2)N2+2 +O(5z )
k N—-2 N-2 . . k N—-2 N-2
120 S €367 s, / G(Eifﬁer S 0,7 6,%)
j=Lgti re (L4 ]20)7 0T
et Pl S CIL) B
by (14 )T '

where the last equality was obtained by the results in [2] and

/B(E Q)(PU5i75i)2**1PVU (A.53)

* N-2 —2
ol L TSR Uy
B(&,

n

2

*_ -2 N-2 1 1 —VIi—Vi—R N—2
= C,C2 10—N25.2/ E— H(0,&)) +o(o 7 6, 2
H~0 7 RN (1+|Z|2)N2+2 (|€z|\/‘_‘+‘/ﬁ ('T) ( 6)) O(U 7 )
. —2 N-2 G(f O) N—2 N-2
— C 02 1O'N225. 5 / % 4+ o(oc 2 5 2 .
©r~0 [ RN (1+|Z|2)N2+ ( 7 )
At last,
k k
| =Y PUs, e, + PV, <Y 006Y) + 0(c™). (A.54)
/Q\Bw,%)u_OlB(&,%) ; ;

43



Then (A.51),(A.52),(A.54) yield (A.49).

Lemma A.9.

k k
/ | = PUs, ¢, + PV,[* In| = > PUs, ¢, + PV,
Q

i=1 i=1

N -2 « N-=2 x
= - 1n0~/ Ve - In(6102 ... %) / Uiy
2 RN 2 RN ’

+/ v12*1nv1+k/ UZ,InU g+ o(1).
RN RN

Proof. Similarly to [13],

k k
/ | = PUs,¢, + PVo[* In| = Y PUs, ¢, + PVs|
B(0,3 i=1 i=1
Iz 2* 2
= —— Ino - \% —|—/ Ve InVi +0(1)
VH—H RN ! RN ! (
N -2 . *
= - 1n0~/ % Jr/ V2 InVy +o(1),
RN RN
k k
/ | = PUs,¢, + PV, > In| =Y PUs, ¢, + PVs|
B(&.3) =1 i=1
N -2 x "
= - 5 Iné; - / U12,0 +/ U12,0 InU; o + 0(1),
RN RN
k k
_ | = PUs, e, + PV,)* In| = PUs, ¢, + PV,
/sz\Bw,z) 0 B3 ; ;
= o(l),
then we conclude (A.55).
Lemma A.10. As u— 07T,
[t = [ vt e
RN RN
/ vPo= / Uty +o(1);
RN N
/ VZmw, = / UZoInUi g+ o(1);
RN RN
Co 5
C, = Co— o(p?);
u 0= gk T OW);
Sp = SO —§N+O(M2)a

for some positive constant S independent of .

Proof. The equalities can be obtained by direct computations.

B Appendix

The lemmas used in Section 4 are listed below.
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(A.55)

(A.56)

(A.57)

(A.58)

(A.59)
(A.60)
(A.61)

(A.62)

(A.63)



As Lemma A.1, we have the following.

Lemma B.1. Fori,l=1,2,....k, and j,h=0,1,..., N, it holds

— _ 1 1
(P, PV) = co—3 +0(;),
j 1 L.
(PY,PT7) = of_3)(and 0(@)),
; - 1
(PY!,PU)) = ¢, 52 +0(5—2);
j h 1 1 L ,
(PYLPY) = olsp)(ando(zy)) ifi#Lorj#h
i 1
where ¢o > 0,¢; ; > 0 are constants.
Lemma B.2.
k . 1
1(f6(D_ (1) PUs, ¢, + (1) PVy) = fo(Us,e)) V7 lanynray = ol—2x);
5N+2
i=1 1
k . JE—
(£ (=1)" ' PUs, ¢, + (=1)"PVy) = f3 (Vo)) ¥llany(v42) = of 2 )-
i=1 o
Proof. We only prove (B.5) for h # 0.
/'fo )T PUs, ¢ + (=1)"PV,) = f(Us )7 PN/ (VH2)
k+1
U/ I( fo )" PUs, e, + (1) PVy) = f5(Us, ) 07 PN/ (N H2)

k

# oy B T PUs 4 (C1FPVa) — iU g .
P

i=1
As Lemma A.3 in [25], by (2.6), (2.7),

k
I(fo(Z(*l)i’lpUsi,& + (—1)FPVo) = fo(Us, )WY/ V+2)

< C/ |U61 & 9061751\I/l |2N/(N+2 +CZ/ |U6 EL3U51,£Z\I/h 2N/(N+2)
i#l
+C/ |U2*_3V \I/ |2N/(N+2)
A
< o(—%),
5lN+2
since
/ |U5z & 305, ¢, URPN/(N+2)
( gl) 2N, 2N (N-3)
= ¢ L TS 2N/(NH2) — (5, NER ),
- |(52+ |z —&[2)3 | (6, )
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(B.8)



for i #£ 1,

_ | 52(95 - fz ) 9; > |2N/(N+2)
A (O ]z =& (62 + |z — &2)
< of |M|§)Ni2(/ d; = 2|2N/N 2)) N2
- (0F + |z = &[?)? (62 + |z — &)2) ™
1
= 0( 2N ))
5N+2

and similarly,

/ U2 GV w PN ) = o — ),
1,61 5IN+2
The same arguments as (B.8) give that, for i # I,
1
o PUs g+ (1 PYe) — AU, WO = o)
I
At last,
k .
/ ((FoO (=1 PUs, ¢, + (—1)FPV,) — f§(Us, ) 07PN/ VN H2)
Q\B(0,p) P
N(N-—2) AN k AN
O(5, ™ )(O(o~+2) + 3 0(6,""?)) if h=1,2,...,N,
= N -4) w b
06, " )0 + 3 06 it h—o.
=1
Then (B.5) follows.
Lemma B.3.
k ' k s s
1 Qo1 foUse) + (=D fo(Va)) = Venellu < D Oudi) + O((no ™7 ) 7).
=1 =1
Proof. It is similarly to Lemma A.4.
Lemma B.4.
I(fi(Vene) = fo(Vere))dllanyvrzy = Celldll
[fe(Vere) = fo(Vere)llonyivezy = Cg

k
N+42

fo(Vere) = O (=1 fo(Us, &) + (=)  fo(Vo))lanyva2y = O(eTx-2).

i=1

Proof. The first two, as Lemma A.5, are from [4]. The last one can be proved as (4.5) in [25].
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(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)



Lemma B.5. Let k> 1. Then

/|VPV|2 || || SZ+O()

PV, PUs, ¢,
/ VPV,VPUs, ¢, — %
Q

c? l L o e+4o(e if 1=k,
_ o G, <1+|y|> 2 (i) T ©

o(e) if i#k;

|PUs, ¢, |2 2/ 1
1381 — C ;
o TP MO | Ra Ty —apyre Tl

PUs, ¢, PUs; ¢; .
u/g—QZO(E), i # J;

/ VPUs, ¢,
Q

N
SZ —CFHO,0AN2 [ — 1 . i i=1,
_ H(0,0)A) ™% [on T e+ o(e) if i
ﬂ
S¢ +o(e) if i1
/VPU&,&VPU&-@
Q
CF" (R 552 1 L .c+ole if j=i+1,
_ B e (1+[y2) 7 (141G ©
o(e) otherwise,

where we assume, without loss of generality, 1 <i < j <k.

Proof. (B.15) and (B.19) can be obtained by (A.27) and (A.31), respectively.
(1). Proof of (B.16).
By using (2.7), integration by parts yields

0 || |z[?
It is easy to show, by using (2.6) and (2.7), that

N+42

/V2*—1 < 05N52/ 7z
(2T TR i
0 " T C o (0Pl + 2l
5 N-2 1 L, N2
< C’Uﬁd 2 / —— :O(O'N225i 2 ),
RN ([y|Pr 4 [y|P2) 2

and

Us ¢ — 05 ¢ Us ¢ B
u/ ¢ (Us, & : D) < u/ Yo e < oo 7).

On the other hand,

k+1

/V2 “Us e = U/ V2 W6 +0(0° 76,7 ).
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PV, PUs, ¢, . o(Us. ¢. — ©0s. ¢
VPVoVPUs, ¢, — MA = / V<72 1(U6¢7€i - (p&',fi) +:U// 4 ( biki (p(s“&).
Q Q

(B.15)

(B.16)

(B.17)
(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)



Ifi=Fkj=k+1,

/ VUQ*ilU(;k,gk (B.25)
Apia

. Nz N-2 1 1
= CZ 1000’ 2 5k2 / 5 N+2 2
A (02 |2]Pr + |2]%2) =27 (0 + [o —

* oViE—# 1 1
= 02 7100 / N
K b2 Akt1 B+ |yy|B2 Ni2 AL _
2 k4l 2 N N
Gt S W ey gy

N~ 1 1
cr (=) = .
ASw / D E o= ST

If i £ k or j # k+ 1, similar arguments as (B.25) give

/ V2 _1U5“5Z = O( ) (B.26)

Then we conclude by (B.21)-(B.26).
(2). Proof of (B.17).
2

Us, <, B
(BA7) = u Vs, &, |‘5z|52 +O(usN=2)

1
o / +0(u6) %)
2 lyP(+ly - GIHN2
1
= 02/
0 Jon WP+ Ty =GPV
Similar arguments give that (B.18) = o(g)
(3). Proof of (B.20).
Without loss of generality, let 1 <i < j < k. Then as (B.24),

|
=
o

+o(e).

(B.20) = / Uy ' Us, e + 0le) (B.27)
Q 7287
c? 5 L o e+4o0(e if j=i+4+1,
_ 5T e 1+\y\ )T (G T (©) I
0(5) otherwise.
O

Lemma B.6. Let k> 1. Then

k
/|Z(—1)Z’1PU51.7§1.+(71)kPVU|2* (B.28)
Q =
N o~ ) 1
= kSO];] +S§ _2*03 H(O,O))\f[—2/ N+2 "€
Y (1+2]?)
LIS VI 1
o2 (_”1)%2/ e
’ ; Ai RY (YN =21+ [y — J2) 72
k
. Aig1 N2 1 1
e Y [ : et ofe),
; Ai rY (14 ]y]2)"2" (1+]G2)%

where A\p+1 = .
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Proof.
(B.28) = U/ 1> (1) PUs, ¢, + (—1)*PV,*" + O(67). (B.29)
) A -
First of all,

/ A0 (B.30)
Ag

* N-2 N+2 1 1
= Cucg 10 2 61@2 / 9 N_2 2 oy N2
A (0|2 + |2]%2) 77 (6F + | — &[?)

Xy ! :
_ Wer — - ~N_3 N+2
5T (Pl + 1917 7= (L4 |y — G?) 3

[
S
g

. )\)u/ 1 +o(e)
z > e+ o(e),
Ak RN [y[N=2(1+ Jy — Gf2) "%

and

/ VUUL?:;_l =o(e), ifi £k, or j #k. (B.31)

J

From [25], we also have, for 1 <i < j <k,

/ Us,.e;Us, ¢! + ole) (B.32)
Ay
2% (Aip1\ N2 1 e . .
Co(,\l) 2 fRN ~ez - € +o(e) if j=i+1,i=1,

= ' lyIN =2 (14 ly—Gil?) 2

o(e) otherwise.

Noticing (B.25), (B.27) and the above three equalities, then the proof of (B.28) is actually involved

by Lemma 6.2 in [25]. O
Lemma B.7.
k . k '
[ IS0 PUs ¢+ CORPV I Y1) PUs g+ (CUFPV (B
2 =1 =1
N -2 « N-—-2 x
= 1n0~/ Ve - 5 ln(5152...5k)~/ Ui o
RN RN

+/ v12*1nv1+k/ UZ,InU o+ o(1).
RN RN

Proof. The proof is similarly to Lemma A.9. 0
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