
Nonlinear time-harmonic Maxwell equations in an

anisotropic bounded medium

Thomas Bartsch Jarosªaw Mederski
∗

Abstract

We �nd solutions E : Ω→ R3 of the problem{
∇× (µ(x)−1∇× E)− ω2ε(x)E = ∂EF (x,E) in Ω

ν × E = 0 on ∂Ω

on a bounded Lipschitz domain Ω ⊂ R3 with exterior normal ν : ∂Ω → R3. Here

∇× denotes the curl operator in R3. The equation describes the propagation of the time-

harmonic electric �eld <{E(x)eiωt} in an anisotropic material with a magnetic permeabil-

ity tensor µ(x) ∈ R3×3 and a permittivity tensor ε(x) ∈ R3×3. The boundary conditions

are those for Ω surrounded by a perfect conductor. It is required that µ(x) and ε(x) are

symmetric and positive de�nite uniformly for x ∈ Ω, and that µ, ε ∈ L∞(Ω,R3×3). The

nonlinearity F : Ω × R3 → R is superquadratic and subcritical in E, the model nonlin-

earity being of Kerr-type: F (x,E) = |Γ(x)E|p for some 2 < p < 6 with Γ(x) ∈ GL(3)

invertible for every x ∈ Ω and Γ,Γ−1 ∈ L∞(Ω,R3×3). We prove the existence of a ground

state solution and of bound states if F is even in E. Moreover if the material is uniaxial

we �nd two types of solutions with cylindrical symmetries.
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1 Introduction

The paper is concerned with electromagnetic waves in an anisotropic, inhomogeneous and

nonlinear medium Ω in the absence of charges, currents and magnetization. In such a medium

the constitutive relations between the electric displacement �eld D and the electric �eld E as

well as between the magnetic induction H and the magnetic �eld B are given by

D = εE + PNL and B = µH,

where ε is the (linear) permittivity tensor of the anisotropic material, and PNL stands for the

nonlinear polarization. In anisotropic and inhomogeneous media ε depends on x ∈ Ω, and

PNL depends on the direction of the vector E = (E1, E2, E3) and on x ∈ Ω. The permittivity

tensor ε(x) ∈ R3×3 and the permeability tensor µ(x) ∈ R3×3 are assumed to be symmetric and

uniformly positive de�nite for x ∈ Ω. The Maxwell equations{
∇×H = ∂tD, div (D) = 0,

∂tB +∇× E = 0, div (B) = 0,

together with the constitutive relations lead to the equation (see Saleh and Teich [23])

∇×
(
µ(x)−1∇× E

)
+ ε∂2

t E = −∂2
tPNL.

In the time-harmonic case the �elds E and P are of the form E(x, t) = <{E(x)eiωt}, PNL(x, t) =

<{P (x)eiωt}, with E(x), P (x) ∈ C3, so we arrive at the time-harmonic Maxwell equation

(1.1) ∇×
(
µ(x)−1∇× E

)
− V (x)E = f(x,E) in Ω,

where V (x) = ω2ε(x) and f(x,E) takes care of the nonlinear polarization. We consider

nonlinearities of the form f(x,E) = ∂EF (x,E). In Kerr-like media one has

F (x,E) = |Γ(x)E|4

with Γ(x) ∈ GL(3) invertible for every x ∈ Ω and Γ,Γ−1 ∈ L∞(Ω,R3×3). This will be our

model nonlinearity but we shall consider more general nonlinearities; see Section 2.

The goal of this paper is to �nd solutions E : Ω→ R3 of (1.1) together with the boundary

condition

(1.2) ν × E = 0 on ∂Ω

where ν : ∂Ω → R3 is the exterior normal. This boundary condition holds when Ω is sur-

rounded by a perfect conductor.
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Solutions of (1.1) are critical points of the functional

(1.3) J(E) =
1

2

∫
Ω

〈µ(x)−1∇× E,∇× E〉 dx− 1

2

∫
Ω

〈V (x)E,E〉 dx−
∫

Ω

F (x,E) dx

de�ned on an appropriate subspace W p
0 (curl; Ω) of H0(curl; Ω); see Section 2 for the de�nition

of the spaces we work with. In the spirit of the Helmholtz decomposition any E ∈ W p
0 (curl; Ω)

can be written as E = v + w with w irrotational, i.e. ∇× w = 0, and div (V (x)v) = 0. The

functional has the form

J(v + w) =
1

2

∫
Ω

〈µ(x)−1∇× v,∇× v〉 dx− 1

2

∫
Ω

〈V (x)(v + w), v + w〉 dx−
∫

Ω

F (x, v + w) dx.

This functional is unbounded from above and from below, the curl operator has an in�nite-

dimensional kernel, and critical points have in�nite Morse index. Although J has a link-

ing geometry in the spirit of Benci and Rabinowitz [8], the problem cannot be treated by

standard variational methods as in [4, 8, 12] due to a lack of compactness. The derivative

J ′ : W p
0 (curl; Ω) →

(
W p

0 (curl; Ω)
)∗

is not weak-weak∗ continuous even when the growth of F

is subcritical.

In the literature there are only few results about nonlinear equations like (1.1) involving

the curl-curl operator. If Ω = R3 then Benci and Fortunato [7] proposed, within a uni�ed �eld

theory for classical electrodynamics, the equation

(1.4) ∇×∇× A = W ′(|A|)A

for the gauge potential A related to the magnetic �eld H = ∇ × A. Azzollini et al. [2] and

D'Aprile and Siciliano [11] used the symmetry of the domain R3 and of (1.4) in order to �nd

special types of symmetric solutions. Symmetry also plays an important role in the paper [5]

by Bartsch et al. which is concerned with the isotropic case on Ω = R3 where µ and V are

scalar, F (x,E) = Γ(x)|E|p, 2 < p < 6, with V and F being cylindrically symmetric, say

functions of
√
x2

1 + x2
2 and x3, and periodic in x3-direction. Mederski [18] considered (1.1)

on Ω = R3 with µ being scalar and assuming that V ∈ Lq(R3) for several values of q which

depend on the growth of F (x, u) as u → 0 and |u| → ∞. In [18] it is also required that F is

Z3-periodic in x, not cylindrically symmetric. Cylindrically symmetric media have also been

considered in the work of Stuart and Zhou [24]� [27] on transverse electric and transverse

magnetic solutions. The search for these solutions reduces to a one-dimensional variational

problem or an ODE, which simpli�es the problem considerably.

We would also like to mention that linear time-harmonic Maxwell equations have been

extensively studied by means of numerical and analytical methods, on bounded and unbounded

(exterior) domains; see e.g. [3, 9, 13, 16,17,19,21] and the references therein.
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Equation (1.1) in the nonsymmetric case and on a bounded domain has �rst been been

studied by the authors in [6] where we developed a critical point theory in order to �nd

ground states and bound states for (1.1). There Ω was required to be simply connected with

connected C1,1 boundary, hence di�eomorphic to the unit ball in R3. Moreover µ and V had

to be scalar and constant, i.e. only the isotropic case has been treated in [6]. Concerning

the nonlinearity a structural condition had to be assumed that is di�cult to check even for

sums of Kerr type nonlinearities. In the present paper we signi�cantly improve the results

from [6] in several ways. In particular, there will be no restrictions on the topology of Ω, and

we allow µ and V to be non-isotropic tensors. Moreover, in an axisymmetric setting we also

obtain the existence of solutions as in [11] which has not been considered in [6]. In addition,

we are able to deal with nonlinearities that cannot be treated with the methods of [6]. For

instance we can allow that F (x,E) = 0 if |E| is small, modelling the case that the Kerr e�ect

is linear for low intensities of the electric �eld E . We are also able to weaken or even to get

rid of the severe structural restriction on F mentioned above. In order to achieve this we

re�ne the Nehari-Pankov manifold technique used in [6], obtain more careful estimates, and

we introduce a new approach in a setting where the Nehari-Pankov manifold does not exist.

2 Statement of results

Throughout the paper we assume that Ω ⊂ R3 is a bounded domain with Lipschitz

boundary. We begin with recalling the basic spaces in which we look for solutions of (1.1).

The space

H(curl; Ω) := {E ∈ L2(Ω,R3) : ∇× E ∈ L2(Ω,R3)}

is a Hilbert space when provided with the graph norm

‖E‖H(curl;Ω) :=
(
|E|22 + |∇ × E|22

)1/2
.

Here and in the sequel | · |q denotes the Lq-norm. The curl of E, ∇×E, has to be understood
in the distributional sense. The closure of C∞0 (Ω,R3) in H(curl; Ω) is denoted by H0(curl; Ω).

There is a continuous tangential trace operator γt : H(curl; Ω)→ H−1/2(∂Ω) such that

γt(E) = ν × E|∂Ω for any E ∈ C∞(Ω,R3)

and (see [19, Theorem 3.33])

H0(curl; Ω) = {E ∈ H(curl; Ω) : γt(E) = 0}.
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We also need the space

V =

{
v ∈ H0(curl; Ω) :

∫
Ω

〈V (x)v, ϕ〉 dx = 0 for every ϕ ∈ C∞0 (Ω,R3) with ∇× ϕ = 0

}
.

Now we state our hypotheses on the linear part of (1.1).

(L1) µ, V ∈ L∞(Ω,R3×3), and µ(x), V (x) are symmetric and uniformly positive de�nite for

x ∈ Ω.

(L2) V is compactly embedded into Lp(Ω,R3) for some 2 < p < 6.

In the next section we present conditions on V which imply (L2). An important role plays the

curl-curl source eigenvalue problem

(2.1)

{
∇× (µ(x)−1∇× u) = λV (x)u, div (V (x)u) = 0 in Ω,

ν × u = 0 on ∂Ω.

We need in particular the eigenspace for λ = 1, i.e. the kernel of the operator∇×(µ(x)−1∇×)−
V (x) in V :

V0 := {v ∈ V : v solves (2.1) for λ = 1}.

Concerning the nonlinearity f(x,E) = ∂EF (x,E) we collect various assumptions that we

shall use. The model nonlinearity F (x,E) = |Γ(x)E|p with 2 < p < 6 as in (L2) satis�es

all hypotheses provided Γ(x) ∈ GL(3) and Γ,Γ−1 ∈ L∞(Ω,R3×3). In applications, for low

intensity |E| of the electric �eld E , the Kerr e�ect is often considered to be linear, i.e. PNL =

0 for small |E| (see [18]). In order to model also this nonlinear phenomenon we consider

nonlinearities of the form

(F0) F (x, u) = F0(x, χ(u)) with χ(u) =

0 if |u| ≤ δ,(
1− δ

|u|

)
u if |u| > δ,

for some δ ≥ 0.

Now we state our conditions on F0.

(F1) F0 : Ω×R3 → R is di�erentiable with respect to u ∈ R3, such that f0 = ∂uF0 : Ω×R3 →
R3 is a Carathéodory function (i.e. measurable in x ∈ Ω, continuous in u ∈ R3 for a.e.

x ∈ Ω). Moreover, F0(x, 0) = 0 for a.e. x ∈ Ω.
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(F2) |f0(x, u)| = o(|u|) as u→ 0 uniformly in x ∈ Ω.

(F3) There exists a constant c > 0 such that

|f0(x, u)| ≤ c(1 + |u|p−1) for all x ∈ Ω, u ∈ R3.

Observe that (F1)-(F3) also hold for F as in (F0). These conditions are standard and yield in

particular that solutions of (1.1), (1.2) can be obtained with variational methods. The next

condition describes the growth of F0 as |u| → ∞.

(F4) F0(x, u) ≥ 0 for x ∈ Ω, u ∈ R3 and there exists a constant d > 0, such that

lim inf
|u|→∞

F0(x, u)/|u|p > d > 0 uniformly with respect to x ∈ Ω.

The remaining conditions are of a structural nature. The next condition allows to introduce

the Nehari-Pankov manifold and to de�ne a ground state as minimizer of the energy functional

on this manifold which has in�nite dimension and in�nite co-dimension). In order to formulate

it we introduce the function

ϕ(t, x, u, v) :=
t2 − 1

2
〈f0(x, u), u〉+ t〈f0(x, u), v〉+ F0(x, u)− F0(x, tu+ v)

de�ned for t ≥ 0, x ∈ Ω, u, v ∈ R3.

(F5) (i) For a.e. x ∈ Ω and for all t ≥ 0, u, v ∈ R3 there holds ϕ(t, x, u, v) ≤ 0.

(ii) For t ≥ 0, u ∈ Lp(Ω) and v ∈ V0 with tu+ v 6= u there holds
∫

Ω
ϕ(t, x, u, v) dx < 0.

The integral condition in (F5)(ii) is like a Landesman-Lazer condition which is used in asymp-

totically linear elliptic problems when the linearization at in�nity has a kernel. It implies the

following convexity condition for F which is needed for the semicontinuity of the associated

energy functional and for the linking geometry of J .

(F6) (i) F0(x, u) is convex with respect to u ∈ R3 for a.e. x ∈ Ω.

(ii) For every u ∈ Lp(Ω) the functional

V0 → R, v 7→
∫

Ω

F0(x, u+ v) dx,

is strictly convex.
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Remark 2.1. a) In order to see that (F5) implies (F6) �x x ∈ Ω, u0, u1 ∈ R3, and consider

the map g(s) := F0(x, (1 − s)u0 + su1). Then (F5)(i) with t = 1, u = (1 − s)u0 + su1,

v = (t− s)(u1 − u0) gives for 0 ≤ s < t ≤ 1:

g′(s)(t− s) = 〈f0((1− s)u0 + su1), (t− s)(u1 − u0)〉
≤ F0((1− t)u0 + tu1)− F0((1− s)u0 + su1) = g(t)− g(s)

This implies the convexity of g, hence (F6)(i). Similarly one sees that (F5) implies (F6)(ii).

b) Condition (F5)(i) also implies that

〈f0(x, u), u〉 ≥ 2F0(x, u)

for a.e. x ∈ Ω and every u ∈ R3. Simply set t = 0 and v = 0 in (F5)(i).

c) Of course (F6) holds if F0 is strictly convex in u for a.e. x ∈ Ω. If (F6)(i) holds and

F0(x, u) is strictly convex in u for x ∈ Ω0, Ω0 ⊂ Ω some nonempty open subset, then (F6)(ii)

follows provided the unique continuation principle for the time harmonic Maxwell equation

∇ × (µ(x)−1∇ × u) − V (x)u = 0 holds. This is the case for large classes of potentials V

(see [20,30]).

d) In [6] we required the condition

(*) If 〈f(x, u), v〉 = 〈f(x, v), u〉 then

2(F (x, u)− F (x, v))〈f(x, u), u〉 ≤ 〈f(x, u), u〉2 − 〈f(x, u), v〉2.

If in addition F (x, u) 6= F (x, v) then the strict inequality holds.

This condition is di�cult to check and not needed any more.

If (F5) does not hold we require the following condition of Ambrosetti-Rabinowitz type.

(F7) F = F0 and there is γ > 2 such that 〈f0(x, u), u〉 ≥ γF0(x, u) for u ∈ R3.

We obtain solutions of our problem if (F1)-(F4), (F6)-(F7) hold. However, although we

require F = F0 it is possible that there exists a sequence of solutions En with positive energy

J(En)→ 0, hence there may not exist a ground state as in the case of (F0)-(F5). By a ground

state we mean a solution E with positive energy J(E) > 0 that has the least energy among all

solutions with positive energy. Observe that if δ > 0 in (F0) and if V0 6= {0} then any E ∈ V0

with |E|∞ ≤ δ is a solution E with J(E) = 0. In order to obtain a ground state the following

assumption will prove to be su�cient.
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(F8) There is η ≥ γ such that ηF0(x, u) ≥ 〈f0(x, u), u〉 > 0 for u ∈ R3 \ {0}.

In order to state our results we introduce the space

W p(curl; Ω) := {E ∈ Lp(Ω,R3) : ∇× E ∈ L2(Ω,R3)} ⊂ H(curl; Ω)

which is a Banach space if provided with the norm

‖E‖W p(curl;Ω) :=
(
|E|2p + |∇ × E|22

)1/2
.

We shall look for solutions of (1.1) in the closure W p
0 (curl; Ω) ⊂ H0(curl; Ω) of C∞0 (Ω,R3) in

W p(curl; Ω). Observe that V is a closed linear subspace of W p
0 (curl; Ω) as a consequence of

(L2). Moreover, since for every ϕ ∈ C∞0 (Ω;R3) the linear map

E 7→
∫

Ω

〈E,∇× ϕ〉dx

is continuous on W p
0 (curl; Ω) ⊂ H(curl; Ω), the space

W =

{
w ∈ W p

0 (curl; Ω) :

∫
Ω

〈w,∇× ϕ〉 = 0 for all ϕ ∈ C∞0 (Ω,R3)

}
= {w ∈ W p

0 (curl; Ω) : ∇× w = 0}

is a closed complement of V in W p
0 (curl; Ω), hence there is a Helmholtz type decomposition

W p
0 (curl; Ω) = V ⊕W . Our �rst main result reads as follows.

Theorem 2.2. Suppose (L1)-(L2) and (F0)-(F4) hold.

a) If (F5) holds then (1.1) has a ground state solution E ∈ W p
0 (curl; Ω).

b) If (F6)-(F7) hold then (1.1) has a nontrivial solution E ∈ W p
0 (curl; Ω). This is a ground

state if also (F8) holds.

c) If (F5) or (F6)-(F7) hold, and if F is even in u then (1.1) has a sequence of solutions

En with J(En)→∞.

If (F5) holds then the ground state solution can be characterized as the minimizer of J

on the Nehari-Pankov manifold N which has in�nite dimension and in�nite co-dimension. If

(F5) does not hold but (F6)-(F7) do, then we �rst prove the existence of a nontrivial solution

by a mountain pass argument on a constraint M ⊂ W p
0 (curl; Ω). Afterwards we show that

inf{J(E) : J(E) > 0, J ′(E) = 0} is achieved provided that (F8) is additionally satis�ed. If

(F5)-(F7) hold then N is a submanifold of M with co-dimension 1, and the mountain pass
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argument onM gives the minimum of J on N . The manifoldsM and N will be de�ned in

Section 4 in an abstract setting, and in Section 5 for the functional J . Note that we can deal

with a much wider range of nonlinearities than those considered in [6].

Remark 2.3. If E = v + w ∈ W p
0 (curl; Ω) is a nontrivial solution of (1.1) with v ∈ V and

w ∈ W then necessarily v 6= 0. This is a simple consequence of (L1) and (F6)(i). In fact,

testing (1.1) with v + w yields: ∇× (µ(x)−1∇× v) 6= V (x)v; see Proposition 3.5.

In the next remark we give examples of nonlinearities satisfying our conditions.

Remark 2.4. If F̃ : [0,+∞) → R satis�es the classical Ambrosetti-Rabinowitz condition,

then

(2.2) F0(x, u) = F̃ (|Γ(x)u|)

satis�es (F7). Using this one can easily construct many examples of nonlinearities satisfying

(F0)-(F4), (F6)-(F7). Observe that (F1)-(F8) are positively linear conditions, i.e. if F0, G0

satisfy these conditions then so does αF0 + βG0 for any α, β > 0. This is not the case for

condition (*) in Remark 2.1 d) which is quadratic in F0, f0. Therefore it is easy to see that

(2.3) F0(x, u) =
m∑
i=1

1

pi
|Γi(x)u|pi

satis�es (F1)-(F8), provided 2 < γ = p1 ≤ p2 ≤ · · · ≤ pm = p = η < 6, Γi(x) ∈ GL(3)

for a.e. x ∈ Ω, and Γi,Γ
−1
i ∈ L∞(Ω,R3×3). Observe that these functions are not radial when

Γi(x) is not an orthogonal matrix. In particular, if pi = 4 then (2.3) models the Kerr-e�ect.

Nonlinearities of the form (2.3) could not be dealt with in [6].

Now we concentrate on nonlinear uniaxial media which are of great importance due to

the phenomenon of birefringence and applications in crystallography [23, 25, 29]. Here we

require that the problem is symmetric with respect to the cylindrical symmetry group G =

O(2)× {1} ⊂ O(3):

(S) Ω is invariant with respect to G, and F0 is invariant with respect to the action of G on

the x- and u-variables, i.e. F0(g1x, g2u) = F0(x, u) for all x ∈ Ω, u ∈ R3, g1, g2 ∈ G.

Moreover, µ(x) and V (x) commute with G, and µ, V are invariant with respect to G,

i.e. g2µ(g1x)g−1
2 = µ(x) for all x ∈ Ω, g1, g2 ∈ G; similarly for V .
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Observe that a symmetric matrix A commutes with G if and only if it is of the form

(2.4) A =

a 0 0

0 a 0

0 0 b

 ,

Thus we require that the permeability tensor µ and the tensor V , which corresponds to the

permittivity tensor ε, have the form (2.4) with a, b ∈ L∞(Ω) positive, bounded away from 0,

and invariant with respect to the action of G on Ω. Hence we allow cylindrically symmetric

anisotropic materials. In this setting more can be said about the shape of the solutions. In

fact, we can show the existence of solutions of the form

(2.5) E(x) = α(r, x3)

−x2

x1

0

 , r =
√
x2

1 + x2
2,

and of the form

(2.6) E(x) = β(r, x3)

x1

x2

0

+ γ(r, x3)

0

0

1

 .

Theorem 2.5. Suppose (L1), (F0)-(F4), and (S) hold.

a) If F0 is even in u and (F5) or (F7) hold then there exist in�nitely many solutions of

the form (2.5) and with positive energy. Moreover there exists a least energy solution

among all solutions with positive energy of the form (2.5) provided (F5) or (F7)-(F8)

hold. Every solution of the form (2.5) is divergence-free and lies in H1
0 (Ω,R3).

b) If (L2) holds and in addition (F5) or (F6)-(F7), then (1.1) has a solution E ∈ W p
0 (curl; Ω)

of the form (2.6). Moreover, there exists a least energy solution among all solutions of

the form (2.6) and with positive energy provided (F5) or (F6)-(F8) hold. If F0 is even

in u, in addition to (L2), (F5) or (F6)-(F7), then (1.1) has in�nitely many solutions of

the form (2.6) having positive energy.

If (F5) holds then the least energy solutions in Theorem 2.5 can be obtained by minimiza-

tion on the Nehari-Pankov manifold in the space of �elds of the form (2.5) or (2.6), respectively.

Observe that in Theorem 2.5 a) we do not assume (L2) nor (F6) since we will be able to restrict

our functional to �elds of the form (2.5) which are divergence free and continuously embedded

in H1
0 (Ω,R3); see Lemma 6.2. This restriction requires the additional symmetry that F is
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even in u. Without this condition we do not know whether a single solution of the form (2.5)

exists.

Even in the isotropic case µ = µ0id3×3, V (x) = λid3×3, theorems 2.2 and 2.5 extend

results from [6, Theorem 2.2 and Theorem 2.3]. The solutions of the form (2.6) have not been

considered in [6]. For Ω = R3 solutions of the form (2.5) have been treated in [2], solutions of

the form (2.6) in [11].

3 Preliminaries

As a consequence of (L1) the inner product

(E1, E2) =

∫
Ω

〈µ(x)−1∇× E1,∇× E2〉+ 〈V (x)E1, E2〉 dx

in H0(curl,Ω) is equivalent to the standard inner product in H(curl; Ω). For v ∈ V and w ∈ W
there holds:

(3.1) (v, w) =

∫
Ω

〈V (x)v, w〉 dx = 0

so V andW are orthogonal with respect to (·, ·). Clearly,W contains all gradient vector �elds:

∇W 1,p(Ω) ⊂ W , hence

V ⊂ {E ∈ W p
0 (curl; Ω) : div (V (x)E) = 0}

⊂
{
E ∈ H0(curl; Ω) : div (V (x)E) ∈ L2(Ω,R3)

}
=: XN(Ω, V ).

Therefore assumption (L2) holds in particular if XN(Ω, V ) embeds into H1(Ω,R3). This has

been proved in [1, Theorem 2.12] for V = id3×3 and ∂Ω of class C1,1. Costabel et al. [10] and

Hiptmair [15, Section 4] obtained the embedding for Lipschitz domains admitting singularities

and for isotropic and piecewise constant V . The following proposition contains another setting

when (L2) holds.

Proposition 3.1. Suppose (L1) holds, V is Lipschitz continuous, and Ω has C2 boundary.

Then XN(Ω, V ) is continuously embedded in H1(Ω,R3). In particular (L2) holds.

Proof. Any E ∈ H0(curl; Ω) has a standard Helmholtz decomposition E = u + ∇w with

u ∈ {E ∈ H0(curl; Ω) : div (E) = 0} and w ∈ H1
0 (Ω). Since XN(Ω, id3×3) is embedded in

H1(Ω,R3) there holds u ∈ H1(Ω,R3). Observe that w solves the divergence form elliptic

equation

div (V (x)∇w) = div (f), w ∈ H1
0 (Ω),
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with f = V (x)E − V (x)u. As a consequence of u ∈ H1(Ω,R3) and V ∈ W 1,∞(Ω,R3) we

obtain div (V (x)u) ∈ L2(Ω), hence div (f) ∈ L2(Ω). The operator L := div (V (x)∇(·)) is

strictly elliptic and therefore w ∈ H2(Ω) by [14, Theorem 8.12]. This implies E = u +∇w ∈
H1(Ω,R3).

Note that V is a Hilbert space with the scalar product

(3.2) 〈u, v〉V :=

∫
Ω

〈µ(x)−1∇× u,∇× v〉 dx.

If Ω is simply connected with connected boundary, then the normal cohomology space

KN(Ω) = {E ∈ H0(curl; Ω) : ∇× E = 0, div (E) = 0}

is trivial andW = ∇W 1,p
0 (Ω). This is the case considered in [6]. The spectrum of the curl-curl

operator in H0(curl; Ω) consists of the eigenvalue 0 with in�nite multiplicity and eigenspace

∇H1
0 (Ω), and of a sequence of positive eigenvalues with �nite multiplicities and eigenfunctions

in {v ∈ H0(curl; Ω) : div (v) = 0}; see [19, Corollary 3.51, Theorem 4.18]. For a general

domain KN(Ω) is nontrivial and contained in W . We set

W2 := {w ∈ H0(curl; Ω) : ∇× w = 0}.

In the anisotropic situation we investigate the following curl-curl source problem instead of

the spectrum of the curl-curl operator.

Proposition 3.2. Suppose (L1) and (L2) hold. Then for any g ∈ L2(Ω,R3) the equation

(3.3) ∇× (µ(x)−1∇× v) + V (x)w = V (x)g

has a unique solution (v, w) ∈ V ×W2 and the operator

K : L2(Ω,R3)→ V ⊂ L2(Ω,R3), Kg = v satis�es (3.3) for some w ∈ W2,

is compact. The restriction KV : V → V of K is compact and self-adjoint with respect to the

scalar product (3.2).

Proof. The existence and uniqueness of the solution follow from the Babuska-Brezzi theorem;

see e.g. [13, Theorem 2.1.4]. The compactness of K, and of KV , is a consequence of the

compactness of the embedding V ↪→ L2(Ω,R3). The self-adjointness of KV follows from

〈Kg, h〉V =
∫

Ω
〈V (x)g(x), h(x)〉R3 dx for g, h ∈ V .
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Corollary 3.3. There is a discrete sequence 0 < λ1 < λ2 < λ3 < . . . of (anisotropic) Maxwell

eigenvalues with eigenspaces of �nite multiplicity, i.e.

∇× (µ(x)−1∇× v) = λV (x)v

has a solution v ∈ V if and only if λ = λk for some k ≥ 1, and the space of solutions is

�nite-dimensional.

Proof. Observe that if (3.3) holds for some g = λv, then λ > 0 and w = 0 (cf. [13, Theorem

2.1.7]).

From now on we always assume that (L1)-(L2), (F0)-(F6) are satis�ed. Then the functional

J : W p
0 (curl; Ω)→ R given by

J(E) :=
1

2

∫
Ω

〈µ(x)−1∇× E,∇× E〉 dx− 1

2

∫
Ω

〈V (x)E,E〉 dx−
∫

Ω

F (x,E) dx

is well de�ned. For E = v + w with v ∈ V and w ∈ W there holds

J(v + w) =
1

2

∫
Ω

〈µ(x)−1∇× v,∇× v〉 dx− 1

2

∫
Ω

〈V (x)v, v〉+ 〈V (x)w,w〉 dx

−
∫

Ω

F (x, v + w) dx.

This functional is of class C1 with

J ′(v + w)(φ+ ψ) =

∫
Ω

〈µ(x)−1∇× v,∇× φ〉 dx−
∫

Ω

(〈V (x)v, φ〉+ 〈V (x)w,ψ〉) dx

−
∫

Ω

〈f(x, v + w), φ+ ψ〉 dx

for any v, φ ∈ V and any w,ψ ∈ W . We shall use the following norm in W p
0 (curl; Ω) = V ⊕W :

‖v + w‖ =
(
‖v‖2

V + ‖w‖2
W
)1/2

:=
(
〈µ(x)−1∇× v,∇× v〉L2 + |w|2p

)1/2
for v ∈ V , w ∈ W

so that

J(v + w) =
1

2
‖v‖2

V −
1

2

∫
Ω

〈V (x)(v + w), v + w〉 dx−
∫

Ω

F (x, v + w) dx,

We can now formulate the variational approach to (1.1).

Proposition 3.4. E = v +w ∈ W p
0 (curl; Ω) = V ⊕W is a critical point of J if and only if it

is a solution of (1.1).
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Proposition 3.5. Suppose the assumptions of Theorem 2.2 a) or b) or c) hold.

a) If E = v+w ∈ V ⊕W is a solution of (1.1) with J(E) > 0 then ∇× (µ(x)−1∇× v) 6=
V (x)v, in particular V 6= 0.

b) If (F5) or (F6)-(F8) hold then the nontrivial critical values of J are positive and bounded

away from 0.

Proof. a) Suppose the claim is wrong so that −V (x)w = f(x, v + w) holds. Testing this with

E = v + w and using (3.1), (L1), (F1), (F6)(i), we are led to

(3.4) 0 ≥ −
∫

Ω

〈V (x)w,w〉 dx =

∫
Ω

〈f(x, v + w), v + w〉 dx ≥ 0 .

This implies w = 0 and
∫

Ω
〈f(x, v), v〉 dx = 0. As a consequence of (F1), (F6)(i) this is only

possible if f(x, v) = 0 for a.e. x ∈ Ω, and
∫

Ω
F (x, v) dx = 0. Then v ∈ V0 and J(E) = J(v) = 0,

a contradiction.

b) This is postponed to Section 5 because we need to work out the appropriate tools.

4 Critical point theory on natural constraints

Firstly we recall the critical point theory and the Nehari-Pankov manifold from [6]. Let X

be a re�exive Banach space with norm ‖ · ‖ and with a topological direct sum decomposition

X = X+ ⊕ X̃, where X+ is a Hilbert space with a scalar product. For u ∈ X we denote by

u+ ∈ X+ and ũ ∈ X̃ the corresponding summands so that u = u+ + ũ. We may assume that

〈u, u〉 = ‖u‖2 for any u ∈ X+ and that ‖u‖2 = ‖u+‖2 + ‖ũ‖2. The topology T on X is de�ned

as the product of the norm topology in X+ and the weak topology in X̃. Thus un
T−→ u is

equivalent to u+
n → u+ and ũn ⇀ ũ.

Let J ∈ C1(X,R) be a functional on X of the form

(4.1) J(u) =
1

2
‖u+‖2 − I(u) for u = u+ + ũ ∈ X+ ⊕ X̃.

We de�ne the set

(4.2) N := {u ∈ X \ {0} : J ′(u)|Ru⊕X̃ = 0, J(u) > 0}

and suppose the following assumptions hold:
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(A1) I ∈ C1(X,R) and I(u) ≥ I(0) = 0 for any u ∈ X.

(A2) I is T -sequentially lower semicontinuous: un
T−→ u =⇒ lim inf I(un) ≥ I(u)

(A3) If un
T−→ u and I(un)→ I(u) then un → u.

(A4) There exists r > 0 such that a := inf
u∈X+:‖u‖=r

J(u) > 0.

(B1) ‖u+‖+ I(u)→∞ as ‖u‖ → ∞.

(B2) I(tnun)/t2n →∞ if tn →∞ and u+
n → u+ for some u+ 6= 0 as n→∞.

(B3) t2−1
2
I ′(u)[u] + tI ′(u)[v] + I(u)− I(tu + v) < 0 for every u ∈ N , t ≥ 0, v ∈ X̃ such that

u 6= tu+ v.

Proposition 4.1. For every u ∈ SX+ := {u ∈ X+ : ‖u‖ = 1} the functional J constrained to

Ru+ X̃ = {tu+ v : t ≥ 0, v ∈ X̃} has precisely two critical points u1, u2 with positive energy.

These are of the form u1 = t1u+ v1, u2 = t2u+ v2 with t1 > 0 > t2, v1, v2 ∈ X̃. Moreover, u1

is the unique global maximum of J |R+u+X̃ , and u2 is the unique global maximum of J |R−u+X̃ .

Moreover, u1 and u2 depend continuously on u ∈ SX+.

Proof. Using (A1)-(A4) and (B1)-(B2) one sees that −J is weakly sequentially lower semi-

continuous and coercive on Ru+X̃, for every u ∈ X. Therefore J |R+u+X̃ has a global maximum

u1 = t1u + v1, t1 ≥ 0, v1 ∈ X̃. Assumption (A4) implies J(u1) ≥ a > 0, hence u1 /∈ X̃, so

u1 is a critical point of J |Ru+X̃ and t1 > 0. If u0 ∈ R+u + X̃ is any critical point of J |Ru+X̃

with J(u) > 0 then u0 ∈ N . Now (B3) implies as in the proof of [6, Proposition 4.2] that u0

must be a strict global maximum of J |R+u+X̃ , hence u0 = u1. Using this uniqueness property

of u1 it follows easily that u1 depends continuously on u. Similarly one obtains u2 as a global

maximum of J |R−u+X̃ .

For u ∈ SX+ we set n(u) := u1 with u1 from Proposition 4.1. Observe that n(−u) = u2

and

(4.3) N = {u ∈ X \ X̃ : J ′(u)|Ru+X̃ = 0, J(u) > 0} = {n(u) : u ∈ SX+},

in particular, N is a topological manifold, the Nehari-Pankov manifold. Clearly all critical

points of J with J(u) > 0 lie inN . Since J is not required to be C2 the Nehari-Pankov manifold

is just a topological manifold homeomorphic to SX+. The functional J is said to satisfy the

(PS)Tc -condition in N if every (PS)c-sequence (un)n for the unconstrained functional and such

that un ∈ N has a subsequence which converges in the T -topology:

un ∈ N , J ′(un)→ 0, J(un)→ c =⇒ un
T−→ u ∈ X along a subsequence.
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The following result is due to [6].

Theorem 4.2. Let J ∈ C1(X,R) satisfy (A1)-(A4), (B1)-(B3) and set cN = infN J . Then

the following holds:

a) cN ≥ a > 0 and J has a (PS)cN -sequence in N .

b) If J satis�es the (PS)TcN -condition in N then cN is achieved by a critical point of J .

c) If J satis�es the (PS)Tc -condition in N for every c and if J is even then it has an

unbounded sequence of critical values.

Condition (B3) seems to be very restrictive and not easy to check. A more natural con-

dition employs the convexity of I which in turn will be a consequence of the convexity of F .

We consider the set

(4.4) M := {u ∈ X : J ′(u)|X̃ = 0} = {u ∈ X : I ′(u)|X̃ = 0}.

Observe that the last equality follows from the form of J in (4.1). M is a (topological)

manifold if the following holds:

(B4) If u ∈M then I(u) < I(u+ v) for every u ∈ X, v ∈ X̃ with v 6= 0.

Note that, if I is strictly convex, then by (A1)-(A2) we easily see that (B4) is satis�ed. Observe

that for any u ∈ X+ there is a unique m(u) ∈M such that m(u)+ = u. Obviously m(u) ∈M
is the unique global maximum of J |u+X̃ .

Remark 4.3. If (B3) and (B4) hold then M ⊃ N . More precisely, for each u ∈ SX+ let

tu > 0 be de�ned by n(u) = tuu + v with v ∈ X̃. Then the map βu : [0,∞) → R de�ned

by βu(t) = J(m(tu)) achieves its maximum at tu > 0. If β′u(t) = J ′(m(tu))[u] = 0 then

J ′(m(tu))|Ru⊕X̃ = 0, hence m(tu) ∈ N and t = tu. It follows that βu(t) is strictly increasing

on [0, tu] and strictly decreasing on [tu,∞). Thus N = {m(tuu) : u ∈ SX+} splits M into

two components:

M\N = {m(tu) : u ∈ SX+, 0 ≤ t < tu} ∪ {m(tu) : u ∈ SX+, t > tu}

Our main result of this section reads as follows.
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Theorem 4.4. Let J ∈ C1(X,R) satisfy (A1)�(A4), (B1), (B2), (B4) and set

(4.5) cM = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t))

where

Γ := {γ ∈ C([0, 1],M) : γ(0) = 0, ‖γ(1)+‖ > r, and J(γ(1)) < 0}.

Then the following holds:

a) cM > 0 and J has a (PS)cM-sequence inM.

b) If J satis�es the (PS)TcM-condition inM then cM is achieved by a critical point of J .

c) If J satis�es the (PS)Tc -condition in M for every c and if J is even then it has an

unbounded sequence of critical values.

d) If in addition (B3) holds then cM ≤ cN , and if cM is achieved by a critical point then

cM = cN .

Proof. Recall that for any u ∈ X+ there is a unique m(u) ∈ M with m(u)+ = u. We claim

that:

(i) m : X+ →M is a homeomorphism with inverseM3 u 7→ u+ ∈ X+.

(ii) J ◦m : X+ → R is C1.

(iii) (J ◦m)′(u) = J ′(m(u))|X+ : X+ → R for every u ∈ X+.

(iv) (un)n ⊂ X+ is a Palais-Smale sequence for J◦m if, and only if, (m(un))n is a Palais-Smale

sequence for J inM.

(v) u ∈ X+ is a critical point of J ◦m if, and only if, m(u) is a critical point of J .

(vi) If J is even, then so is J ◦m.

Now we prove these statements.

(i) Let un → u0 in X
+ and m(un) = un + vn, where vn ∈ X̃ for all n ≥ 0. In view of (B4)

one has

(4.6) I(m(un)) ≤ I(un) ≤ I(u0) + 1
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for almost all n. Now (B1) implies that vn is bounded, so we may assume that vn ⇀ v0. As a

consequence of (A2) and (B4) we deduce

I(m(u0)) ≤ I(u0 + v0) ≤ lim inf I(m(un)) ≤ lim inf I(un + (m(u0)− u0)) = I(m(u0)).

Finally, using (A3) and (B4) we obtain m(un)→ m(u0) = u0 + v0.

(ii) Let u, v ∈ X+ and h ∈ R. Let m(u+hv) = u+hv+ ũ(h) for some ũ(h) ∈ X̃. Observe

that by (B4) and by the mean value theorem

I(m(u+ hv))− I(m(u)) ≥ I(u+ hv + ũ(h))− I(u+ ũ(h))

= I ′(θ1(h))(hv)

for some θ1(h)→ u+ ũ(0) as h→ 0. Similarly we have

I(m(u+ hv))− I(m(u)) ≤ I(u+ hv + ũ(0))− I(u+ ũ(0))

= I ′(θ2(h))(hv)

for some θ2(h)→ u+ ũ(0) as h→ 0. Thus we obtain

(4.7) (I ◦m)′(u)(v) = lim
h→0

I(m(u+ hv))− I(m(u))

h
= I ′(m(u))(v).

Using (i) it follows that (I ◦m)′(u) is continuous, therefore I ◦m and J ◦m are of class C1

and (ii) holds.

Observe that (iii) follows from (I ◦ m)′(u) = I ′(m(u)) and from the form of J given in

(4.1). Finally, (iv), (v) and (vi) are easy consequences of the de�nition of m.

Next we prove that J ◦ m has the classical mountain pass geometry. Assumption (A4)

implies

(4.8) J ◦m(u) ≥ J(u) ≥ a > 0 if ‖u‖ = r.

In order to see for 0 6= u ∈ X+ that

(4.9) J ◦m(tu) =
1

2
‖m(tu)+‖2 − I(m(tu))→ −∞ as t→∞

write m(tu) = tu+ ũt with ũt ∈ X̃, and set ut = u+ 1
t
ũt = 1

t
m(tu). Then

1

t2
I(m(tu)) =

1

t2
I(tut)→∞ as t→∞

by (B2). The mountain pass condition (4.9) follows immediately. Setting

Σ := {σ ∈ C([0, 1], X+) : σ(0) = 0, ‖σ(1)+‖ > r and J ◦m(σ(1)) < 0}
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the mountain pass value for J ◦m is given by:

cM = inf
σ∈Σ

sup
t∈[0,1]

J ◦m(σ(t)) ≥ a > 0.

In view of the mountain pass theorem and using (iv), there exists a (PS)cM-sequence (un)n

for J inM, which proves a).

In order to prove b) we consider a (PS)c-sequence (un)n ⊂ X+ for J ◦m. Then (m(un))n is

a Palais-Smale sequence for J inM by (iv), hencem(un)
T−→ v after passing to a subsequence.

This implies un = m(un)+ → v+ and we have proved:

(vii) If J satis�es the (PS)Tc -condition in M for some c then J ◦ m satis�es the (PS)c-

condition.

Next observe that if J satis�es the (PS)TcM-condition inM then cM is achieved by a critical

point u ∈ X+ of J ◦m, hence m(u) ∈ M is a critical point of J with J(m(u)) = cM. This

implies b).

c) follows from the classical symmetric mountain pass theorem. The condition (4.9) implies

that for every �nite-dimensional subspace Y ⊂ X+ there exists R = R(Y ) > 0 such that

J ◦m ≤ 0 on Y \ BRY . Therefore together with (4.8) and the Palais-Smale condition J ◦m
satis�es the hypotheses of [22, Theorem 9.12], hence it possesses an unbounded sequence of

critical values.

It remains to prove d), so we assume that (B3) holds. Given u ∈ N by (4.9) there exists

t0 > 0 such that J(m(t0u
+)) < 0. Therefore the path γ(t) = m(tt0u

+), t ∈ [0, 1], lies in Γ.

Since u is the unique maximum of J on R+u + X̃ there holds J(γ(t)) ≤ J(u), and therefore

cM ≤ cN . In order to see the reverse inequality observe that Remark 4.3 implies that for any

γ ∈ Γ there exists t ∈ [0, 1] with γ(t) ∈ N .

5 Proof of Theorem 2.2

We want to �nd critical points of the functional J : X := W p
0 (curl; Ω)→ R from (4.1). We

assume (L1)-(L2), (F0)-(F4), and (F5) or (F6)-(F7). If (F5) holds we shall apply Theorem 4.2,

if (F6)-(F7), may be (F8), hold we shall apply Theorem 4.4. Recall that (F5) implies (F6), so in

the sequel we shall assume (L1)-(L2) and (F0)-(F4) as well as (F6), often without mentioning,

but we shall always state when we use (F5),(F7), or (F8).
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In order to de�ne X+ and X̃ let 0 < λ1 < λ2 < . . . be the sequence of eigenvalues (with

�nite multiplicities) of the curl-curl source problem from Corollary 3.3. Let V+ be the positive

eigenspace of the quadratic form Q : V → R de�ned by

Q(v) :=

∫
Ω

(
〈µ(x)−1∇× v,∇× v〉 − 〈V (x)v, v〉

)
dx,

and let Ṽ be the semi-negative eigenspace of Q. Then Ṽ is the �nite sum of the eigenspaces

associated to all λk ≤ 1, and V+ is the in�nite sum of the eigenspaces associated to the

eigenvalues λk > 1. Here Ṽ = {0} if λ1 > 1, of course. Observe that

(5.1) Q(v) ≥
(

1− 1

λm

)∫
Ω

〈µ(x)−1∇× v,∇× v〉 dx for any v ∈ V+,

where m = min{k ∈ N0 : λk > 1}. If m ≥ 2 and λm−1 < 1 then

(5.2) Q(v) ≤ −
( 1

λm−1

− 1
)∫

Ω

〈µ(x)−1∇× v,∇× v〉 dx for any v ∈ Ṽ .

If λm−1 = 1 then the kernel of the operator ∇ × (µ(x)−1∇×) − V (x) is just the eigenspace

associated to λm−1. For v ∈ V we denote by v+ ∈ V+ and ṽ ∈ Ṽ the corresponding summands

such that v = v+ + ṽ. Now we de�ne X+ := V+ and X̃ := Ṽ ⊕W .

The functional J : X → R from Section 3 has the form

J(v + w) =
1

2
‖v+‖2 − I(v + w)

as in (4.1) with

I(v + w) = −1

2
‖ṽ‖2

V +
1

2

∫
Ω

〈V (x)(v + w), v + w〉 dx+

∫
Ω

F (x, v + w)

= −1

2
‖ṽ‖2

V +
1

2

∫
Ω

〈V (x)v, v〉 dx+
1

2

∫
Ω

〈V (x)w,w〉 dx+

∫
Ω

F (x, v + w).

Now we show that J satis�es the assumptions (A1)-(A4) as well as (B1), (B2), (B4) from

Section 4. This requires (F0)-(F4) and (F6).

Lemma 5.1. There is d′ > 0 such that

(5.3)
1

2

∫
Ω

〈V (x)u, u〉 dx+

∫
Ω

F (x, u) dx ≥ d′|u|pp for any u ∈ Lp(Ω,R3).

Proof. In view of (F4) we �nd M > 0 such that F (x, u) ≥ d|u|p for |u| > M . Observe that

there is a constant V0 > 0 such that

1

2

∫
Ω

〈V (x)u, u〉 dx+

∫
Ω

F (x, u) dx ≥ V0

∫
Ω

|u|2 dx+ d

∫
|u|>M

|u|p dx

≥ V0

∫
|u|≤M

|u|2 dx+ d

∫
|u|>M

|u|p dx

≥ d′|u|pp
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where d′ = min{V0M
2−p, d} > 0

The next lemma shows that (A1)-(A4) and (B1), (B2) hold.

Lemma 5.2. a) I is of class C1, I(E) ≥ 0 for any E ∈ X, and I is T -sequentially lower

semicontinuous.

b) If En
T−→ E and I(En)→ I(E) then En → E.

c) There is r > 0 such that 0 < inf
v∈V+
‖v‖V=r

J(v).

d) ‖v+
n ‖V + I(vn + wn)→∞ as ‖v + w‖ → ∞.

e) I(tn(vn + wn))/t2n →∞ if tn →∞ and v+
n → v+

0 6= 0 as n→∞.

Proof. a) Since Q is negative semi-de�nite on Ṽ and using (F4) we deduce that I(v + w) ≥ 0

for any v ∈ V , w ∈ W . The convexity condition (F6) implies that I is T -sequentially lower

semicontinuous, and I is of class C1 as a consequence of (F1)-(F3). Thus we obtain a).

b) Consider En, E ∈ X such that En
T−→ E and I(En) → I(E). Writing En = vn + wn,

E = v+w with vn, v ∈ V , wn, w ∈ W we have v+
n → v+, ṽn ⇀ ṽ in V , wn ⇀ w in W . Passing

to a subsequence we may assume that ṽn → ṽ in V , hence

1

2

∫
Ω

〈V (x)(v+
n + wn), v+

n + wn〉 dx+

∫
Ω

F (x, vn + wn) dx

→ 1

2

∫
Ω

〈V (x)(v+ + w), v+ + w〉 dx+

∫
Ω

F (x, v + w) dx.

By the weakly sequentially lower semicontinuity∫
Ω

〈V (x)(v+
n + wn), v+

n + wn〉 dx→
∫

Ω

〈V (x)(v+ + w), v+ + w〉 dx

and in view of (L1)

(5.4) |v+
n + wn|2 → |v+ + w|2.

Since v+
n + wn ⇀ v+ + w in Lp(Ω,R3) then, up to a subsequence, v+

n + wn ⇀ v+ + w in

L2(Ω,R3), and by (5.4) we have v+
n + wn → v+ + w in L2(Ω,R3). Hence

En = vn + wn → E = v + w a.e. on Ω.
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Finally observe that ∫
Ω

F (x,En)− F (x,En − E) dx

=

∫
Ω

∫ 1

0

d

dt
F (x,En + (t− 1)E) dtdx

=

∫ 1

0

∫
Ω

〈f(x,En + (t− 1)E), E〉 dxdt.

Since f(x,En + (t− 1)E)→ f(x, tE) a.e. on Ω Vitali's convergence theorem yields∫
Ω

F (x,En)− F (x,En − E) dx

→
∫ 1

0

∫
Ω

〈f(x, tE), E0〉 dxdt =

∫
Ω

F (x,E) dx

as n→∞. Moreover, since
∫

Ω
F (x,En)→

∫
Ω
F (x,E) dx there holds

(5.5)

∫
Ω

F (x,En − E) dx→ 0,

hence |En − E|p → 0 by (5.3), and �nally wn → w in Lp(Ω,R3). This shows (A3).

c) In order to prove c) we observe that assumptions (F0)-(F3) imply that for any ε > 0

there is a constant cε > 0 such that∫
Ω

F (x, u) dx ≤ ε|u|22 + cε|u|pp for any u ∈ Lp(Ω,R3).

Using this and (5.1) we deduce for v ∈ V+

J(v) =
1

2
Q(v)−

∫
Ω

F (x, v) dx ≥ δ

2
‖v‖2

V − ε|v|2 − cε|v|pp

≥ δ

4
‖v‖2

V − C1‖v‖pV

for some constant δ, C1 > 0 which proves c).

d) Consider a sequence (vn+wn)n in X such that ‖vn+wn‖ → ∞ as n→∞ and (‖v+
n ‖V)n

is bounded. Then ‖ṽn + wn‖2 = ‖ṽn‖2
V + |wn|2p → ∞, hence |ṽn + wn|p → ∞ because Ṽ is

�nite-dimensional. Using (L1), the orthogonality V+ ⊥ Ṽ , V ⊥ W with respect to (·, ·) and

the Hölder inequality we deduce

(5.6) ‖ṽn‖2
V ≤ (ṽn, ṽn) ≤ (vn + wn, vn + wn) ≤ C1|vn + wn|22 ≤ C2|vn + wn|2p

for some constants C1, C2 > 0. Now (5.3) implies

I(vn + wn) ≥ −C2

2
|vn + wn|2p + d′|vn + wn|pp →∞,
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and d) follows.

e) Consider sequences tn → ∞ and vn ∈ V , wn ∈ W such that v+
n → v+

0 6= 0 as n → ∞.

Note that by (5.3) and (5.6)

I(tn(vn + wn))/t2n ≥ −
C2

2
|vn + wn|2p + d′tp−2

n |vn + wn|pp.

If ‖vn + wn‖ → ∞ as n→∞ then |vn + wn|p →∞, hence

(5.7) I(tn(vn + wn))/t2n →∞

and we are done. Now suppose (‖vn + wn‖)n is bounded, hence (|vn + wn|p)n is bounded. If

|vn + wn|p → 0 then |vn + wn|2 → 0 which implies v+
n → 0 in L2(Ω,R3) contradicting v0 6= 0.

Therefore tp−2
n |vn + wn|p →∞ as n→∞ and again (5.7) holds.

As in Section 4 we de�ne

M := {E ∈ X : J ′(E)[φ+ ψ] = 0 for any φ ∈ Ṽ , ψ ∈ W}.

Lemma 5.3. a) I is strictly convex.

b) (B4) holds.

Proof. a) Observe that if m = min{k ∈ N0 : λk > 1} ≥ 2 and λm−1 < 1, then V0 = 0 and −Q
is strictly convex on Ṽ . If λm−1 = 1 then

∫
Ω
F (x, v)dx is strictly convex on the set of all v ∈ V0

by (F6), using also F = F0 from (F7). Finally if m = 1 then Ṽ = {0}, hence X = V+ ⊕W
and X 3 E 7→

∫
Ω
〈V (x)E,E〉 dx ∈ R is strictly convex. Therefore in all cases we obtain that

I(v + w) = −1

2
Q(ṽ) +

1

2

∫
Ω

〈V (x)(v+ + w), v+ + w〉 dx+

∫
Ω

F (x, v + w)

is strictly convex.

b) follows from the strict convexity of I.

Lemma 5.4. If (F5) is satis�ed then condition (B3) holds.

Proof. Let E ∈ N , t ≥ 0, φ ∈ Ṽ , ψ ∈ W satisfy E 6= tE + φ+ ψ. We need to show that

(5.8)

I ′(E)

[
t2 − 1

2
E + t(φ+ ψ)

]
+ I(E)− I(tE + φ+ ψ)

=
1

2
Q(φ)− 1

2

∫
Ω

〈V (x)ψ, ψ〉 dx+

∫
Ω

ϕ(t, x) dx < 0
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where

ϕ(t, x) = ϕ(t, x, E, φ+ ψ) = 〈f(x,E),
t2 − 1

2
E + t(φ+ ψ)〉+ F (x,E)− F (x, tE + φ+ ψ).

Assume that E ∈ N . We �rst show that

(5.9)

∫
Ω

〈f(x,E), E〉 dx > 0.

Indeed, suppose that the above inequality does not hold. Then 〈f(x,E), E〉 = 0 a.e. in Ω,

hence F (x,E) = 0 a.e. in Ω. Since F is of C1 class in E, so F attains a local minimum in E

and therefore f(x,E) = 0 a.e. in Ω. As a consequence we obtain for E = v+ + ṽ + w

0 = J ′(E)[v+] = Q(v+), 0 = J ′(E)[ṽ] = Q(ṽ), 0 = J ′(E)[w] =

∫
Ω

〈V (x)w,w〉 dx,

which implies v = ṽ ∈ V0 and w = 0, hence E ∈ V0. Now from
∫

Ω
F (x, v0) = 0 we deduce

J(E) = 0, contradicting E ∈ N .

Assumption (F5)(i) yields ϕ(t, x) = ϕ(t, x, E, φ + ψ) ≤ 0 for any t ≥ 0, a.e. x ∈ Ω. If

Q(φ) < 0 or
∫

Ω
〈V (x)ψ, ψ〉 dx < 0 then (5.8) holds. If neither of these strict inequalities hold

then φ ∈ V0 and ψ = 0. In that case (F5)(ii) implies
∫

Ω
ϕ(t, x) dx < 0.

Now we recall the Nehari-Pankov manifold (4.3) for J given by

N := {E ∈ X \ (Ṽ ⊕W) : J(E) > 0, J ′(E)[E] = 0

and J ′(E)[φ+ ψ] = 0 for any φ ∈ Ṽ , ψ ∈ W}.

Next we show that J satis�es the (PS)Tc condition on N and on M provided (F5) or

(F6)-(F7) hold.

Lemma 5.5. If (F5) holds then J satis�es the (PS)Tc condition on N . If (F6)-F7) hold then

J satis�es the (PS)Tc condition onM.

Proof. Suppose (F5) holds and let (En)n ∈ N be a (PS)c-sequence for J for some c > 0, i.e.

J(En)→ c and J ′(En)→ 0.

Using (L2) and (5.3) instead of [6, (F4)], the proof follows from similar arguments as in [6,

Lemma 5.3].
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Now assume that (F6)-(F7) holds and let En = vn + wn ∈ M be a (PS)c-sequence for J .

We need to show that En
T−→ E0 in X for some E0 ∈ X along a subsequence. Using (F7) we

obtain

J(En)− 1

2
J ′(En)(En) =

∫
Ω

1

2
〈f(x, vn + wn), vn + wn〉 − F (x, vn + wn) dx

≥
(γ

2
− 1
)∫

Ω

F (x, vn + wn) dx

and

J(En)− 1

γ
J ′(En)(En)

≥
(

1

2
− 1

γ

)(∫
Ω

〈µ(x)−1∇× v,∇× v〉 dx−
∫

Ω

〈V (x)(v + w), v + w〉 dx
)

The above inequalities, (5.3), (L1) and the Hölder inequality imply that

2J(En)−
(

1

2
− 1

γ

)
J ′(En)(En) ≥

(
1

2
− 1

γ

)
‖vn‖2

V − C1|v + w|2p +
(γ

2
− 1
)
d′|vn + wn|pp

for some constant C1 > 0. Suppose that |vn + wn|p → ∞ as n → ∞. Then for su�ciently

large n we have

2J(En)−
(1

2
− 1

γ

)
J ′(En)(En) ≥

(1

2
− 1

γ

)
‖vn‖2

V +
1

2

(γ
2
− 1
)
d′|vn + wn|pp.(5.10)

Note that W is a closed subspace of Lp(Ω,R3), clV ∩ W = {0} and therefore there is a

continuous projection of clV⊕W ontoW in Lp(Ω,R3). Hence there is a constant C2 > 0 such

that |w|p ≤ C2|v + w|p for any v ∈ V and w ∈ W . Then (5.10) implies that ‖vn‖V and |wn|p
are bounded which contradicts |vn + wn|p → ∞. Therefore |vn + wn|p must be bounded. By
(F2), (F3), for any ε > 0 there is cε > 0 such that for su�ciently large n

‖vn‖2
V +

∫
Ω

〈V (x)vn, vn〉 dx = J ′(En)(vn)−
∫

Ω

〈f(x, vn + wn), vn〉 dx

≤ ‖vn‖V +

∫
Ω

(ε|vn + wn|+ cε|vn + wn|p−1)|un| dx.

Since |vn + wn|p is bounded, then the Hölder inequality and the Sobolev embeddings give

(5.11) ‖vn‖2
V +

∫
Ω

〈V (x)vn, vn〉 dx ≤ C3‖vn‖V

for some constant C3 > 0. Note that the Hölder inequality implies∫
Ω

〈V (x)vn, vn〉 dx ≤
∫

Ω

〈V (x)(vn + wn), vn + wn〉 dx ≤ C4|vn + wn|2p
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for some constant C4 > 0. Therefore by (5.11) we obtain that ‖vn‖V is bounded. In view of

(L2), |vn|p is bounded and then |wn|p is bounded. Therefore En = vn + wn is bounded in X

and we may assume, up to a subsequence,

vn ⇀ v0 in V , vn → v0 in Lp(Ω,R3) and wn ⇀ w0 in W

for some (v0, w0) ∈ V ×W . Note that

J ′(vn, wn)[vn − v0, 0] = ‖vn − v0‖2
V +

∫
Ω

〈µ−1(x)∇× v0,∇× (vn − v0)〉 dx

+

∫
Ω

〈V (x)(vn + wn), vn − v0〉 dx−
∫

Ω

〈f(x, vn + wn), vn − v0〉 dx.

Since (vn)n is bounded in V , vn → v0 in L2(Ω,R3) and (f(x, vn + ∇wn))n is bounded in

L
p

p−1 (Ω,R3) we deduce ‖vn − v0‖V → 0.

Proof of Proposition 3.5 b). If (F5) holds, then we easily conclude from the fact infN J > 0;

see Theorem 4.2 a).

Suppose (F6)-(F8) hold, and assume by contradiction that there exists a sequence of

nontrivial solutions En = vn + wn ∈ V ⊕W such that

J(En) =
1

2

∫
Ω

〈µ(x)−1∇× En,∇× En〉 dx−
1

2

∫
Ω

〈V (x)En, En〉 dx−
∫

Ω

F (x,En) dx→ 0.

Then clearly (En) is a Palais-Smale sequence in M at level 0. Now Lemma 5.5 implies

En
T−→ E0 = v0 +w0 for some E0 = v0 +w0 ∈ X. Then as in the proof of Theorem 4.4 we get

En = m(v+
n )→ m(v+

0 ) = E0, so E0 is a critical point of J . From

o(1) = J(En) =

∫
Ω

1

2
〈f(x,En), En〉 − F (x,En) dx ≥

(γ
2
− 1
)∫

Ω

F (x,En) dx ≥ 0

it follows that
∫

Ω
F (x,En) dx → 0, so

∫
Ω
F (x,E0) dx = 0, hence F (x,E0(x)) = 0 and

f(x,E0(x)) = 0 for a.e. x ∈ Ω. This implies

0 = J ′(En)[v+
0 ]→ Q(v+

0 )

which yields v+
0 = 0. Similarly we obtain w = 0 and �nally E0 ∈ V0. Now (F6)(ii) implies

E0 = 0.
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Using J ′(En)[En] = 0, (F8) and (B4) we obtain

‖v+
n ‖2 = −Q(ṽn) +

∫
Ω

〈V (x)(v+
n + wn, v

+
n + wn〉 dx+

∫
Ω

〈f(x,En), En〉 dx

≤
(

1− η

2

)(
−Q(ṽn) +

∫
Ω

〈V (x)(v+
n + wn, v

+
n + wn〉 dx

)
+η
(
− 1

2
Q(ṽn) +

1

2

∫
Ω

〈V (x)(v+
n + wn, v

+
n + wn〉 dx+

∫
Ω

F (x,En) dx
)

=
(

1− η

2

)(
−Q(ṽn) +

∫
Ω

〈V (x)(v+
n + wn, v

+
n + wn〉 dx

)
+ ηI(En)

≤
(

1− η

2

)(
−Q(ṽn) +

∫
Ω

〈V (x)(v+
n + wn, v

+
n + wn〉 dx

)
+ ηI(v+

n )

≤
∫

Ω

〈V (x)v+
n , v

+
n 〉 dx+

∫
Ω

F (x, v+
n ) dx.

Therefore by (5.1) and (F2)-(F3), for any ε > 0 there exists cε > 0 such that(
1− 1

λm

)
‖v+

n ‖2
V ≤ Q(v+

n ) ≤
∫

Ω

F (x, v+
n ) dx ≤ ε|v+

n |22 + cε|v+
n |pp ≤ εC‖v+

n ‖2
V + cεC‖v+

n ‖
p
V

for some constant C > 0. This contradicts v+
n → v+

0 = 0. 2

Proof of Theorem 2.2. As a consequence of Lemmas 5.2-5.5 we may apply Theorem 4.2 in

case (F5) holds, and Theorem 4.4 in case (F6)-(F7) holds. If (F5) holds then the solution is

automatically a least energy solution being the minimizer of J on the Nehari-Pankov manifold

N . If (F6)-(F8) hold then the existence of a least energy solution is an immediate consequence

of the (PS)Tc condition onM and of Proposition 3.5.

2

6 Proof of Theorem 2.5

Since Ω is invariant under G = O(2) × 1 ⊂ O(3) we can de�ne an action of g ∈ G on

E ∈ L2(Ω,R3) by setting

(g ∗ E)(x) := g · E(g−1x).

Proposition 6.1. If (S) holds then the action of G on X is isometric and leaves V and W
invariant. Moreover, J is invariant.
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Proof. Clearly G de�nes an isometric action on every Lq(Ω,R3), in particular on L2(Ω,R3). A

direct computation shows that ∇× (g ∗E) = g ∗ (∇×E) holds for every E ∈ C1(Ω,R3). Since

C1(Ω,R3) is dense in H0(curl; Ω) it follows that G induces an isometric action on H0(curl; Ω),

and ∇× (g ∗ E) = g ∗ (∇× E) holds for E ∈ H0(curl; Ω) in the distributional sense. It also

follows that G induces an isometric action on W p(curl; Ω). In order to see that V is invariant

we choose v ∈ V , g ∈ G and ϕ ∈ C∞0 (Ω,R3) with ∇× ϕ = 0, and we compute:∫
Ω

〈V (x)(g ∗ v)(x), ϕ(x)〉 dx =

∫
Ω

〈V (x)g · v(g−1x), ϕ(x)〉 dx =

∫
Ω

〈g · V (x)v(g−1x), ϕ(x)〉 dx

=

∫
Ω

〈V (x)v(g−1x), g−1 · ϕ(x)〉 dx =

∫
Ω

〈V (y)v(y), g−1 · ϕ(gy)〉 dy

=

∫
Ω

〈V (y)v(y), g−1 ∗ ϕ(y)〉 dy = 0

Here we used that g commutes with every V (x), that g ∈ G is orthogonal, that V is invariant

with respect to the action of G on Ω, that ∇× (g−1 ∗ϕ) = g−1 ∗ (∇×ϕ) = 0, and that v ∈ V .
It follows that g ∗ v ∈ V . Clearly we also have∫

Ω

〈V (x)(g ∗ E)(x), (g ∗ E)(x)〉 dx =

∫
Ω

〈V (x)E(x), E(x)〉 dx

so that ‖g ∗ v‖V = ‖v‖V for v ∈ V . In a similar but easier way one sees that G leaves W
invariant and preserves the norm.

In order to prove the invariance of J with respect to the action of G we use that g ∈ G
commutes with each µ(x), and that µ is G-invariant:∫

Ω

〈µ(x)−1∇× (g ∗ E)(x),∇× (g ∗ E)(x)〉 dx

=

∫
Ω

〈µ(x)−1g · (∇× E)(g−1x), g · ∇ × E(g−1x)〉 dx

=

∫
Ω

〈g · µ(x)−1(∇× E)(g−1x), g · ∇ × E(g−1x)〉 dx

=

∫
Ω

〈µ(x)−1(∇× E)(g−1x),∇× E(g−1x)〉 dx

=

∫
Ω

〈µ(x)−1(∇× E)(x),∇× E(x)〉 dx

Clearly we also have ∫
Ω

F (x, g ∗ E) dx =

∫
Ω

F (x,E) dx.

It follows that J is invariant.
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LetXG = VG⊕WG consist of all G-equivariant vector �elds. By the principle of symmetric

criticality, a critical point of the constrained functional J |XG is a critical point of J . Observe

that

W1 := {w = ∇φ : φ ∈ W 1,p
0 (Ω)}

is a closed subspace of W and W = K ⊕W1, where

K :=

{
u ∈ W :

∫
Ω

〈V (x)u,w〉 dx = 0 for any w ∈ W1

}
= {u ∈ W : div (V (x)u) = 0}.

It is easy to see that K and W1 are G-invariant. Let

V1 = V ⊕ K = {E ∈ X : div (V (x)E) = 0}

and let VG1 = VG ⊕KG consist of all G-equivariant vector �elds as above.

We need the following lemma.

Lemma 6.2. If (S) holds then any E ∈ XG has a unique decomposition E = Eτ + Eρ + Eζ

with summands of the form

Eτ (x) = α(r, x3)

−x2

x1

0

 , Eρ(x) = β(r, x3)

x1

x2

0

 , Eζ(x) = γ(r, x3)

0

0

1

 ,

where r =
√
x2

1 + x2
2. If E ∈ VG1 then Eτ , Eρ + Eζ ∈ VG1 . If E ∈ WG

1 then Eτ = 0. Moreover

(6.1)
〈µ(x)−1∇× Eρ(x),∇× Eτ (x)〉 = 〈∇ × Eρ(x), µ(x)−1∇× Eτ (x)〉

= 〈∇ × Eτ (x), µ(x)−1∇× Eζ(x)〉 = 〈µ(x)−1∇× Eτ (x),∇× Eζ(x)〉 = 0

for a.e. x ∈ Ω.

Proof. The decomposition has been constructed in [2, Lemma 1] for vector �elds E ∈ D1(R3)G.

It extends immediately to VG1 andWG
1 . Assumption (S) implies that V depends only on (r, x3)

and that div (V (x)vτ ) = 0. Thus vτ ∈ VG1 and vρ + vζ = v − vτ ∈ VG1 .

Proof of Theorem 2.5. In view of Lemma 6.2 the maps

S1 : XG → XG, S1(Eτ + Eρ + Eζ) := Eτ − Eρ − Eζ

and

S2 : XG → XG, S2(Eτ + Eρ + Eζ , w) := −Eτ + Eρ + Eζ
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are well-de�ned linear isometries, and S2
1 = S2

2 = id. It is easy to see that J is invariant under

S2, provided (S) holds, of course. Moreover, if F is in addition even then J is also invariant

under S1. By the principle of symmetric criticality it is su�cient to �nd critical points of J

constrained to either

(XG)S1 := {E ∈ XG : S1(E) = E} = {E ∈ XG : E = Eτ} ⊂ V1,

or to

(XG)S2 := {E ∈ XG : S2(E) = E} = {E ∈ XG : E = Eρ + Eζ}.

This can be done with the methods from Section 5 using Theorem 4.2 and Theorem 4.4.

Observe that in Theorem 2.5 a) we do not assume (L2) because (XG)S1 = {E ∈ XG : E =

Eτ} ⊂ H1
0 (Ω,R3) embeds compactly into Lp(Ω,R3). 2
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