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Global continua of periodic solutions of singular

first-order Hamiltonian systems of N-vortex type

Thomas Bartsch Björn Gebhard

Abstract

The paper deals with singular first order Hamiltonian systems of the form

Γkżk(t) = J∇zkH
(
z(t)

)
, zk(t) ∈ Ω ⊂ R

2, k = 1, . . . , N,

where J ∈ R2×2 defines the standard symplectic structure in R2, and the Hamiltonian

H is of N -vortex type:

H(z1, . . . , zN ) = −
1

2π

N∑

j,k=1

j 6=k

ΓjΓk log |zj − zk| − F (z).

This is defined on the configuration space {(z1, . . . , zN ) ∈ Ω2N : zj 6= zk for j 6= k} of N

different points in the domain Ω ⊂ R2. The function F : ΩN → R may have additional

singularities near the boundary of ΩN . We prove the existence of a global continuum

of periodic solutions z(t) = (z1(t), . . . , zN (t)) ∈ ΩN that emanates, after introducing a

suitable singular limit scaling, from a relative equilibrium Z(t) ∈ R2N of the N -vortex

problem in the whole plane (where F = 0). Examples for Z include Thomson’s vortex

configurations, or equilateral triangle solutions. The domain Ω need not be simply

connected. A special feature is that the associated action integral is not defined on an

open subset of the space of 2π-periodic H1/2 functions, the natural form domain for

first order Hamiltonian systems. This is a consequence of the singular character of the

Hamiltonian. Our main tool in the proof is a degree for S1-equivariant gradient maps

that we adapt to this class of potential operators.
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1 Introduction

We consider Hamiltonian systems

(1.1) Γkżk = J∇zkH(z), k = 1, . . . , N,

for N point vortices z1(t), . . . , zN(t) in a domain Ω ⊂ R2. Here J =

(
0 1

−1 0

)
is the standard

symplectic matrix in R2, and Γ1, . . . ,ΓN ∈ R\{0} are fixed vortex strengths. The Hamiltonian

is singular and of the form

(1.2) H(z) = −
1

2π

N∑

j,k=1

j 6=k

ΓjΓk log |zj − zk| − F (z)

with F : ΩN → R of class C2. H is defined on the configuration space

FN(Ω) = {(z1, . . . , zN ) ∈ ΩN : zj 6= zk for j 6= k}.

Hamiltonian systems of this form appear in a variety of singular limit problems from

mathematical physics. The classical point vortex problem from fluid dynamics goes back to

Kirchhoff [24]. In the fluid dynamics context equation (1.1) is derived from the Euler equations

for an ideal fluid in Ω when the vorticity is concentrated in vortex blobs Bδ(zk), k = 1, . . . , N ,

and one passes to the singular limit δ → 0. Kirchhoff considered the case of the plane Ω = R2

and derived the Hamiltonian

H0(z) = −
1

2π

N∑

j,k=1

j 6=k

ΓjΓk log |zj − zk| ,

often called the Kirchhoff-Onsager functional. If Ω 6= R2 boundary effects play a role and the

regular part g : Ω×Ω → R of a hydrodynamic Green’s function (see [18,20]) in Ω enters into

the definition of the Hamiltonian:

F (z) =

N∑

j,k=1

ΓjΓkg(zj, zk).

This has been derived by Routh [37] and C.C. Lin [29, 30], the Hamiltonian is then called

Kirchhoff-Routh path function. For modern presentations of the point vortex method in fluid

dynamics we refer to [32, 33, 35, 41]. We would like to mention that in the present paper we

allow more general nonlinearities F which is relevant also for other applications.
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Another motivation for considering (1.1) arises in models of superconductivity. There

one considers functions uε : Ω × (0,∞) → C solving the Ginzburg-Landau-Schrödinger (or

Gross-Pitaevskii) equation

iuεt −∆uε =
1

ε2
uε(1− |uε|2).

In this context a vortex is an isolated zero of uε. In the limit ε → 0 these vortices move

according to (1.1) provided the associated Ginzburg-Landau energy remains small. The num-

ber Γk is, up to a multiple, the Brouwer index of the zero zk of uε( . , t). In this context the

Hamiltonian is the renormalized energy defined in [9]; see [16, 17, 31] for more details. For

problems on surfaces see [15, 21].

Still another motivation is the Landau-Lifshitz-Gilbert equation

∂m

∂t
+m×

(
∆m−

m3

ε2
e3

)
+ αεm×

(
m×

(
∆m−

m3

ε2
e3

))
= 0

modeling the dynamics of a magnetic vortex system in a thin ferromagnetic film. The mag-

netization is given by a normalized vector field m : Ω× (0,∞) → S2; ε is a material constant,

αε > 0 is a dimensionless damping constant, and e3 = (0, 0, 1). The magnetic vorticity is

given by

ω(m) =

〈
m,

∂m

∂x1
×
∂m

∂x2

〉
.

In the limit ε → 0 with αε log
1
ε
→ 0 the motion of point vortices is again given by a singular

Hamiltonian system of the form (1.1) with a Hamiltonian as in (1.2); see [27] and the references

cited therein.

Due to the significance of (1.1)-(1.2) many authors have investigated its dynamics, in

particular for Ω = R2 or Ω = S2. For domains with non-empty boundary much less is known,

except in special cases like Ω being a half-plane or radially symmetric (disc, annulus). In

these cases the Green’s function is explicitly known. For a general domain even the existence

of equilibria is difficult to prove or disprove. Recent results on equilibria can be found in

[7,8,19,25,26]. We would like to mention that these results do not give any information on the

dynamics near an equilibrium. In particular it is not known whether the generalized Weinstein-

Moser theorem [5] can be applied in order to find periodic solutions near the equilibrium.

Concerning periodic solutions of (1.1) in a general domain with boundary the only result

we are aware of deals with the case Γ1 = · · · = ΓN . In [6] the existence of a family z(r) =(
z
(r)
1 , . . . , z

(r)
N

)
, 0 < r < r0, of periodic solutions with period Tr has been proved. All vortices

z
(r)
k (t) rotate around a point ar ∈ Ω that is close to a critical point of the Robin function

h(a) = g(a, a), and they lie approximately on the vertices of a regular N -gon of distance r

from ar. After a suitable scaling they look like Thomson’s vortex configurations.
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In the present paper we continue our investigations on periodic solutions of (1.1)-(1.2)

and generalize and improve the result from [6] significantly. First of all we deal with general

vorticities Γk, in particular they may be different and may have different signs. We start with

a periodic relative equilibrium solution of the vortex problem in the plane, i.e. a solution of

(1.3) Γkżk = J∇zkH0(z), k = 1, . . . , N,

that rotates with frequency ω around the origin and keeps its shape. Such solutions are

also called vortex crystals and have been investigated by many authors. We refer the reader

to [3,28] for explicit examples, Thomson’s vortex configuration being one of the simplest and

best known ones. Then we give a criterion so that Z generates a family z(r) of solutions of

(1.1)-(1.2) that look like Z, after a suitable singular limit scaling. Moreover, we show that

these solutions lie on a global continuum of periodic solutions. This requires different methods

than those used in this context before.

Normalizing the period to 2π by introducing a parameter r > 0 that corresponds to the

period, the solutions will be obtained as critical points of the action integral

J(r, u) = Jr(u) =
1

2

∫ 2π

0

N∑

k=1

〈Γku̇k, Juk〉R2 dt−

∫ 2π

0

Hr(u) dt.

The form domain of the quadratic form

Q(z) =

∫ 2π

0

N∑

k=1

〈Γku̇k, Juk〉R2 dt

is the space H1/2 = H1/2(R/2πZ,R2N). However, the functional
∫ 2π

0
Hr(u) dt is not defined

on that space because Hr inherits the singular behavior from H , and because H1/2 does not

embed into the space of continuous functions. Therefore the condition uj(t) 6= uk(t) for j 6= k

does not define an open subset of H1/2. There are a few other papers on singular first order

Hamiltonian systems, most notably [13, 42]. However in these papers the Hamiltonian is a

variation of the N -body Hamiltonian from celestial mechanics and has a very different type

of singular behavior. Moreover assumptions of ”strong force” type are made, so that the

Palais-Smale condition holds.

In order to find critical points of Jr we shall not apply methods from critical point theory.

This seems to be hopeless at the moment because we cannot control the behavior of the

Hamiltonian near the boundary of FN(Ω). In fact, H(z) may approach any value in R ∪

{−∞,+∞} as z → ∂FN (Ω). As a consequence we do not see any kind of linking structure

that leads to Palais-Smale sequences. Moreover, the functional Jr does not satisfy the Palais-

Smale condition. Therefore instead of variational arguments we develop a variation of the
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degree theory for S1-equivariant potential operators due to Rybicki [38]. His extension of this

degree to strongly indefinite functionals in [40] cannot be used here because for our singular

Hamiltonians the action functional J is not defined on the form domain of the quadratic form

Q. In fact, we shall work on H1 instead of H1/2. It would be very interesting to see whether

Floer type methods can be applied. We believe that our equivariant degree is especially useful

for singular first order Hamiltonian systems.

The paper is organized as follows. After stating our results in the next section we introduce

our degree in Section 3. The following sections 4-6 contain the proof of our main theorem,

the heart of it being the calculation of the degree in section 5. Finally in the last section 7 we

present some concrete examples of vortex crystals for which our main theorem holds.

2 Statement of results

Let Γ1, . . . ,ΓN ∈ R \ {0} be given vorticities, N ≥ 2, let Ω ⊂ R2 be a domain and let

g : Ω× Ω → R be a symmetric C2-function. We consider the N -vortex type Hamiltonian

HΩ(z) = −
1

2π

∑

j,k=1

j 6=k

ΓjΓk log |zj − zk| −
N∑

j,k=1

ΓjΓkg(zj, zk).

which is defined on FN(Ω) := {(z1, . . . , zN) ∈ ΩN : zj 6= zk for j 6= k}. If g is the regular part

of a hydrodynamic Green’s function then we arrive at the classical N -vortex Hamiltonian in

the domain Ω.

In order to write the equation in a more compact way we introduce the vorticity matrix

MΓ =



Γ1

. . .

ΓN


⊗ E2 =



Γ1E2

. . .

ΓNE2


 ∈ R

2N×2N

and the symplectic matrix JN = EN ⊗J ∈ R2N×2N , where Em ∈ Rm×m is the identity matrix.

We want to find periodic solutions z : R → FN(Ω) of

(2.1) MΓż = JN∇HΩ(z).

Recall the definition h(z) = g(z, z) of the “Robin” function h : Ω → R. A critical point

a ∈ Ω of h is said to be stable if it is isolated and has non-vanishing Brouwer index, i.e. the
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Brouwer degree deg(∇h,Bε(a), 0) 6= 0 for ε > 0 small. A periodic relative equilibrium solution

of (1.3) with center of vorticity at 0 has the form

(2.2) Z(t) = e−ωJN tz, ω ∈ R \ {0}, z ∈ FN(R
2).

Such a relative equilibrium Z is called non-degenerate, if the linearized system

(2.3) MΓẇ = JN
(
H ′′

0 (Z(t))
)
w

possesses exactly three linearly independent 2π
|ω|
-periodic solutions. This is the minimal positive

dimension due to the invariance of H0 under translations and rotations. Observe that Z as

in (2.2) is a non-degenerate 2π
|ω|
-periodic equilibrium if and only if Zω(t) :=

√
|ω|Z(t/|ω|) is a

non-degenerate 2π-periodic equilibrium. We can therefore assume that Z is 2π-periodic, i.e.

|ω| = 1.

We write X = H1(R/2πZ,R2N) for the Hilbert space of 2π-periodic absolutely continuous

functions u : R → R2N with (locally) square integrable derivative. The standard scalar product

in X is

〈u, v〉X =

∫ 2π

0

〈u(t), v(t)〉
R2N + 〈u̇(t), v̇(t)〉

R2N dt.

For u ∈ X and θ ∈ S1 = R/2πZ we define θ ∗ u ∈ X by θ ∗ u(t) := u(t + θ). This defines

a continuous representation of the group S1 on X . For a ∈ R2 we set â := (a, . . . , a) ∈ R2N .

We also need the subspace D := {â : a ∈ R2} ⊂ R2N ⊂ X and the orthogonal projection

PD : X → D.

Theorem 2.1. Let Z be a non-degenerate 2π-periodic relative equilibrium solution of (1.3)

with center of vorticity at 0, and let a0 ∈ Ω be a critical point of h. If a0 is stable, and if the total

vorticity
∑N

k=1 Γk 6= 0, then there exists a connected S1-invariant set C = C(a0, Z) ⊂ R+ ×X

with the following properties.

a) If (r, u) ∈ C then z(t) := â0 + ru(t/r2) is a 2πr2-periodic solution of (2.1).

b) There exists r0 > 0 and an S1-invariant neighborhood U ⊂ (0, r0]×X of (0, r0]× S1 ∗Z

such that:

(rn, un) ∈ C ∩ U , rn → 0, un = PD[un] + vn =⇒ rnPD[un] → 0, S1 ∗ vn → S1 ∗ Z.

c) For every r ∈ (0, r0] there exists an element (r, u(r)) ∈ C− := C ∩ U .

d) For C+ := clos
(
C \ C−

)
at least one of the following holds:
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(i) C+ is unbounded.

(ii) There exist sequences (rn, un) ∈ C+ and tn ∈ [0, 2π] with rn bounded away from 0

and â0 + rnun(tn/r
2
n) → ∂FN (Ω).

(iii) There exists a sequence (rn, un) ∈ C+ with rn → 0 and un = PD[un] + vn is such

that rnPD[un] is bounded away from 0 or S1 ∗ vn is bounded away from S1 ∗ Z.

e) If a0 is a non-degenerate critical point of h, then there exists a C1 function (0, r0] ∋ r 7→

u(r) ∈ X such that C− = S1 ∗Graph(u(.)).

Remark 2.2. a) Clearly any non-degenerate critical point of h and any isolated local minimum

or maximum is stable. As a consequence of [14, Theorem I.4.6, Theorem II.3.1] an isolated

critical point a of h is stable if and only if it has non-vanishing critical groups H∗(h
c, hc \{a}).

Here c = h(a), hc = {z ∈ Ω : h(z) ≤ c} is the usual sublevel set, and H∗ denotes any kind of

homology theory.

b) In a bounded domain a hydrodynamic Robin function satisfies h(z) → ∞ as z → ∂Ω,

hence the minimum is achieved. If Ω is bounded and convex then h is strictly convex and has

a unique (local and global) minimum which is nondegenerate; see [10, Theorem 3.1]. There

are domains with an arbitrarily large number of critical points of h, even simply connected

ones. In [34] it is proved for the Dirichlet Green function in a generic domain that critical

points of h are non-degenerate.

c) Using a rotating coordinate frame it is easy to see that a periodic relative equilibrium

Z = e−ωJN tz as in (2.2) is non-degenerate if and only if

(2.4) ẇ = JN
(
M−1

Γ H ′′
0 (z) + ω · id

)
w

possesses exactly three linearly independent 2π
|ω|
-periodic solutions.

d) The local part of the theorem can be extended to the case where Ω is an open subset

of a two-dimensional surface. An extension of the global result that takes the topology of the

surface into account is an interesting open problem.

Example 2.3. Two vortices with vorticities Γ1,Γ2 6= 0 and such that Γ1 + Γ2 6= 0 rotate

rigidly around their center of vorticity. Such an equilibrium is always non degenerate; for

details see Example 7.2 below.

Example 2.4. Three vortices with vorticities Γ1,Γ2,Γ3 6= 0 placed on the edges of an equi-

lateral triangle form a relative equilibrium. It is non-degenerate provided the total vortex

angular momentum L = Γ1Γ2 + Γ1Γ3 + Γ2Γ3 and the total vorticity Γ = Γ1 + Γ2 + Γ3 satisfy

Γ 6= 0, L 6= 0 and L 6= Γ2
1 + Γ2

2 + Γ2
3.
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This will be proved in Example 7.3.

Notice that the conditions of Example 2.4 do not hold in the important special case of

three identical vortices. In order to treat this case we need a refinement of our main theorem

including symmetries. The symmetric group ΣN on N symbols { 1, . . . , N } acts isometrically

on R2N via permutation of components, i.e.

σ ∗ z = (zσ−1(1), . . . , zσ−1(N)), σ ∈ ΣN , z ∈ R
2N .

Together with the action of S1 on X we obtain an action of ΣN × S1 on X given by

(σ, θ) ∗ u(t) := (uσ−1(1)( · + θ), . . . , uσ−1(N)( · + θ)), θ ∈ S1, σ ∈ ΣN , u ∈ X.

If some of the vorticities Γ1, . . . ,ΓN are equal, then the Hamiltonians H0 and HΩ are invariant

under the action of a subgroup of ΣN . This additional symmetry can also be found in some

solutions of (1.3) and (2.1). We set

Sym(Γ) =
{
σ ∈ ΣN :MΓ(σ ∗ z) = σ ∗ (MΓz) for all z ∈ R

2N
}

and consider the symmetry group

Sym(H) =

{
γ = (σ, θ) ∈ Sym(Γ)× S1 : θ ∈

2π

ord(σ)
Z

}
.

Given γ ∈ Sym(H) we look for solutions in the space

Xγ := {u ∈ X : γ ∗ u = u } .

Definition 2.5. Let γ ∈ Sym(H). A relative equilibrium solution Z = e±JN tz ∈ Xγ of

(1.3) as in (2.2) is said to be γ-non-degenerate, if the space {w ∈ Xγ : w solves (2.3) } has

dimension three.

Example 2.6. Thomson’s point vortex configuration, i.e. the relative equilibrium consisting

of N identical vortices placed at the edges of a regular N -gon, is a γ-non-degenerate solution

of (1.3), where γ = ((1 2 . . . N), 2π
N
) ∈ ΣN × S1; see Example 7.4 below.

Theorem 2.7. Let γ ∈ Sym(H), let Z ∈ Xγ be a γ-non-degenerate relative equilibrium of

(1.3) with center of vorticity at 0, and let a0 ∈ Ω be a critical point of the Robin function

h. If a0 is stable, and if the total vorticity
∑N

k=1 Γk 6= 0, then there exists an invariant

continuum Cγ = Cγ(a0, Z) ⊂ R+ ×Xγ of periodic solutions of (2.1) with the properties a)–e)

of Theorem 2.1.
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Note that Theorem 2.1 is a special case of Theorem 2.7 with γ = (id, 0) ∈ Sym(H).

Remark 2.8. a) Theorem 2.7 generalizes and improves [6, Theorem 2.1]. In that paper for

Z only the case of Thomson’s regular N -gon was considered. Moreover, since variational

methods instead of degree methods were applied no connected continuum was found and the

result was only local. The assumption in [6, Theorem 2.1] that the critical groups of h at a0 are

nontrivial is equivalent to our assumption that the Brouwer index of ∇h at a0 is non-trivial;

see Remark 2.2 a).

b) A very interesting and challenging problem consists in desingularizing the periodic

solutions obtained for the point vortex problem to regular solutions of the partial differential

equations mentioned above. In [7, 11, 12] equilibria of (2.1) have been desingularized in order

to obtain stationary solutions of the Euler equations for an ideal fluid. Concerning periodic

solutions we are only aware of the paper [21] where a special periodic relative equilibrium

of the point vortex problem on the two-dimensional sphere S2 was desingularized to obtain

rotating solutions of the Gross-Pitaevskii equation on S2.

3 Degree theory for equivariant potential operators

In this section we generalize the construction of the degree for S1-equivariant potential

operators due to Rybicki [38, 40]; see also [4, 22] for a homotopy-theoretic approach. We use

the following notation, and refer to [1] for basic representation theory. If S1 = R/2πZ acts

on a space X we write θ ∗ u for the action of θ ∈ S1 on u ∈ X . Given a closed subgroup

K ⊂ S1 the set of fixed points underK is denoted byXK = { u ∈ X : θ ∗ u = u for all θ ∈ K }.

The isotropy group of u ∈ X is denoted by Iu = { θ ∈ S1 : θ ∗ u = u }. The irreducible real

representation where θ ∈ S1 acts on R2 via multiplication with

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)
is

denoted by R2[k]. In the sequel all representations of S1 are equipped with a scalar product

that is preserved by the action of S1. For k ≥ 1 let Vk ⊂ V be the isotypical component

corresponding to R2[k], and let V0 = V S1

be the fixed point set of the action. Then V ∼=⊕∞
k=0 Vk, and all but finitely many of the Vk are trivial. Moreover, Vj and Vk are orthogonal

for j 6= k. By Schur’s lemma an equivariant linear map L : V → V maps each Vk to itself;

we denote the restriction by Lk := L|Vk
: Vk → Vk. Observe that for k ≥ 1 there is a

complex structure on Vk such that the action of θ ∈ S1 is given by multiplication with ekθi.

For v ∈ V \ V0 let τ(v) ∈ V be the unit tangent vector to the orbit S1 ∗ v at v such that

〈τ(v), d
dθ
θ ∗ v〉 > 0. If v ∈ V ⊥

0 and using the complex structure this is just i · v
|v|
. For v ∈ V0

9



we set τ(v) = 0.

For the convenience of the reader we now recall the basic properties of the degree for

S1-equivariant gradient maps in the finite-dimensional setting. Let Ck
S1,∇ be the class of maps

f : (O, ∂O) → (V, V \ {0}), defined on the closure of an open, bounded, S1-invariant subset

O ⊂ V of some finite-dimensional orthogonal representation V of S1, such that f = ∇F is the

gradient of an S1-invariant Ck+1-function F : D → R with O ⊂ D ⊂ V open and S1-invariant.

For f ∈ C0
S1,∇ there exists a degree

S1-deg∇(f,O) =
(
d∇k (f,O)

)
k∈N0

∈
∞⊕

k=0

Z

with the following properties, [38, 39]:

(D1) (Existence) If d∇k (f,O) 6= 0 for some k ∈ N0 then there exists v ∈ O∩V K with f(v) = 0

where K = S1 if k = 0, resp. K = Zk = Z/kZ if k ≥ 1.

(D2) (Excision and additivity) If f−1(0) ⊂ O1 ∪O2 for two disjoint open S1-invariant subsets

O1,O2 ⊂ O then

S1-deg∇(f,O) = S1-deg∇(f,O1) + S1-deg∇(f,O2).

(D3) (Homotopy) Let U ⊂ [0, 1]×V be open and bounded, and let h : (U , ∂U) → (V, V \{0})

be continuous. If ht = h(t, . ) : Ut = { v ∈ V : (t, v) ∈ U } → V lies in C0
S1,∇ for each

t ∈ [0, 1], then S1-deg∇(ht,Ut) is independent of t ∈ [0, 1].

(D4) (Multiplicativity) If fi : (Oi, ∂Oi) → (Vi, Vi \ {0}), i = 1, 2, are in C0
S1,∇ then so is

f1 × f2 :
(
O1 ×O2, ∂(O1 ×O2)

)
→ V1 × V2, and

d∇k (f1 × f2,O1 ×O2) =




d∇0 (f1,O1) · d

∇
0 (f2,O2) if k = 0;

d∇k (f1,O1) · d
∇
0 (f2,O2) + d∇0 (f1,O1) · d

∇
k (f2,O2) if k ≥ 1.

Now we formulate some explicit computations of the degree.

(D5) If L : V → V is a linear S1-equivariant and symmetric isomorphism then is the degree

S1-deg∇(L, V ) := S1-deg∇(L,B1(0)) given by:

d∇k (L, V ) =





sign detL if k = 0,

1
2
sign detL · µk if k 6= 0 and Vk 6= 0,

0, otherwise.

where µk is the Morse index of Lk.
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The indices µk are even, since each Lk is symmetric and S1-equivariant. Also observe that

sign detL = 1 if V0 = 0 and that sign detL = sign detL0 if V0 6= 0. If v ∈ OS1

is a non-

degenerate zero of f ∈ C1
S1,∇ then S1-deg∇(f, Bε(v)) = S1-deg∇(Df(v), B1(0)) for ε > 0 small.

It follows that d∇0 (f,O) = deg(f,OS1

, 0) is the Brouwer degree of f constrained to the set of

fixed points of the action of S1. One can also formulate an explicit formula for the degree

S1-deg∇(f, Bε(S
1 ∗ v)) if S1 ∗ v is a non-degenerate orbit of zeroes of f ∈ C1

S1,∇, and v is not

a fixed point of the action. Since this formula is a bit more complicated and since it is not

needed in its full strength we only state the following fact:

(D6) Let f : V ⊃ O → V be in C1
S1,∇ with f−1(0) = S1 ∗ v, and S1 ∗ v is a non-degenerate

orbit of zeroes of f with isotropy group Iv ∼= Zk. Then |d∇k (f,O)| = 1.

Now we extend this degree to the infinite-dimensional setting. LetX be a separable Hilbert

space with an orthogonal action of the group S1, i.e. there is a continuous homomorphism

R : S1 → B(X) from S1 into the space of bounded linear operators on X such that each R(θ)

is an orthogonal linear map. The action of θ ∈ S1 on u ∈ X is denoted by θ ∗ u := R(θ)[u].

We want to define a degree theory for S1-equivariant maps of the form Φ = L − Ψ : Λ → X

where L : X → X is a bounded self-adjoint linear operator and Ψ : Λ → X is the gradient of

an S1-invariant function defined on an open subset Λ ⊂ X . The original extension from [38]

dealt with the case L = id and Ψ completely continuous. For applications to Hamiltonian

systems Rybicki in [40] considered the case where L is a Fredholm operator of index 0 and the

positive and negative eigenspaces are infinite-dimensional. This implies that X is the form

domain of the quadratic form u 7→ 〈Lu, u〉. In our application, however, the functional does

not have this property because Ψ is not defined on (an open subset of) the form domain of

the quadratic form.

We consider the following class of operators. Let L ∈ B(X) be a bounded, self-adjoint

linear operator on X . We assume that there is a Hilbert space decomposition

X = clos

(
⊕

k∈N0

Ek

)
, Ej ⊥ Ek for j 6= k,

such that the following conditions hold.

(A1) Ek is a finite-dimensional, S1-invariant linear subspace of X , and the isotropy group of

u ∈ Ek \ {0} is Zk for k ∈ N.

Thus Ek is the isotypical component of E⊥
0 corresponding to R2[k]. For n ∈ N0 we set
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Xn :=
⊕n

k=0Ek and write Pn : X → Xn for the orthogonal projection, so that Pn[u] → u as

n→ ∞ for every u ∈ X . The above decomposition is adapted to L in the sense:

(A2) E0 = Kern(L), and for each k 6= 0: L(Ek) = Ek.

(A3) The map L+ P0 defines an isomorphism X → Y onto a Hilbert space Y ≤ X .

In our application X = H1(R/2πZ,R2N), the spaces Ek correspond to the k-th Fourier modes,

L is the H1-gradient of the quadratic form 1
2

∫ 2π

0
〈MΓu̇, JNu〉 on X , and Y = H2(R/2πZ,R2N).

Recall that the form domain of this quadratic form is H1/2(R/2πZ,R2N).

Concerning the nonlinear map Ψ we assume:

(A4) Ψ : O → X is the gradient of an S1-invariant C1-function K : Λ → R restricted to the

closure of an open, bounded and invariant set O ⊂ Λ.

(A5) The image of Ψ is contained in Y and the set (L + P0)
−1 ◦ Ψ

(
O
)
is relatively compact

in X .

Lemma 3.1. If (A1)-(A5) hold, and if the equation Lu−Ψ(u) = 0 does not have a solution

u ∈ ∂O then there exists n0 ∈ N such that the equation Lu−Pn0
Ψ(u)− t (Pn − Pn0

) Ψ(u) = 0

does not have a solution u ∈ Xn ∩ ∂O for n ≥ n0, t ∈ [0, 1].

Proof. Arguing by contradiction, suppose there exist sequences tk ∈ [0, 1] and uk ∈ Xnk
∩ ∂O

with nk ≥ k such that Luk − PkΨ(uk)− tk (Pnk
− Pk)Ψ(uk) = 0 for all k ∈ N. Then

uk − (L+ P0)
−1[P0uk]− (L+ P0)

−1 [PkΨ(uk) + tk (Pnk
− Pk) Ψ(uk)] = 0 for all k.

After passing to subsequences we may assume that tk → t ∈ [0, 1], P0uk → v because X0 = E0

is finite-dimensional, and (L+ P0)
−1[Ψ(uk)] → w by (A5). Then

(L+ P0)
−1[PkΨ(uk)] = Pk ◦ (L+ P0)

−1[Ψ(uk)] → w

and similarly (L+ P0)
−1 [(Pnk

− Pk)Ψ(uk)] → 0. It follows that uk → u := v + w ∈ ∂O, and

Lu−Ψ(u) = 0, a contradiction.

Lemma 3.1 and (D2)–(D5) imply that

S1-deg∇(L− PnΨ,O ∩Xn) + (d∇0 (L−Ψ,O), 0, 0, . . .) =

S1-deg∇(L− Pn0
Ψ,O ∩Xn0

) + d∇0 (L−Ψ,O) · S1-deg∇(L,Xn ∩ (Xn0
)⊥).
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Recall that d∇0 (L−Ψ,O) = deg(L−Ψ,OS1

, 0) is the Brouwer degree of L−Ψ constrained to

the fixed point set. As a consequence of our discussion the number

S1-deg∇(L− PnΨ,O ∩Xn)− deg(L−Ψ,OS1

, 0) · S1-deg∇(L+ P0, Xn)

is independent of n ≥ n0 with n0 from Lemma 3.1. Therefore we can define:

Definition 3.2. For a bounded, self-adjoint linear operator L ∈ B(X) and Ψ : O → X such

that (A1)-(A5) hold the degree for S1-equivariant gradient maps is defined as

S1-deg∇(L−Ψ,O) =
(
d∇k (L−Ψ,O)

)
k∈N0

∈
∞⊕

k=0

Z,

where d∇0 (L−Ψ,O) = deg(L−Ψ,OS1

, 0) and for k 6= 0

d∇k (L−Ψ,O) = lim
n→∞

(
d∇k (L− PnΨ,O ∩Xn)− deg(L−Ψ,OS1

, 0) · d∇k (L+ P0, Xn)
)
.

It is a standard argument to prove that S1-deg∇ has the properties (D1)-(D4) with V

replaced by X and f replaced by L−Ψ satisfying (A1)-(A5). The same is valid for property

(D6) provided the non-degenerate orbit of zeroes S1 ∗ v is contained in a finite-dimensional

subspace Xn ≤ X .

Remark 3.3. A somewhat different approach would be to pass from L[u] − Ψ(u) = 0 to

F (u) = u − (L + P0)
−1[Ψ(u)] = 0. Then F is a compact perturbation of the identity but

not a gradient. It is also not S1-orthogonal in the sense of [38], a generalization of gradient

maps. Consequently the degree from [38] still cannot be used, and one needs to develop a new

version.

Now we state a continuation theorem suitable for our application. We consider a family

of equations of the form

(3.1) Lu−Ψ(r, u) = 0 (r, u) ∈ D ⊂ R
+ ×X.

Here S1 acts trivially on R and L ∈ B(X) is a bounded, self-adjoint linear operator on X as

above. Concerning the nonlinear map Ψ we require:

(A6) Ψ : D → X is defined on an open and invariant subset D ⊂ R+ ×X , it is continuous,

equivariant, and Ψ(r, .) is the gradient of K(r, ·), where K : D → R is S1-invariant,

continuous and differentiable with respect to the u component.
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(A7) The image of Ψ is contained in Y . If B ⊂ R×X is bounded, closed, and B ⊂ D, then

the set (L+ P0)
−1 ◦Ψ(B) is relatively compact in X .

The set of solutions of (3.1) will be denoted by S := { (r, u) ∈ D : Lu−Ψ(r, u) = 0 }.

Observe that if B ⊂ R×X is S1-invariant, closed, bounded and satisfies B ⊂ D then S ∩ B

is compact. This follows easily from (A7). For M ⊂ R+ ×X and r ∈ R+ we use the notation

Mr = {u ∈ X : (r, u) ∈M}.

Theorem 3.4. Suppose (A1)-(A3), (A6), (A7) hold, and suppose there exist r0 > 0 and a

relatively open, S1-invariant subset U ⊂ (0, r0]×X such that:

(i) For every r ∈ (0, r0]: Ur 6= ∅, bounded, U r ⊂ Dr.

(ii) S ∩ ∂U = ∅ where ∂U is the relative boundary of U in (0, r0]×X.

If S1-deg∇(L − Ψ(r0, . ),Ur0) 6= 0 then there exists a connected component C ⊂ S with the

following properties:

a) (C ∩ U)r 6= ∅ for every r ∈ (0, r0],

b) C \ U is not contained in a compact subset of D.

Proof. We first add two points at infinity to the set D \ ∂U :

D∗ := (D \ ∂U) ∪ {∞1,∞2 } .

In order to define the topology of D∗ we set for 0 < ε < 1:

D(ε) =
{
(r, u) ∈ D : r ∈ [ε, ε−1], dist(u, ∂Dr) ≥ ε, ‖u‖ ≤ ε−1

}
.

A neighborhood basis of ∞1 is given by the family ({∞1} ∪ U) \ D(1/n), n ∈ N, and a

neighborhood basis of ∞2 is given by ({∞2} ∪ (D \ U)) \ D(1/n), n ∈ N. Then D∗ is a

normal topological space, and S∗ := S ∪ {∞1,∞2} is a compact subspace of D∗. We need

to prove that there exists a connected set C ⊂ S such that ∞1,∞2 ∈ C ⊂ D∗. According

to [2, Proposition 5], a refinement of Whyburn’s lemma, it is sufficient to show that ∞1 and

∞2 are not separated in S∗. Arguing by contradiction suppose that there exist two open

subsets V1, V2 ⊂ D∗ such that V1 ∩ V2 = ∅, ∞1 ∈ V1, ∞2 ∈ V2, and S∗ ⊂ V1 ∪ V2. Then

V1 ⊂ {∞1} ∪ U ∪ int(D(ε)) and V2 ⊂ {∞2} ∪ D \ clos(U \ D(ε))
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for some 0 < ε < min{1, r0}. It follows that

S1-deg∇(L−Ψ(r0, .), (V1 ∩ U)r0) + S1-deg∇(L−Ψ(r0, .), (V1 \ U)r0)

= S1-deg∇(L−Ψ(r0, .), (V1)r0) = S1-deg∇(L−Ψ(1/ε, .), (V1)1/ε) = 0

and

S1-deg∇(L−Ψ(r0, .), (V1 \ U)r0) = S1-deg∇(L−Ψ(ε, .), (V1 \ U)ε) = 0,

hence

S1-deg∇(L−Ψ(r0, .), (V1 ∩ U)r0) = 0.

Moreover we have

S1-deg∇(L−Ψ(r0, .), (V2 ∩ U)r0) = S1-deg∇(L−Ψ(ε, .), (V2 ∩ U)ε) = 0.

This leads to the contradiction

0 6= S1-deg∇(L−Ψ(r0, .),Ur0)

= S1-deg∇(L−Ψ(r0, .), (V1 ∩ U)r0) + S1-deg∇(L−Ψ(r0, .), (V2 ∩ U)r0) = 0.

4 The functional setting

From now on we assume without loss of generality that a0 = 0. We want to find solutions

of (2.1) that are close to the solution rZ(t/r2) of (1.3) for r > 0 small. Since r = 0 is a singular

limit for this ansatz we make a blow-up argument. Fixing r > 0 and setting u(s) = 1
r
z(r2s)

we see that z solves (HS) if and only if u solves

(4.1) Γku̇k = J∇uk
Hr(u), k = 1, . . . , N,

with

Hr(u) := H(ru) +
1

2π

∑

j 6=k

ΓjΓk log r + F (0) = H0(u)− F (ru) + F (0).

Clearly Hr(u) → H0(u) as r → 0. The Hamiltonian Hr is defined on

Or = {u ∈ R
2N : ruk ∈ Ω, uj 6= uk for all j 6= k}.

Observe that Or = FN(
1
r
Ω) for r > 0, and O0 = FN(R

2).

Recall from Section 2 the space X = H1(R/2πZ,R2N) and the fixed point subspace

Xγ := { u ∈ X : γ ∗ u = u } for γ ∈ Sym(H). We shall seek 2π-periodic solutions u ∈ Xγ
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of (4.1), corresponding to 2πr2-periodic solutions z of (2.1). Solutions of (4.1) with period 2π

are critical points of the corresponding action functional. In order to define this functional let

Λ = { (r, u) ∈ R×X : u(t) ∈ Or for all t ∈ R } ,

and, for r ∈ R,

Λr = {u ∈ X : (r, u) ∈ Λ } .

Clearly Λ is an open subset of R × X , and Λr is open in X . Now the action functional

J : Λ → R is defined by

J(r, u) = Jr(u) =
1

2

∫ 2π

0

〈MΓu̇, JNu〉R2N dt−

∫ 2π

0

Hr(u) dt

J is of class C2 and critical points of J are solutions of (4.1). Observe that

Jr(u) = J0(u)−

∫ 2π

0

F (ru) dt+ 2πF (0).

We want to show that the gradient Φr := ∇Jr has the form suitable for our degree theory.

The decomposition of X is given by the Fourier modes, of course. For k ∈ Z we define

Bk : R → SO(2N), Bk(t) := e−kJN t,

and

Ek :=
{
Bkα +B−kβ : α, β ∈ R

2N
}
⊂ X.

Observe that J0(u) has the form

(4.2) J0(u) =
1

2
〈Lu, u〉 −

∫ 2π

0

H0(u) dt

with L : X → X given by Lu = (id−∆)−1(−JNMΓu̇). Here ∆u = ü defines an isomorphism

∆ : Hs+2 ∩ (E0)
⊥ → Hs ∩ (E0)

⊥ for any s ≥ 0 where

Hs = Hs(R/2πZ,R2N) =

{
∑

k∈Z

Bkαk ∈ L2(R/2πZ,R2N) :
∑

k∈Z

|k|2s |αk|
2 <∞

}
.

The operator L ∈ B(X) is a bounded self-adjoint linear operator with range

Range(L) ⊂ Y = H2
⋐ X = H1.

Clearly E0 = Kern(L), L(Ek) = Ek for k 6= 0, and L + P0 defines an isomorphism X ∼= Y

where P0 : X → E0 is the orthogonal projection.
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The nonlinearity K(r, u) = Kr(u) defined by

Kr : Λr → R, Kr(u) =

∫ 2π

0

Hr(u) dt =

∫ 2π

0

H0(u) dt+

∫ 2π

0

F (ru) dt− 2πF (0)

is in C2(Λ) and Ψr := ∇Kr : Λr → X is given by

Ψr(u) = (id−∆)−1[∇H0(u)] + r(id−∆)−1[∇F (ru)]

Note that Ψr(u) ∈ H3
⋐ Y , hence (L+P0)

−1◦Ψmaps bounded subsets of Λ that are also closed

in R×X to relatively compact subsets of X . Thus we see that Φ = ∇uJ = L − Ψ : Λ → X

satisfies (A1)-(A3), (A6), (A7).

Next for γ ∈ Sym(H) we set

Λγ := Λ ∩ (R×Xγ) and Λγ
r := Λr ∩X

γ.

Since Φr is equivariant with respect to γ, it induces a restriction Φγ : Λγ → Xγ. Thus it

remains to find a continuum Cγ = Cγ(a0, Z) ⊂ Λγ of solutions (r, u) ∈ Λγ of the equation

Φγ
r (u) = 0 with the properties stated in Theorem 2.1. This will be a consequence of the

continuation theorem 3.4.

5 A degree computation

We fix γ ∈ Sym(H) and a relative equilibrium Z ∈ Xγ of (1.3) as in (2.2) with minimal

period 2π and assume that Z is γ-non-degenerate. We also assume that a0 = 0 is a stable

critical point of the Robin function h. Recall the notation â = (a, . . . , a) ∈ R2N for a ∈ R2

and the space D := {â : a ∈ R2} ⊂ R2N ⊂ Xγ. The space D⊕RŻ is a subset of the kernel of

the linearization DΦγ
0(Z) because Φ0 = ∇J0 and J0 is invariant under translations and under

the action of S1. The γ-nondegeneracy of Z means that the differential DΦγ
0(Z) : X

γ → Xγ

has kernel D ⊕ RŻ. Since (L+ P0)
−1 ◦DΦ0(Z) = id− P0 − (L+ P0)

−1 ◦ (id−∆)−1 ◦H ′′
0 (Z)

is a compact perturbation of identity one sees that Z is an isolated zero of Φ0 restricted to

NZ := (D ⊕ RŻ)⊥ ⊂ Xγ. I.e. there exists 0 < δ < ‖Z‖ so that the following holds:

(5.1) u ∈ NZ , ‖u− Z‖ ≤ δ, Φ0(u) = 0 =⇒ u = Z.

Thus if

Nδ := S1 ∗ {u ∈ NZ : ‖u− Z‖ < δ } ∩D⊥ = Bδ(S
1 ∗ Z) ∩D⊥
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denotes the open δ-neighborhood of S1 ∗ Z in D⊥ = RŻ ⊕NZ , then Φ0 does not have zeroes

in the closure of Nδ except the orbit S1 ∗ Z. There also exists ε0 > 0 so that a0 = 0 is the

only zero of ∇h : Ω → R in the closed disc Bε0(0) ⊂ Ω.

The main result of this section is the following proposition.

Proposition 5.1. Suppose Z is γ-non-degenerate and a0 = 0 is an isolated zero of ∇h with

index deg(∇h,Bε0(0), 0) 6= 0, and
∑N

k=1 Γk 6= 0. Then there exists r0 > 0 and there exists a

relatively open, S1-invariant subset U ⊂ Λ ∩
(
(0, r0]×Xγ

)
with the following properties:

(i) (0, r0]× (S1 ∗ Z) ⊂ U ⊂ (0, r0]×
{
b̂+ v : b̂ ∈ D, v ∈ Nδ

}

(ii) U ∩
(
(0, r0]×Xγ

)
⊂ Λγ

(iii) Φ(r, u) 6= 0 if (r, u) ∈ ∂U where ∂U is the relative boundary of U in (0, r0]×Xγ.

(iv) For any sequence (rn, un) ∈ U with rn → 0 there holds rnPD[un] → 0.

(v) For 0 < r ≤ r0 the set Ur := { u ∈ Xγ : (r, u) ∈ U } is bounded and S1-deg∇(Φr,Ur) 6= 0;

more precisely there holds d∇1 (Φr,Ur) 6= 0.

In order to prove Proposition 5.1 we consider the homotopy h : [0, 1] × D → Xγ defined

by

h(t, r, u) := L[u]− (id−∆)−1[∇H0(u)] + (1− t)r(id−∆)−1[∇F (ru)]

+ trPD ◦ (id−∆)−1
[
∇F (rPD[u])

]

where PD : Xγ → D is the orthogonal projection and D :=
{
(r, u) ∈ Λγ : rPD[u] ∈ ΩN

}
.

Observe that there exists r1 > 0 such that

{
(r, u) ∈ (0, r1]×Xγ : ‖PD[u]‖ ≤ ε0/r, u− PD[u] ∈ Nδ ⊂ D⊥ ∩ Λγ

0

}
⊂ D.

Note further that h(t, r, .) is the gradient of an S1-invariant function and h(0, r, u) = Φr(u).

Lemma 5.2. For every 0 < ε ≤ ε0 there exists 0 < r(ε) ≤ r1 with the following property:

h(t, r, u) 6= 0 for all t ∈ [0, 1], all 0 < r ≤ r(ε), and all u ∈ Aε,r ∪Bε,r with

Aε,r = { u ∈ Xγ : ε/r ≤ ‖PD[u]‖ ≤ ε0/r, u− PD[u] ∈ Nδ }

and

Bε,r = { u ∈ Xγ : ‖PD[u]‖ ≤ ε0/r, u− PD[u] ∈ ∂Nδ } .
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Proof. Arguing by contradiction we assume that there exists ε ∈ (0, ε0], and sequences 0 <

rn → 0, tn ∈ [0, 1], un ∈ Aε,rn ∪ Bε,rn, such that h(tn, rn, un) = 0. Let vn := un − PD[un] ∈

Nδ ⊂ D⊥. Then, along a subsequence, tn → t∗ ∈ [0, 1], rnPD[un] → ĉ ∈ D with ‖ĉ‖ ≤ ε0,

rnvn → 0 and thus rnun = rnvn+ rnPD[un] → ĉ. Since H0 is invariant under translations with

elements of D and PD ◦ (id−∆)−1 = PD, we obtain from h(tn, rn, un) = 0:

0 =
1

rn
PD[h(tn, rn, un)] = (1− tn)PD[∇F (rnun)] + tnPD[∇F (rnPD[un])] → PD[∇F (ĉ)].

A direct computation shows that

∇zjF (ĉ) = Γj

N∑

k=1

Γk∇h(c)

and thus

0 = PD

[
∇F (ĉ)

]
=

1

N

(
N∑

k=1

Γk

)2

∇̂h(c).

By our assumption that 0 is the only critical point of h in Bε0(0) we conclude c = 0, hence

rnun → 0 and therefore un ∈ Bε,rn, i.e. vn = un − PD[un] ∈ ∂Nδ.

Applying now (L+ P0)
−1 to the equation h(tn, rn, un) = 0 and using again the invariance

of H0 under translations leads to

0 = un − P0[un]− (L+ P0)
−1 ◦ (id−∆)−1[∇H0(un)] + o(1)

= vn − P0[vn]− (L+ P0)
−1 ◦ (id−∆)−1[∇H0(vn)] + o(1),

which implies vn → w ∈ ∂Nδ along a subsequence, due to the fact that (vn)n ⊂ ∂Nδ is bounded

and P0, (L+ P0)
−1 ◦ (id−∆)−1 : Xγ → Xγ are compact operators. Therefore we obtain

0 = h(tn, rn, un) = L[un]− (id−∆)−1[∇H0(un)] + o(1)

= L[vn]− (id−∆)−1[∇H0(vn)] + o(1) → L[w]− (id−∆)−1[∇H0(w)] = Φ0(w)

contradicting the fact that Φ0 does not have zeroes in ∂Nδ.

Proof of Proposition 5.1. Using the notation from Lemma 5.2 we set εn := ε0/2
n, r0 = r(ε0),

and rn := min { r(εn), rn−1/2 } for n ≥ 1. Now we define the set U ⊂ Λ ∩
(
(0, r0] × Xγ

)
as

follows. For rn+1 < r ≤ rn let

Ur := { u ∈ Xτ : ‖PD[u]‖ < εn/r, u− PD[u] ∈ Nδ }

and define

U := { (r, u) : 0 < r ≤ r0, u ∈ Ur } ⊂ D.
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The properties (i)-(iv) of Proposition 5.1 are immediate consequences of the construction of U

and Lemma 5.2. It also follows from Lemma 5.2 that for 0 < r ≤ r0 the degree S
1-deg∇(Φr,Ur)

is well defined and equal to the degree S1-deg∇(h(1, r, . ),Ur) where

h(1, r, u) = Φ0(u) + rPD ◦ (id−∆)−1[∇F (rPD[u])] = Φ0(u) + rPD[∇F (rPD[u])].

It remains to prove that d∇1 (h(1, r, . ),Ur) 6= 0. Since J is invariant under translations with

elements from D it follows that Φ0(u) = ∇J0(u) ∈ D⊥, and Φ0(u + b̂) = Φ0(u) for all

u ∈ Nδ, all b̂ ∈ D. The second summand in the definition of h(1, r, . ) clearly satisfies

rPD

[
∇F (rPD[u])

]
∈ D. Hence the map h(1, r, . ) can be written as a product

D⊥ ×D ⊃ Nδ ×Dr → D⊥ ×D,
(
v, b̂
)
7→
(
Φ0(v), rPD

[
∇F (rb̂)

])
,

where

Dr :=
{
b̂ ∈ D : ‖b̂‖ < ε0/r

}
.

Therefore we can apply the multiplicativity property (D4) of S1-deg∇. In order to do this we

first observe that

d∇1
(
Φ0|D⊥, Nδ

)
6= 0

as a consequence of (D6) because S1 ∗ Z ⊂ X1 is a non-degenerate orbit of zeroes of the

restricition Φ0|D⊥ : Λγ
0 ∩ D⊥ → D⊥, and because Nδ does not contain other zeroes of Φ0

according to (5.1). Next we compute the degree S1-deg∇(ψr, Dr) where

ψr (̂b) = rPD

[
∇F (rb̂)

]
=

r

N

(
N∑

k=1

Γk

)2

∇̂h(rb) ∈ D.

Since S1 acts trivially on D only the component d∇0 (ψr, Dr) may be different from zero. This

is simply the Brouwer degree deg
(
rPD

[
∇F (r . )

]
, Dr, 0

)
= deg(∇h,Bε0(0), 0) 6= 0. Now the

multiplicativity property (D4) yields

d∇1 (h(1, r, . ),Ur) = d∇1
(
Φ0|D⊥, Nδ

)
· d∇0 (ψr, Dr) 6= 0.

✷

6 Proof of Theorem 2.7

As a consequence of Proposition 5.1 we can apply Theorem 3.4. This gives a continuum

C = C− ∪ C+ ⊂ R+ × Xγ of solutions (r, u) of the equation Φr(u) = 0. Property a) of
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Theorem 2.1 holds by construction. The neighborhood U in property b) of Theorem 2.1 is, of

course, the one constructed in Proposition 5.1. Given a sequence (rn, un) as in Theorem 2.1 b)

we claim that rnPD[un] → 0 and vn → S1 ∗ Z as n → ∞. The first claim follows from

Proposition 5.1 (iv). For the second claim we apply (L + P0)
−1 to the equation Φrn(un) = 0

and obtain

0 = (L+ P0)
−1
(
Φrn(un)

)

= un − P0[un]− (L+ P0)
−1 ◦ (id−∆)−1

[
∇H0(un)

]
+ o(1)

= vn − P0[vn]− (L+ P0)
−1 ◦ (id−∆)−1

[
∇H0(vn)

]
+ o(1).

As in the proof of Lemma 5.2 one sees that vn → v ∈ Nδ ⊂ D⊥ along a subsequence, and v

solves Φ0(v) = 0. This implies v ∈ S1 ∗ Z as claimed, so property b) of Theorem 2.1 holds.

Next property c) of Theorem 2.1 corresponds to Theorem 3.4 a). Property d) is a consequence

of the fact that C+ is not contained in a compact subset of Λγ, and lemma 5.2.

It remains to proof e). Therefore assume that a0 = 0 is a non-degenerate critical point of

h. We consider the auxiliary map φ : Λγ → Xγ defined by

φ(r, u) =




(id− PD)[Φr(u)] +

1
r2
PD[Φr(u)], r 6= 0

Φ0(u) + PD[F
′′(0)u], r = 0.

This has the same zeroes as Φ in Λγ \ ({0} × Xγ). Since H0 is invariant under translations

there holds φ(r, u) = Φ0(u) + r(id − PD) ◦ (id − ∆)−1[∇F (ru)] + 1
r
PD[∇F (ru)] for r 6= 0.

Thus we deduce that φ is continuous because F is C2 and ∇F (0) = 0. Observe also that φ

is differentiable with respect to u and that Duφ is continuous. We have φ(0, Z) = 0 and the

u-derivative at (0, Z) is given by T := Duφ(0, Z) = DΦ0(Z)+PD◦F ′′(0). Again the invariance

of H0 under translations implies v ∈ Kern(T ) if and only if v ∈ D⊕ RŻ and PD[F
′′(0)v] = 0.

However, for v = â+ λŻ there holds:

PD[F
′′(0)v] = PD[F

′′(0)â] =
1

N

(
N∑

k=1

Γk

)2

ĥ′′(0)a,

hence Kern(T ) = RŻ. Now (L+P0)
−1◦T induces an isomorphism between the Banach spaces

(RŻ)⊥ and Range((L + P0)
−1 ◦ T ) = (R(L+ P0)Ż)

⊥ =: R. Therefore e) follows from 2.1 b),

2.1 c) and the implicit function theorem applied to the map

PR ◦ (L+ P0)
−1 ◦ φ : Λγ ∩ (R× (RŻ)⊥) → R,

making r0 smaller if necessary. Here PR : Xγ → R is the orthogonal projection.
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7 Examples

Let Z(t) = e−ωJN tz, z ∈ R2N fix, be a rigidly rotating solution of (1.3). In order to prove

that Z is non-degenerate we need to consider the so called stability matrix

A = JN(M
−1
Γ H ′′

0 (z) + ω · id) ∈ R
2N×2N .

Then according to Remark 2.2 c) Z is a non-degenerate relative equilibrium provided the

linear system

(7.1) ẇ = Aw

has only 3 linear independent 2π
|ω|
-periodic solutions. In order to check this for concrete

examples we shall use results of Roberts [36], who studied the linear stability of relative

equilibria and therefore investigated the spectrum of A. For the convenience of the reader

we recall Lemma 2.4 and some consequences from [36]. For v ∈ R2N we use the notation

Ev := span { v, JNv } ⊂ R2N .

Lemma 7.1. a) Let ê1, ê2 ∈ D be the standard basis of D ⊂ R2N . The spaces Ez and D

are invariant subspaces of A. The representation of A in the basis (z, JNz, ê1, JN ê1) of

the direct sum Ez ⊕D is given by

A =




0 0 0 0

2ω 0 0 0

0 0 0 −ω

0 0 ω 0


 .

b) Suppose v is a real eigenvector of M−1
Γ H ′′

0 (z) with eigenvalue µ. Then Ev is an invariant

subspace of A, on which A is represented by
(

0 µ− ω

µ+ ω 0

)
.

c) Suppose v = v1 + iv2 is a complex eigenvector of M−1
Γ H ′′

0 (z) with eigenvalue µ = ξ + iη.

Then span { v1, v2, JNv1, JNv2 } ⊂ R2N is a real invariant subspace of A, on which A is

represented by 


0 0 ξ − ω η

0 0 −η ξ − ω

ξ + ω η 0 0

−η ξ + ω 0 0


 .
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Note that the Hamiltonian in [36] differs by a factor of π−1 from H0 but the corresponding

stability matrices coincide, when translating the solution of one system to the other.

Example 7.2. Let N = 2 and Γ1,Γ2 6= 0 with Γ := Γ1 + Γ2 6= 0. Any initial position

z1, z2 of the two point vortices gives a relative equilibrium solution of (1.3) (see e.g. [35]).

Via translation we can assume that they rotate rigidly around the origin with frequency

ω = Γ
π|z1−z2|2

6= 0. Due to Lemma 7.1 the stability matrix A ∈ R4×4 of any such solution is

given (in a suitable basis) by

A =




0 0 0 0

2ω 0 0 0

0 0 0 −ω

0 0 ω 0


 .

The linear system (7.1) then possesses exactly 3 linearly independent 2π
|ω|
-periodic solutions.

This explains Example 2.3.

Example 7.3. Now we consider N = 3 vortices with vortex strengths, Γ1,Γ2,Γ3 6= 0, and such

that Γ := Γ1+Γ2+Γ3 6= 0. Then every equilateral triangle configuration z1, z2, z3 is a relative

equilibrium solution of the 3-vortex problem (1.3) (see [35, Section 2.2]). Let Z(t) = e−ωJ3tz be

an equilateral triangle configuration rotating around the origin. The corresponding stability

matrix A is a 6 × 6 matrix. In [36] Roberts computed its eigenvalues explicitly in the case

when ω = Γ/3; this can always be achieved by a suitable scaling. He showed that in addition

to the eigenvalues 0, 0,±iω of the block in 7.1a) there are two more eigenvalues given by

±
√

−L
3
, where L = Γ1Γ2 + Γ1Γ3 + Γ2Γ3 is the total vortex angular momentum. Hence the

linear system (7.1) has more than 3 linearly independent 2π
|ω|
-periodic solutions if L > 0 and√

L/3 ∈ ωZ = Γ
3
Z, hence if there exists k ∈ Z with

3L = k2Γ2 = k2
(
Γ2
1 + Γ2

2 + Γ2
3 + 2L

)
.

This is only possible if k2 = 1 and L = Γ2
1 + Γ2

2 + Γ2
3. Therefore the equilateral triangle

configuration is non-degenerate provided Γ 6= 0, L 6= 0 and L 6= Γ2
1 + Γ2

2 + Γ2
3. This result,

which is independent of the particular equilateral triangle configuration considered in [36], has

been stated in Example 2.4.

Example 7.4. Here we consider the case of N identical vortices and assume without loss of

generality Γ1 = . . . = ΓN = 1. Placing these on the vertices of a regular N -gon one obtains

a relative equilibrium solution of (1.3), the famous solution of Thomson. Setting Z1(t) :=

e−Jte1 ∈ R2 and Zk(t) := Z(t + 2(k−1)π
N

) for k = 2, . . . , N , the function Z = (Z1, . . . , ZN)

solves (1.3). Note that this solution is a choreography, i.e. for σ := (1 2 . . . N) ∈ ΣN and

γ := (σ, 2π
N
) ∈ ΣN × S1 one has γ ∗Z = Z. In [6, Lemma-4.1] it was proved that the kernel of

J′′
0(Z) in X

γ has dimension 3, hence Z is γ-non-degenerate..
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[23] H. Helmholtz: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbe-
wegungen entsprechen. J. Reine Angew. Math. 55 (1858), 25–55.

[24] G. R. Kirchhoff: Vorlesungen über mathematische Physik. Teubner, Leipzig, 1876.

[25] C. Kuhl: Symmetric equilibria for the N-vortex-problem. J. Fixed Point Theory Appl.
17 (3) (2015), 597–624.

[26] C. Kuhl: Equilibria for the N-vortex-problem in a general bounded domain. J. Math.
Anal. Appl. 433 (2) (2016), 1531–1560.

[27] M. Kurzke, C. Melcher, R. Moser, D. Spirn: Ginzburg-Landau vortices driven by the
Landau-Lifshitz-Gilbert equation. Arch. Rat. Mech. Anal. 199 (2011), 843–888.

[28] D. Lewis, T. Ratiu: Rotating n-gon/kn-gon vortex configurations. J. Nonlinear Sci. 6
(5) (1996), 385–414.

[29] C. C. Lin: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-
Routh function. Proc. Nat. Acad. Sci. USA 27 (1941), 570–575.

[30] C. C. Lin: On the motion of vortices in two dimensions. II. Some further investigations
on the Kirchhoff-Routh function. Proc. Nat. Acad. Sci. USA 27 (1941), 575–577.

[31] F.-H. Lin, J.-X. Xin: A unified approach to vortex motion laws of complex scalar Field
equations. Math. Res. Lett. 5 (1998), 455–460.

[32] A. J. Majda, A. L. Bertozzi: Vorticity and Incompressible Flow. Cambridge University
Press, 2001.

[33] C. Marchioro, M. Pulvirenti: Mathematical Theory of Incompressible Nonviscous Fluids,
Applied mathematical sciences 96, Springer, New York, 1994.

[34] A. M. Micheletti, A. Pistoia: Non degeneracy of critical points of the Robin function with
respect to deformations of the domain. Potential Anal. 40 (2) (2014), 103–116.

[35] P. K. Newton: The N-Vortex Problem: Analytical Techniques. Applied mathematical
sciences, Springer, New York, 2001.

25



[36] G. E. Roberts: Stability of relative equilibria in the planar N-vortex problem. SIAM J.
Appl. Dyn. Syst. 12 (2) (2013), 1114–1134.

[37] E. J. Routh: Some applications of conjugate functions. Proc. London Math. Soc. (S1)
12 (1) (1881), 73–89.

[38] S. Rybicki: A degree for S1-equivariant orthogonal maps and its applications to bifurcation
theory. Nonlinear Anal. 23 (1) (1994), 83–102.

[39] S. Rybicki: Applications of degree for S1-equivariant gradient maps to variational nonlin-
ear problems with S1-symmetries. Topol. Methods Nonlinear Anal. 9 (2) (1997), 383–417.

[40] S. Rybicki: Degree for S1-equivariant strongly indefinite functionals. Nonlinear Anal. 43
(8) (2001), 1001–1017.

[41] P. G. Saffman: Vortex Dynamics. Cambridge monographs on mechanics and applied
mathematics, Cambridge Univ. Press, Cambridge 1995.

[42] K.Tanaka: Periodic solutions for first order singular Hamiltonian systems. Nonlin. Anal.
26 (1996), 691–706.

Address of the authors:

Thomas Bartsch, Björn Gebhard

Mathematisches Institut

Universität Giessen

Arndtstr. 2

35392 Giessen

Germany

Thomas.Bartsch@math.uni-giessen.de

Bjoern.Gebhard@math.uni-giessen.de

26


	1 Introduction
	2 Statement of results
	3 Degree theory for equivariant potential operators
	4 The functional setting
	5 A degree computation
	6 Proof of Theorem 2.7
	7 Examples

