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Abstract The paper is concerned with the slightly subcritical elliptic problem with Hardy-critical term

u "o :
—Au — 'uW = |u|?* ~?"u in Q,

u=~0 on 02

in a bounded domain Q C RY with 0 € €, in dimensions N > 7. We investigate the possible blow-up
behavior of solutions as u,e — 0. In particular, we prove the existence of nodal solutions that blow up
positively at the origin and negatively at a different point as g, — 0%. The location of the negative
blow-up point is determined by the geometry of 2. Moreover, the asymptotic shape of the solutions is
described in detail. An interesting new consequence of our results is that the type of blow-up solutions

N—4

N—

considered here exists for = O(¢®) with a > £=3. The bound {=3 is sharp.
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1 Introduction

The paper is concerned with the semilinear singular problem

—Au— Il% =[u*2Fu  inQ,
. (1.1)
u =0 on 01,
where Q@ ¢ RN, N > 7, is a smooth bounded domain with 0 € Q; 2* := 22 is the critical Sobolev

N—2
exponent. Using variational methods Ghoussoub and Yuan [23, Theorem 1.2] proved that this problem
has infinitely many solutions provided 0 < ¢ < 2* — 2 and 0 < p < & where 1 is the best constant in the

Hardy inequality, i.e.
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The main goal of this paper and subsequent work is to understand the possible blow-up behavior of

ﬁ:

solutions as p,e — 0. In particular we construct nodal (i.e. sign changing) solutions that blow-up as

u, e — 0 at precisely two points: one is the origin, the second blow-up point is away from the origin and



determined by the geometry of the domain. The shape of the solutions will be described in detail. We
use singular perturbation techniques and a Lyapunov-Schmidt type reduction. An interesting and new
feature of our type of solutions is that their existence depends on the relative speed of € — 0 and p — 0.
This will be made precise below.

It is well known that the blow-up of solutions near singular parameter values is closely related to
Bahri’s [2] theory of critical points at infinity. The existence of a positive solution in domains with
nontrivial homology and when p = & = 0 has been shown in the seminal work [3] of Bahri and Coron.
Around the same time the blow-up phenomenon for positive and for nodal solutions to problem (1.1) has
been studied extensively in the case u = 0, € — 0. It was proved in [10, 22, 26, 32, 33| that as ¢ — 0T,
the positive solution u. blows up and concentrates at a critical point of the Robin’s function of 2. In
[4, 34], the existence of positive solutions with multiple bubbles was considered. In convex domains a
positive solution cannot have multiple bubbles, see [24]. The existence of nodal solutions with k& bubbles
at k different points was proved in [6] in the case k = 2, in [7] in the case k = 4 when € is convex and
satisfies a certain symmetry, and in [8] in the case k = 3 when (2 is a ball. Bubble tower solutions, i.e.
solutions with multiple bubbles concentrating at the same point, were obtained in [29, 31], based on an
idea from [16]. All these papers only treat the regular case p = 0.

When p # 0, the Hardy-critical potential ﬁ cannot be regarded as a lower order perturbation
because it has the same homogeneity as the Laplace operator and because it does not belong to the Kato
class. This makes the analysis much more complicated compared with the case y = 0. For the existence
of positive and nodal solutions for the problem with Hardy type potentials and possibly critical Sobolev
exponent we refer the reader to [11, 12, 18, 21, 23, 25, 27, 35, 36, 38] and the references therein. However,
concerning blow-up solutions to the problem involving Hardy type potentials very few results are known.

We are only aware of the papers [19, 20], dealing with the problem

— Au — %u = k(x)uy_l,
] (1.2)

ue DM2RY), u>0in RV \ {0};

here DV2(RN) := {u € L¥ (RY)| |Vu| € L*(RN)}. In [19] the existence of a positive solution to (1.2)
blowing up at a critical point of k(z) was obtained as p — 0. In [20] the existence of positive bubble
tower solutions to (1.2), blowing up at the origin, was proved for k(x) = 1+ecK(z) as € — 0; here K (x) is
a continuous bounded function. These solutions, called fountain-like in [20], are superpositions of positive

bubbles. On the other hand, for fixed 0 < pp < 1 = (NZZ)Q, Musso and Wei [30] considered (1.2) when

k(z) = 1 and proved the existence of entire sign changing solutions by gluing together a large number of
positive and negative bubbles distributed along the vertices of a regular polygon. In [13] Cao and Peng
investigated the asymptotic behavior of positive solutions to (1.1) in a ball.

In this paper we investigate the existence of nodal solutions to problem (1.1) that blow up, as u,e — 0,
positively at the origin and negatively at a point staying away from the origin. Compared with [19, 20]
the location of the bow-up points does not depend on the shape of a coefficient function k(z) but on the
more subtle influence of the geometry of the domain. Since we look for solutions of a special form we
make a corresponding ansatz and derive a reduced finite-dimensional variational problem via a Lyapunov-

Schmidt reduction scheme. The reduced functional depends on & different points in €\ {0}, the blow-up



points, and on k + 1 real parameters. We shall then prove the existence of a critical point of the reduced
functional in the case k = 1. The case of k£ > 1 bubbles outside the origin will be treated in subsequent
work. Though these singular perturbation techniques have of course been used in a variety of other
problems we would like to emphasize that there are not only major technical difficulties due to the
Hardy-critical term. We also discover a new phenomenon concerning the existence of solutions of the

special shape we are looking for. Namely, as mentioned above this depends on the speed u — 0 and

€ — 0. More precisely, fixing po > 0 and setting p = pupe® the solutions exist for a > %, and do not
exist for 0 < a < %. Thus p has to converge to 0 like a power of ¢ (or faster), and we have a precise

threshold value for this power.

The paper is organized as follows. In Section 2, we state and discuss our main theorems. Then in
Section 3 we collect some notations and preliminary results, in particular concerning the limit problem
when ¢ = 0 on RY. In Section 4 we perform the finite-dimensional reduction. This will be done for
multiple blow-up points (not just two). Section 5 is devoted to the proof of the main theorems, that is,
the existence of nodal solutions with two bubbles blowing up at two different points. Finally, various
useful technical lemmas are collected in the appendix. Section 4 and Proposition 5.1 together with the
computations in the appendix form the core of the paper. We point out that the reduction results in
Section 4 and the lemmas in the appendix will also be used in future work on solutions with more than
two blow-up points and solutions with bubble towers.

Throughout this paper @ C RV, N > 7, is a smooth bounded domain. The results can be extended
to the case N = 6, but this requires a separate treatment which we avoid in order to not to make the

presentation too heavy. We do not know whether our results hold in dimensions N < 5.

2 Statement of results

In order to state our results we introduce some notations. By Hardy’s inequality, the norm

Jul (/<| 2 “2>d)%
ull, = Vul* — p—=)dx
" o Map?

is equivalent to the norm [lullo = (g \Vu|2dx)1/2 on H(Q) provided 0 < p < i = %. This will
of course be the case for y — 0. As in [21] we write H,(Q) for the Hilbert space consisting of H}(€2)

(u,v), = / (Vqu - Muv2> dx.

It is known that the nonzero critical points of the energy functional

1 'LL2 1 *_ g
Jp‘vs(u) = 5/(’2 <|VU|2 — Mll‘|2> dr — 2*7_5 A |U‘2 dx

defined on H,(2) are precisely the nontrivial weak solutions of problem (1.1).

functions with the inner product

Next we introduce two limiting problems. The first one is
—Au = |u)? "2 in RY,

u—0 as |z| — oo.



It is well known that the nontrivial least energy (positive) solutions to (2.1) are the instantons

) 2
Vi) = O (=)

with § > 0, £ € RY and Cp := (N(N —2)) R [1, 37]. These solutions minimize the Rayleigh quotient

) S |Vu|?dx
min > Yok
ueD12(RN)\{0} ([pn [ul?" dx)

SO =

Moreover there holds

v|Z
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The second limiting problem, dealing with u > 0, is
—Auy — ,uiz = |u|? "2u in RY,
] (2.2)
u—0 as |z| — oo.

For 0 < p < 7@ we know from [14, 38] that all positive solutions to (2.2) are given by

N—2

Vinol) = Vi) = Co (o oms )

o2l + ol

with o > 0, 1 = (Vi — VI~ B/VF. b = (Vi + Vi)V and Gy = (E50) T We drop

the index g if it is clear from the context. These solutions are minimizers of

2
S (V2 = 172 )de
min > Y
ueD 2 ®V\{0}  ([pn [ul?> dx)

2 Vi, 2 5
/ IVV,ol® = p—= d:l::/ Vio|® de=57.
RN ’ || RN

Clearly V,, o — Uy as u — 0.

[

and they satisfy

Now we can formulate the goal of this paper: We investigate the existence of solutions u. of (1.1) close
to V.o — Us¢ with u,0,6,¢ all depending on ¢, and pu, 0,6 — 0 as € — 0. Thus u. blows up positively at
the origin and negatively at £. The precise blow-up rate is determined as is the location of £ in the limit
e —0.

The Green’s function of the Dirichlet Laplacian can be written as G(z,y) = W — H(z,y), for
x,y € Q, where H is the regular part. The regular part is symmetric, i.e. H(z,y) = H(y, ), and satisfies

H(xz,z) — 0o as x — 0. An important ingredient of our results will be the map
0:Q\{0} = R, ox):=H?(0,0H?(z,z) + G(,0).
Observe that 0 < ¢(z) — co as x — 0 or x — 9, hence ¢ has a minimum in Q\ {0}.

Theorem 2.1. Suppose £* € Q\ {0} is an isolated stable critical point of p. Then for fixzed o > %
and pg > 0 the following holds. For e > 0 small the problem (1.1) with p = poe® has a solution u. of the

form

N—-2 N—-2

ug(x)zcﬂ(( o ) TG, (W) Cho(l)  ase—0.  (2.3)

o) el + ] T &P

Here ¢ = A\ ™2 and 0° = X\ e¥=2 with \* and X bounded away from 0 and oo, i.e. )\E,XE € (n, %) for

some n € (0,1). Moreover, £&¢ € Q\ {0} converges as e — 0 towards &* € Q\ {0}



Remark 2.2. a) Here £* being a stable critical point means that a C'-function ¢ : B,(£*) — R that
is close to ¢ in the C'-norm on a neighborhood B,(£*) must have a critical point close to £*. This is
clearly the case if £* is a non-degenerate critical point of ¢. It is also the case if the index of £* or, more
generally, the critical groups of £* as critical point of ¢ are not trivial. We expect that for a generic
domain all critical points of ¢ are non-degenerate. We also expect that if £* is a non-degenerate critical
point of ¢ with Morse index m(£*) then the corresponding solution u. has Morse index k + 2 as critical
point of J, .. Below we state more results where we do not require any a-priori knowledge about the
existence of isolated stable critical points of .

b) The assumption « > % is essential for the result to hold. From a technical point of view it
implies that the interaction between the bubbles Us¢, V,, and the Hardy potential is negligible. This
is not just technical, however. Setting p1 = poe®, po > 0 arbitrary, and making the ansatz for u. as in
Theorem 2.1 leads to a reduced function ¥ = (A, ), €) defined on Rt x Rt x (©2\ {0}). Then problem

(1.1) has a solution u, with a limiting behavior for ¢ — 0 as in Theorem 2.1 if, and only if, ¢ has a

critical point. We shall see that critical points of 1 correspond to critical points of ¢ if a > %. On
the other hand, for 0 < a < % critical points of ¢ do not exist; see Remark 5.2.

The next two theorems apply to any bounded smooth domain.

Theorem 2.3. For fized o > % and pg > 0 the following holds. For e > 0 small the problem (1.1)
with @ = poe® has a solution us of the form (2.3). Moreover, £ € Q\ {0} converges as € — 0 towards a

minimizer £ € Q\ {0} of ¢.

In Theorem 2.3 it is not required that ¢ has an isolated minimizer. Next we state a multiplicity for

solutions of the form (2.3) in terms of the Lusternik-Schnirelmann category of Q2 \ {0}.

Theorem 2.4. For fized o > % and po > 0 the following holds. For e > 0 small problem (1.1) with
= poe®, has at least cat(Q2\ {0}) solutions u of the form (2.3). The parameters \* = A, X" = X; €
(n, %) and the blow-up points £ € Q\ {0} depend on i € {1,...,cat(Q2\ {0})}. Moreover, £ — &F with
& € Q\ {0} being a critical point of .

More can be said when the domain is symmetric in the following sense.
(S1) Q is invariant under a compact Lie group I' C O(N), i.e. g =Q for all g € T.

A simple example is when @ = —; here I = {£id}. If (S7) holds then any solution generates a I'-orbit
of solutions in the following way. If u solves (1.1) then for any g € I' the function g * u defined by
g*u(z) = u(g~tx) solves (1.1). In that case one can use the equivariant category catp in Theorem 2.4;

see [5, 15] for definitions and properties.

Theorem 2.5. If (S1) holds then in the setting of Theorem 2.4 for € > 0 small there exist at least
catr(2\ {0}) T-orbits T ul of solutions of (1.1) of the form (2.3). The parameters and the blow-up

points depend on i as in Theorem 2.4.

Remark 2.6. It is well known that 2 < cat(Q\ {0}) < N for any smooth bounded domain Q C RV with
0 € Q. For Q diffeomorphic to a ball one has cat(Q2\ {0}) = 2. On the other hand, if Q = —Q, so that
(S1) holds with T' = {#id}, then catr(2\ {0}) = N.



In the symmetric case one can also say something about the localization of the blow-up point £* €

O\ {0}.

Theorem 2.7. Suppose (S1) holds and let ¥ C T be a subgroup such that Q¥ = {x € Q : gr =
x for all g € $} # {0}. Then there exist solutions u. as in Theorem 2.3 with & € QF and & — £* as

e — 0 where £ is a minimum of ©|Q*. Moreover, g * u. = u. for all g € ¥.

Remark 2.8. a) In the setting of Theorem 2.7 one can also formulate a multiplicity result as in Theo-
rems 2.4 and 2.5. Let NX be the normalizer of ¥ in I' and WX = NX /¥ the Weyl group. Observe
that WX acts on Q% so that the equivariant category catys(Q* \ {0}) is defined. Then one obtains at
least catyys(Q* \ {0}) different orbits of solutions as in Theorem 2.7 with £5 € Q*. The blow-up points
converge towards critical points of ¢|Q*. We leave details to the reader.

b) In order to illustrate Theorem 2.7 suppose ) is invariant under the reflection Ty : (x1,2') —
(1, —2'); here 21 € R and 2’ € RV~!. Then setting I' = ¥ = {id, 71} Theorem 2.7 yields a solution u.
with €& € QN(Rx{0}) and such that £5 — £* where £* is a minimizer of  in Q*\{0} = (Q\{0})N(Rx{0}).
Moreover, u.(Tix) = uc(z). In fact, there are at least catyyx(Q*\ {0}) such solution with blow up points
€ — &F. Here catyys(QF \ {0}) = cat(Q* \ {0}) is simply the number of components of Q* \ {0}. The
point & is a minimizer of ¢ constrained to the i-th component of (\ {0}) N (R x {0}).

¢) Suppose € is invariant under 77 as in b) and under Ty, where T» is the reflection at the zs-axis.
Then one can set I' = {id, 71,75, T1T5} and Xy = {id, T} for k = 1,2. Then NX;, =T and WX, 2 Z/2,

and one can count the number of solutions using a). Details and further examples are left to the reader.

3 Notations and preliminary results
Throughout this paper, positive constants will be denoted by C,c. Let ¢}, : LN/ (N+2) () — H,(Q)
be the adjoint operator of the inclusion ¢, : H,(Q) — L2N/(N=2)(Q), that is,

*

t(u) =v = (v,0)u = / u(z)p(z)de, for all ¢ € H,(Q). (3.1)
Q

There exists ¢ > 0 such that

[ (w)llw < cllullany(v+2)- (3.2)

Then problem (1.1) is equivalent to the fixed point problem
u:LZ(fs(u))v UGH#(Q), (3.3)

where f.(s) = |s|? 2~ %s.

In order to continue, we first solve an eigenvalue problem.

Proposition 3.1. Let 0 < p < 1 be fized, and let A;, i =1,2,..., be the eigenvalues of

—Au— prtz = AV, ¥ —2u in RY, (3.4)
lu] — 0 as |x| — +oo,

in increasing order. Then A1 = 1 with eigenfunction V,, Ay = 2* — 1 with eigenfunction %‘2’.




Proof. Direct computations give that V, and % are eigenfunctions corresponding to 1 and 2* — 1,
respectively. Now as in [39)], it is enough to prove that the eigenfunction u corresponding to the eigenvalue
A < 2* — 1 has to be radial.

Denote by 1;, i € Ny, the sequence of spherical harmonics, i.e. the eigenfunctions of the Laplace-

Beltrami operator on SV~!:
—Agn-1tp; = 1,15
It is well known that 7o =0, 7q,...,7v = N — 1, 7y41 > 7. We prove that for every i > 1,
/ u(r, 0)x(0)d0 = 0.
SN*I
Setting @;(r) = [gn_1 u(r,0)1;(0)df we have:

Api = A= / A u(r, 0)4:(8)d6
SN*I

_ ,/SM Boulr9) . pyap — /SM <“’“(’;9) +AVE “2u(r, 0)> i (6)do

r2

r
Tiu(r, 0) [ .
= [ a5 AV ul 0)i(0)
= (B 2" -2 )
= (7"2 (7“2 + AV ))‘Pz(r)
This implies for any R > 0:
Wy H 2*_o Ti )
= Ap; 4+ A TN, Y
’ /BR(O) it (7'2 AV Tz) Yi g,

aV 1 . T oV oV, Oy, 0%V
— A 222 L2y AyZ 2 ), 29 A S A
/BR(O) i ( or ) + (r2 AV r2> Yo 9B (0) ( ar ar Yo

—_ e iJ i— | — 7 _y2-l 2L Ay iJ
/BR(O) 72 ¢ or e or ( MT2 v ) + (r2 +AYs r2) v or

AV, 0Oy, 0%V,
+ ar Y
9B r(0) or Or or

N-—1l-7 0V, .
= i (A= (2" =)V
/BR(O) 2 5, T A= )

oV, Ay 9V,
+ . —Yi—m5 |-
dBR(0) 37“ 81" 37’

or Pt TP

Now let R be the first zero of ¢;; R := +o00 if ¢; is never zero. Without loss of generality we assume

@i(r) > 0 for r € (0, R). Then %(R) < 0, and we finish the proof. O

Let us define the projection P : HY(RY) — H{ (), that is, APu = Au in Q, Pu = 0 on 99. Consider
the function H satisfying

AH(0,2) =0 in 2\ {0},
H(0,z) = Iw\% on 0N).
Finally set dinf := inf{|z| : x € 0Q} and dsyp = sup{|z| : z € OQ}.

Proposition 3.2. Let 0 < p < It be fized. Then for o > 0 the function ¢, := Vy; — PV, satisfies

0<¢, <V, and ¢,(x)=C, (E(x))ﬁ_ R0, 2)0 7 + ho(), (3.5)



with

ding < d(z) < dsup, and hy = 0(0 2 ), a—a = o(a%) as o — 0. (3.6)
o
Proof. It is easy to see that ¢, satisfies
Apy(x) =0 in 2\ {0},

N-—2

()00-(1') = Vo-(l') = CN (W) ? on 8(2

Then the first part of (3.5) holds by the maximum principle. It also follows that @UJ’NT is increasing.

Now we estimate for z € 92 and for o > 0 small:
CudYFVITEH (0, 2)0 "% — g, () . (d‘/: Vi 1 )
= ,u.O—

inf inf o
S x|V -2 (02|x|31+|z|ﬁg)¥

N—-2
< 1, ding, doup )02 (df VETH (02)z] + |2)2) T |xN2>

inf

< Oy, ding, dup )0~ (|a:|fv (2|x|51+|a:|ﬁ2) wl“)

— — N—
S Cg(/J,, dinfadsup)a—_2 (‘x|\/ﬁ_ M_H(‘$|BQ(T2) + C4(Ma dinfa dsup)az) - |1.|N—2)

< C= C(,u» dinfa dsup)'

The constant C'(p, dint, dsup) can be chosen independent of x € 99 and of o € (0,0¢), some oy > 0.

Similary we have for ¢ > 0 small and z € 9

Cudyf VAR H(0,2)0" 7 — ¢, () (AR 1
T3 =C,o 5 —
o2 ] (02]2|Pr 4 |z]P2) =

sup

—2
2 Ci(uvdinfadsup) (df ‘/7( 2|x|ﬁ1 + ‘xlﬁz) 2 |.’L'N_2>

N-2
> Co(, dint, d sup) (|x|f Vi—n 2|1‘|51+|z|ﬂ2) z :E|N2)
2 C3(k:dint, doup) Q(Mﬁ VI (|25 +C:L(Mudinf7dsup)(72)_|x|N_2)
)-

> Cl = ( 1nf; sup

Thus we have:

Coudif " H(0,2)0"F oole) _ CudEVIRH(0,2)0™ 7
N+2 - C S N+t2 § Ni2 - C .
g 2 g 2 g 2

Defining d(x) by the equation

E(x)\/ﬁ7 VAT — min < max SDU—(x)H7 dinf 9 dsup
C,H(0,z)07=

and using the maximum principle we deduce dinf < d(z) < dsyp and h, = o(ay) as ¢ — 0. The

estimate 8h; = o(a T ) as 0 — 0 follows by direct similarly. O

Remark 3.3. a) If u — 0T, then
Gpo(r)=CoH(0,2)0 7 +O0(uo 7 )+ hyy (3.7)

where h,, , satisfies (3.6) uniformly in p.



b) A similar result has been obtained in [33] for Us:

—2 N+2

0 < @se :=Use — PUse <Use and se=CoH(E,)0 2 +0(5°2) (3.8)

as 0 — 0, uniformly in compact subsets of €.

4 The finite dimensional reduction

This section is more general than necessary for the proofs of the results in this paper in that we deal
with arbitrarily many blow-up points. This is needed for subsequent work. We fix an integer k > 0,
the case k = 1 corresponds to our main theorems. Throughout this section we assume p = poe®. For

A= (A1, Ags e, Ay A) € REFY e set

1

§; =XNe¥2 and o= \V-2. (4.1)

For \ € Rﬁfl and & = (£1,...,&) € QF we now define
a [
Wene =Y Ker (—A — (2" - 1)U;7;2) + Ker (—A TTE (2F —1)V2 —2) :
i=1

where. According to [9], the kernel of the operator —A — (2* — 1)U52:,;2 on L?(RY) has dimension N + 1

and is spanned by 8%‘}’“, aarfg)i, j=1,2,...,N, where (&) is the j—th component of &. Combining

this with Proposition 3.1, we have
W :span{\lf{, WO, i=1,2,...k j= 1,2,...,N},

where for i =1,2,...,kand j=1,2,...,N:

1 81/5. & 805. ) — 8VU
J . 84 0. ir&i .
\Ifi : ( i)j s \I/l = 5, , U . (4.2)

For simplicity of notation here we dropped the dependance on the parameters. Next we define for
n € (0,1):
Opi={(\§ e R x Q¥ N e (n,n7 "), X e (n,n7h), dist(&;,09) >,

|£z| > 7, |£i1 _57,2‘ > 7, i7i1ai2 = 1727"'7ka il 7é 12}
Let us introduce the spaces

Ko xe = PWe e,

and

K e ={¢€HuQ):(¢,PV) =0, forall " € W, »¢},
as well as the (-,-),-orthogonal projections
I ne  Hu(Q) = Ke e,

and

Iy e i=1d — T ne : Hy(Q) = K2y ¢



We want to find solutions of (1.1) close to

k
Vore =Y TiPUs ¢, + PVy, (4.3)

i=1
where (A, §) € O, for some n € (0,1), 7, = 1 or —1. This is equivalent to finding n > 0, (X,§) € O,, and
e ne € KEJ:/\é such that V \ ¢ + ¢ ¢ solves (3.3), hence solving:

Hi,\,g (Ve + dene — L;(fe(‘/e,)\,{ + ¢ene))) =0, (4.4)
and
I xe (Vere + dene — i (fe(Vere + dene))) =0, (4.5)

We solve (4.4) first for ¢. x¢. Let us introduce the operator L. » ¢ : Kj)\,g — KsL,A,E defined by

Lene(9) = T2y con (fo(Vere)e) = 6 — e x et (fo(Vare)o)-

Proposition 4.1. For any n € (0,1), there exist £9 > 0 and ¢ > 0 such that for every (X, §) € O, and
for every € € (0,0):
[Lex (@)l = cllglls  for all g € Koy ¢

In particular, Le x ¢ is invertible with continuous inverse.

Proof. We argue by contradiction, following the same line as in [28]. Suppose there exist n > 0,
sequences &, > 0, (A", &") € Oy, ¢, € H,(Q) satisfying e, — 0, A" = ()\71‘, .. .,)\Z,Xn) — ()\1, ... )\k,X),
&= (f?, . ,5,’;) — (&1,...&k), as n — oo, and such that

n € K2 ynens llénllu =1, (4.6)
and
L571,)\"7£n(¢’ﬂ/) = hn7 With ||hn||u _> O (47)
Thus we have
On — 15 (Fo(Vap an en)Pn) = By = e, an gn (63, (fo(Ve, an g ) b)) (4.8)

Setting

1
=N 2, ot =Ny

as in (4.1) and

- OUsn ¢n OUsn ¢n — OVyn
U7, = —2i2t for j=1,2,...,N, (09), .= — = ), = —2—
( l) 8(5?)] Or] 1~ ) ) ( Z) a(g)‘? ) ( ) 80’"

where (£7)7 is the j—th component of £, we obtain

for some coefficients ¢y, ¢y- Now we argue in three steps.
;

STEP 1. We prove lim,, o [|w"||, = 0.
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Multiplying (4.8) by AP(¥}),, + uP(‘;I:lZ)", we get

[ on (824 ) [ 0,16 (APCep, + )

= —/th (-AP(\II?)n - upﬁjz)") +/Qw” (AP(\D?)n +up(flz)”>

N

k
o> (P, P(V])n), + ¢ (P(T)n, P(U])n),,

i=1 j=0

= (¢n7P(\II?)n) ( (fO( E,L,/\",§")¢n) (\I/?)n)y‘ - (hnyp(\ll?)n)#

From Lemma A.1 we deduce:

and then

n -n 1 1 1
€UnCin (53 +o (W) = — (L (fo (Ve rng0)00), P(U1)0) (4.9)
where E}fh > 0 is a constant. Next Proposition 3.2 implies
¢ n (P )n
0= (G0 P )= [ Vonvp(ty, — 2P0 = [ wo,vut, - p2l8e o

- / Sy Usp ) (U0 + o(1),
and then

(Ve am ) bn), P(EL)) / F(Voramen )b P(T)

(fo( coamen) = foUspen)) bn (U] )n

‘ / Fo (Ve 0)m (PCERY, — (1)) | 4+ 0(1)
=o(1)

by Lemma A.2 and Lemma A.3.

Combining the above inequality with (4.9) yields ¢'p, = 0 as n — oo. Similar arguments show that
cg — 0 as n — oo, and HILH;O |lw™],, = 0 follows.

STEP 2. Let x : RY — [0, 1] be a smooth cut-off function, such that y(z) = 1 if |z| < n/4, x(z) =0
if |z| > n/2, and |Vx(z)| < % Let a1, as be positive constants to be determined later. We set

N2 O _¢n
67(@) = (E)™) T bu((En) ™2+ ) x((E)™0), we QP = S o1k,

(en)
and
N2 Q
§0)i= () T ol a)xl(e)®a), for v = i
Since ¢} is bounded in DV2(RN ), we may assume, up to a subsequence,
o — ¢°  weakly in DV2(RY), i =0,1,... k.
Now we claim that
¢ (x)=0, i=0,1,... k. (4.10)
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Firstly we prove (4.10) for ¢ = 1,... k. Notice that |Vx((e,)™x)| = |(e,)* V()] < % = o(1).
Thus we have for any ¢ € C5°(RV):

N-—2

((en)™) = /n Vx((en)* @) (¢n((en)* 2 + €N VY — V@ ((e2)* 2 +E)) = o(1). (4.11)
On the other hand, taking oy = 5 and noticing N > 7, we get:

an Ve, amen () bn () x(y — €10 (L5
((En)al) 3 /‘/Q 0 |y|2 (( ) )

By (4.11) and (4.8), we have for any ¢ € C§°(RY):

=o(1). (4.12)

N-—-2

Vorve = ((e)™) T [ (Voa(r e+ )V 0)0)

anr

+ V((E0)™2) (Gn ()3 + ) Ve = V()2 +€1)))

K
N

= ((e)™) 7

Vo ((en)* @+ &)V (x((e0)* 2)1) + 0(1)

n

= ((en)™) 2 Vi (o (Ve amen ((En)* 2+ €8)) b ((en) Mz + 1))V (X ((En) ' 2)0)  (4.13)

+(E)™) F [ Vha((en)™ 2+ &)V (X((e0)" 2)9)

Qn
(@) T [ V() e+ €) V() a)) + o)

=: Il + 12 + 13 + 0(1)
By (4.7) and STEP 1 it is easy to see that Is = o(1) and I3 = o(1). On the other hand, (4.12) and (3.8)
imply

B = (™) T [ ViV o006 0)V (0l = €0

= ((e)™) 7 /Qfé(Vsn,msn ) dn(y)x(y — €MD <?€n)§:> +o(1)

gn

)) +o(1)

2—N

2N K y—£n
SLCRR R (gnmn () + Py >) ulxty - €0 (V)

y—&
(en)

= ((en)™) T / 55 Uss en () dm)xly — ML) 1+ o(1)
ly—&7|<n/2

- /( . /2f B(O0@) ((E0)™) 7 nl(en)™a +€)x((20) ) (@) + o(1)

= [ U0l @) + of0).
Therefore we have

[ Vv = [ RUn @) @) + o),
which implies that ¢$° is a weak solution of

—A¢ = fi(Un,0)07° in DV2(RY). (4.15)
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In order to continue we denote \Pii,o = ag;?“ for j=1,...,N, and ¥, := agf\i’u. Now we claim
that
V¢ (z)VU, o(x) =0, j=0,1,...,N. (4.16)
RN ’
In fact,

| 500(@)62 ¥ o) (417)

| o) (™) T 6u((ea) e + €)X )Wy o)

[ (0 o @) @) Tl (e - )x
(en)—210 L

& |

J _
X\I’)‘?ﬁ (.17 (En)al

Noticing that

L5 (U, @) (@) T nem ) W - )

i (en)L

= —(en)™ /Qfé(Uszz&?(y))fbn(y)(‘I’Z)n(y) =o(1),

then

(4.17) =

‘/(En)_alﬂ fé <U)\" 4 (x)> ((sn)al)%(bn((é‘n)alx) (X((5n)a1$ — fln) - 1)

i (en)™L

i _ &
X \Il/\?’o (x (En)m)

/ ai ¥ ai j fll
< ‘/’z—(ej:;al‘z s fo (U)\néi;al(x)> ((En) ) ¢n((5n) CU)\I/g\;I,O («T— (En)al)‘

ok i Ten
+0(1)

2N
<ot (f o (Boge®) )

TEOT |2 T

</ j &' AT
X N, r_
. AT0
& /4 i €p )0
’”” (en)oT ‘Z(e T (en)

= o(1).

Therefore (4.16) holds. Using this and (4.15) we conclude that (4.10) holds for i = 1,... k.

+o(1)

e
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Now we turn to the proof of ¢3° = 0. Setting as = 2 we obtain as in (4.13) and (4.14) :

Vv = ((en)) T / Fo (Vs ro 0 (1) @)X () ((€0)~220) + o(1)

Qg

= ((En)‘“)zzN/ll / (ZT;PUs & (y) + PVon(y )) Dn ()XW ((n)*?y) + 0(1)
yl<n/2

2—N

= ((En)a2)2/|l< , fé(Van(y))d)n(y)X(y)w((&z)*%y)+o(1)
:/< yaza|<n/ fé(UX”’O(x))((5”)u2>¥¢n((En)”m)x((sn)azx)zb(x)+o(1)
en)*2z|<n/2

— [ iUzt + ol
RN
Therefore ¢3° is a weak solution of
—A¢g” = fo(Us 095, in DY(RY).
Similarly to (4.16) there holds

Vo (z)VUL (x) =0, forj=0,1,...,N,

]RN
where U1 .= 2050 g4, 1,...,N,and 92 := — 2% This shows that ¢ = 0 as claimed
X0 8961 ) J= 0" ox 0 :
STEP 3. We obtain a contradiction.
Firstly we claim that
. / 2 _
Jm [ (Ve 60 0) (0n()? =0 (1.18)

In fact, (3.7) and (3.8) imply:

/Q Fo(Ver s (0)) (00 (1))

/B<o>z> vl B

i=

(Z 7iUsp e (y) + Vor(y )) (¢n(¥))? + o(1).

M:

Notice that fo(Uxr o) € L= (RN) and (4.10) imply

Juecs

(Z TiUsnen(y) + Vor (y )) (qﬁn(y))Q = /B Jo(Usr.en (1)) (én(y))? + o(1)

(&i,4)

’L

(4.19)

n

— 4

_/l( yerz|< fé(U}‘?’O(gj))((ﬁ?(z))Z+0(1)

=o0(1).

Similarly we obtain:

/B(O (ZTJUW e (y) +Vonly )) (@n(y))” = o(1). (4.20)
Now we obtain (4.18) from (4.19) and (4.20).
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On the other hand, (4.8), (4.7), and STEP 1 imply:
/|V<Z5n|2 :/VLZ(fé(‘/%n,An,gn)¢n)V¢n+/ thv¢n+/ Vuw" Ve,
Q Q Q Q
[’Z(fé(‘/an,/\"ﬁ")(bn)¢n

= /QVL,’Z(fé(Ven,m,gn)%)Vﬂén - M/Q P +o(1)
= [ Ve 62 0) 0 (0)? 01,
which contradicts (4.18) using (4.6). O

Proposition 4.2. For every n € (0,1), there exist e > 0 and co > 0 with the following property: for
every (X, §) € O, and for every € € (0,¢¢) there exists a unique solution ¢ x¢ € K‘j:)\’6 of equation (4.4)
satisfying

N +2 142«
[6enellu < co (E“N’” +ed ) :
Moreover, ®. : Oy — Ky . defined by ®.(\,€) := ¢z ¢ is C'.
Proof. As in [6] solving (4.4) is equivalent to finding a fixed point of the operator Ty » ¢ : KEL,A,E — K;’)\’E
defined by
Tone(d) = Loy Tn e (i (fe(Vere +0) — fo(Vare)e) — Vere)-
We claim that T; ) ¢ is a contraction mapping.

First of all, Proposition 4.1, Lemma A.4 and (3.2) imply

ITox (@)l < Cllep(fe(Vere +¢) = fo(Vere)d) — Verellu

<C

k
L (fa(Vs,A,s +¢) — fo(Vere)o — (Z 7ifo(Us, &) + fo(Va)>>

i=1
#)

k
feVene +0) = fo(Verne)o — (Z 7ifo(Us, ¢,) + fO(V0)>

i=1

m

+

o

+ zk:()(uai) +0 ((uo—sz)é)>

i=1

k
L:: (Z TifO(Uéiyfi) + fO(V6)> - ‘/;:‘7)\75
i=1

2N/(N+2)

SO\ fe(Vere + ) = fe(Vere) — f;(VE,)\,i)quQN/(N—&-m
+ Ol (FLVepe) = Fo(Vere)Bllon vy

+ O fe(Vere) — fo(Va,/\,ﬁ)HgN/(NJrz)

+C

k
fO(VvE,)wE) - (Z TifO(U&hgi) + fO(VU))

i=1

2N/(N+2)
k N-—-2
- 1
+ > 0(us) + 0 ((uo™7)H)
i=1
By using Lemma A.5 and noticing that

Ife(Vere +0) = f-(Verg) = FL(Vere)dllany vy < Cllgl% 2,
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we deduce

ITex (@)l < CllSIE " + Cellgll + Ce

k N+2 N—2 1
)+ 3005, 7 )+ > 0(udi) + O((po"7)?)
- :

= Clloll,

The remaining argument is standard, see e.g. [6]. O

Now we consider the reduced functional

I (N &) = Je(Vere + dene)-

Proposition 4.3. If (\,§) € O, is a critical point of I. then V; x ¢ + ¢= r¢ is a solution of problem (1.1)
for e >0 small.

Proof. It is enough to prove that V; x ¢ + ¢ ¢ satisfies (4.5). As in [29], equation (4.4) implies that

there exist constants ¢; ;, i =1,...,k and j =0,..., N, and ¢g so that:
E N ‘
VI (Vg + e ne)lw ZZ 1PV + ¢ PU.
i=1 =0

It remains to prove that ¢; ; = 0 and ¢g = 0, provided € > 0 is small enough.
Let O, denote one of Oy, d5, Oy, i = 1,...,k, g =1,...,N. If (\,§) is a critical point of I.(\,§),
then

kK N
Z Zc (PV!, 0, Ve v e + 0sde ), T o(PU,OsVeng + 0sene) , = 0. (4.21)
i=1 j=0
Observe that
({9)\ 5)\,5—’7'61" 2]D\:[/ GXVE‘,\{:gﬁP@, 8(5i)_7~‘/;,,\75:TiP\I/{7 j:].,...,N. (422)

On the other hand, (P\I!{, derg)y =0for j=0,1,..., N, Proposition 4.2 and Lemma A.6 imply
(PU,056ep6)u = —(0sPU, 62 x6) = O([0s PU |l ) = 0|0 PE ) = o(5;72).
Similarly we have
(P, 05626 = 0([0:PT||) = o(e¥2077).
Now Lemma A.1, (4.21) and (4.22) yield

k N
=3 i (P, 05V o) + co(PT, 05V ) + 072 072)

=1 j=

0
kN
(ZZ ¢ij(PW], PU) + co(PY, PT) +0(€N 2072%)

= cooe 202 (14 0(1)),

which implies ¢p = 0. Similar arguments show that ¢; ;j =0fori=1,...,k, j=0,1,...,N. U
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5 Proof of the main results

As in Section 4 we assume p = 10 and we use the notation §; = )\isﬁ, o =Ae¥7 from (4.1). We

continue to consider V; ¢ = — > PUs, ¢, + PV, asin (4.3) . The reduced energy is expanded as follows.
i=1
Proposition 5.1. For ¢ — 0% there holds
I.(\ &) = a1 + ase — aze® —agelne + (A, e + o(e) (5.1)

N

Ct-uniformly with respect to (X,€) in compact sets of O,. The constants are given by a1 = +(k+1)S¢ ,
N N-2__

as = k+1 fRN U1201n Uio— (2;")12 Sy, a3 = %So 2 Spg, and ay = 2 2* f]RN U1 o The function ¢ is given

by
- k N-—-2 N-—-2
PdE) =h (H(O’ O)XN72 + Z H(&,&)AN 2 -2 Z nG(E,0N 2 X T
=1 i=1

k N-—2 N-—-2 — _

23 mimG&L N T A )—bzln(xlxg...AM)Naz

i,j=1
i<j

with by = £Co [on ULy and by = & [,y Uy

1 V. "
Je(va,/\,ﬁ)za/ﬂ (V%,A,5|2— | EM' ) /l Vel
1 - .
+ (2*/ Verel” — el )
Q

=1L+ 1+ Is.
By Lemma A.7, Lemma A.10, and noticing p = poe®, € — 0%, we obtain

)

Proof. Observe that

k

1 PV, ? PUs, ¢,
L = 5/9 <|VPV02 7:u| |.7J|2| > +Z <|VPU51:7§7:|2 *N%
i=1

k
E PV, PUs, ¢.
+ Ti/ <VPVUVPU51.,& = NM)
i Q

[ ?

PUs, ¢,PUs, ¢,
+ Z T / (va&@vag],g] ui];'zg)

gt (5.2)
k
SOk 1S — ST S + Co R HO.00Y 7 - S HE 60
470 i
=1
k N-_2 k N-2 N-2
+227’i0' 2 (51,0) +2 Z TiTjG(fi,fj)(siT(Sj 2 +O(€).
=1 i,j=1

i<j
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By Lemma A.8 and Lemma A.10, and again using u = poe®, € — 07, we obtain:

N -2 *
Iy = _27(16 + I)Sg + TS - Suo& + CO/ U1270_1 <H(O’ O)UN72
RN

-2 Z 7'17'] fl)gj sz (5'3)

i,j=1
i<j

k k
+ZH(&,&)5ZN_2 - QZTi
i=1 i=1

+ o(e).
Next Lemma A.8, Lemma A.9 and Lemma A.10 yield:

B 5 o 5 o
I3 = —(2*)2/9‘/6,&5 +27/Q|Va,/\,§| In[Vz \ ¢l + o(e)

€ x N -2 . N-2 .
—*(2*) ( )S +2*< 9 IHO"/RNvl - 9 111(51...5]6)"/RNU170

+ Vl 1DV1+]€/ Uloanl 0) +O( ) (54)
RN

:_(2) S (k+ )57_ 2 5 / Uy - In(é; ... 0x0)
1 .
+(k;r7*)€ / UfoInUy o+ o(e).
RN

Arguing similarly to Lemma 6.1 in [29], we deduce from Proposition 4.2, (3.7), (3.8), and Lemma A.5,
that
Je(Vene + dene) = Je(Vere) = 3

Ve e0e
24 /Q(VVE,MV(ZSE,A@ - MW)

g+ benel” T = Verel” 79 (5.5)

= o(g).
Now (5.2)—(5.5) imply (5.1). That (5.1) holds C'-uniformly with respect to (},£) in compact sets of O,

can be seen as in [29, Lemma 7.1]. We omit the details here. O
Remark 5.2. If 0 < « < then a+ ﬁ < 1. From the proof of the above lemma we can see that in
that case

2

I.(\ &) = a1 + aze — aze™ — agelne + 1/1()\75)50“"ﬁ + o(e*T 7=

?)

with

b?’z |sz|2

where b3 = ,ung fRN U12,0 and a1, as,as, as are the same as above. Clearly 1 has no critical points, hence
I. has no critical points for € small, as stated in Remark 2.2. If o = % then o + ﬁ =1, and we
have:
I. (N &) = a1 + age — age® —agelne + (A, e + o(e)
with
V(N E) = b1<H(O Ox +ZH (&, E)AN 2 2271 EONT AT

i=1

k N—-2
—2 Z TiTjG(fiagj)Ai 2

i,j=1
i<j

N—2 — N-2
)\j 2 >—621n()\1)\2)\k)\) 2
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Also in this case 1 does not have critical points, hence the functional I. does not admit critical points

for ¢ > 0 small.
As a corollary of Proposition 5.1 we obtain the following.
Corollary 5.3. If (\§) is a stable (non-degenerate) critical point of ¥ then I. has for e > 0 small a

critical point (Mg, &) that converges towards (A, &) as e — 0.

Proof of Theorem 2.1. The reduced function ¥(A, §) from Proposition 5.1 becomes when k = 1,77 =
—1,s0 & =&
N-—2 N;2 N_>

BOME) = by (H(o,o>AN‘2+H<«s,5>A{V2+2G<5,0>A12 A) by ()

Observe that v is coercive, that is (), €) — oo as (A, €) = (R x Rt x (Q\ {0})); here ORT = {0, oo}

From
W) (v oo (€ 9N Gl o TR T ) - 2 (59
and
RO (v o (m0.08*  Gleon TR T ) - H (57)
we deduce that V¥ (A, &) = 0 implies
N2 H(E € =X H(0,0),
and then )
b 1
AL = )\1(5) = Tbi ’ I
H(£,6) +G(6,0) (153
and )
Yoo = | 2 1
A= )‘(5) - 2b1 1

H(0,0) + G(£,0) (gggg;)’
Thus for fixed £ € Q\ {0} the function v(-,&) has a unique critical point A(&) = (A1(£), A(€)), which
must be its global minimum. An elementary computation shows that A(£) is a non-degenerate minimum
of (-, €).

Now we consider the reduced function v : Q\ {0} — R defined by v(§) = ¥(A(£),£). The above
considerations show that (A, &) is a critical point of v if, and only if, A = A(§) and £ is a critical point
of v. Moreover, (), ¢) is a stable or non-degenerate critical point of ¢ iff £ is stable or non-degenerate
critical point of v. Also the critical groups are isomorphic, the Morse indices, nullities are the same. A
direct computation gives: ,

2

v(€) =by —baln ﬁ + bo Inp(§).

Consequently, v and ¢ have the same critical points with the same Morse indices, nullities, critical groups.

Theorem 2.1 now follows from Corollary 5.3. 0

Proof of Theorem 2.3. Since ¢ is coercive one can minimize I, for ¢ > 0 small, as in [6, Theorem 1.1(i)].

O
Proof of Theorem 2.4. The idea is as in the proof of [6, Theorem 1.2]. There exists a compact subset

19



C C RT xRt x (2 {0}) with cat(C) = cat(Q\ {0}) =: k. Since v is coercive there exists a compact
neighborhood U of C in RT x R x (©2\ {0}) such that Ig[i]nw > miax . Then min I. > mcaxIE =: ¢ for
e > 0 small. Now standard Lusternik-Schnirelmann theory implies that I. has at least k critical points

in the sublevel set I¢. Theorem 2.4 follows now from Proposition 4.3. O

Proof of Theorem 2.5. The invariance of © under the action of I' C O(N) implies J(g * u) = Je(u)
and g * Vz x 2 = Vz a ga, for all g € I'. Then Proposition 4.2 yields g * ¢ x » = Vz ) g2, and consequently
I.(\ gz) = I.(\, z), for all g € T'. Now the proof proceeds as the one of Theorem 2.4 using catr instead
of cat. 0

Proof of Theorem 2.7. Using the equivariance properties proved above the principle of symmetric
criticality implies that a critical point (), £) of I. constrained to the fixed point set Rt x RT x (2% \ {0})
is a critical point of I, hence induces a critical point u. = Vi x¢ + ¢ n¢ of Jo. Clearly we have

Vire € (Hy)* ={u€ H,:gxu=ufor all g € ¥} because £ € Q*. This implies u. € (H,)>. O
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A Appendix

In this appendix we prove several lemmas that were used in the proofs of our main results. The
lemmas are more general than needed and will be of use also in subsequent work. We fix 0 < n <
min{|&;|, dist(&;,09), |&, — &, i,41,i2 = 1,...,k}. Recall the functions ¥, W/ defined in (4.2) and
their dependence on u,0,d; € RT, & € Q.

Lemma A.1. Fori,l=1,... k, and j,h =0,1,..., N, with i £ 1 or j # h, there are constants ¢y > 0,
¢;,; > 0 such that the following estimates hold uniformly for 0 < u < m.

PV, PVY), = 50% +o(c7?) foro —0. (A1)

(P, PU¥)), = o(c7)o(6;2) asa — 0, 6 — 0, uniformly for & in a compact subset of 0. (A.2)
(P\Ilz, P\I/{)H = Em'(;i_z +0(0;%)  as §; — 0, uniformly for & in a compact subset of Q. (A.3)
(P\I/g,P\I/f’)M =0(6;2) as &; — 0, uniformly for &,& in a compact subset of Q. (A4)

Proof. We only prove (A.1), and (A.2) with j = 0; b) with j # 0 is similar. Parts (A.3) and (A.4)

are from Lemma A.5 in [29]. In order to prove (A.1), recall that W is an eigenfunction to (3.4) with
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A =2* — 1. Then by Proposition (3.2) we have

|Pw|®
"

UPT  (PT-T)PT
e T P

(PV, PV), /|VP\I!\2 :/VEVP@—;L
Q

I g — PU — 0)PU
= (2" - 1)/ V22t (2 - 1)/ V2 2(T — PY) — “(P>
Q 0 Z

= (2" - 1)/ V225 £ 00" T)
Q

2 2%
oo R (LT L) R
) (02 |z|Pr + |2|P2)? (02 || + |z|P2)N
1 B2 _ |,1B81)\2 _
LW e

o 02 (P [y|P2)2+N

ag
1 B2 _ B1)2
— - (|y| ‘y| 2) < +0(O'_2)
(lyPr + [y|P=)+

4

2 2

N? — 4)C2
4

e
_ (N? —4)C2 /
( 4) /

-2

¢
Q
RN O
:’50?"—0(0' )7

~ __VE -
for a positive constant ¢g. Here €, , := {y =0 Vs T.x€E Q} Similarly we compute:

0 0 TS 0
(PT, PYY), :/VPE-VP\IJE - M /V\I/VP\IIO \I’P\fi fu(P\Ij \I;)P\I“
Q || Q || Ed
_ (2 —1) /Q V2200 1 0(0 7
— ot e - [ - N2 e (= )
I o (02|z|Br + |x]P2)2 2 (02|z] + |z]P2) %

N-—2

) o
0

N2 s (k- -
2T @ rle-gP

Lemma A.2. a) Fori=1,...,k, and j =0,1,..., N, there holds:

O(9; 2‘) if j=1,2,...,N,

| PY] — W [[on/(n—2) =
0065y if j=0

as 6; = 0 uniformly for & in a compact subset of Q.

b)

p— J— N—4
IP® = Wlanyv—2) = O ")
as 0 — 0, uniformly for 0 < u < f.

Proof. a) can be proved as Lemma B.4 in [28], and b) can be obtained similarly using Proposition 3.2.

O

21



Lemma A.3. a) Fori,l =1,... k there holds

k
H(fé(z 7.PUs, ¢, + PVy) — f6(Us, )9,
=1 2N/(N+2)
O(o H)+Zf 10(5¥) ifh=1,...,N,
< N—4
~ o )+ZO(5 T)+o@ ) ifh=0;

L¢z

as 0,0;,0; — 0 uniformly for 0 < p < and § in a compact subset of §1,,.

b)
_ N—a k N-2
7 ZQPU(; & +PV | =y | <O(@ 7 )+> 00, 7)
2N/(N+2) i=1
as 0,0; = 0 uniformly for 0 < pp < and § in Q.
Proof. We only prove b).
2N/(N+2)
/ ’(fo (ZTZPU&,@ +PV> = fé(Uaz,sz)> uy
, IN/(N+2)
:/ (fé (Z 7iPUs, ¢, +PVa> - fé(%@)) up
B(&,%) i=1
2N/(N+2)

k
(f(/) <ZTiPU5i,§i + PVU) - f(/)(Utsz,fz)) \Illh

“,
BOHUUL, BEn3)

i=1
L 2N/ (N+2)
+/ (f(l) (Z TiPUs, ¢, + PVU) - fé(U6l7£Z)> v
O\(B(0,3)UUL, B 3)) i=1
First of all, (3.5) and (3.8) yield
. 2N/(N+2)
/ <f(/J (Z 7iPUs, ¢ +PV0> - f(/J(U5L,§L)> v
B(&,%) i=1
N/(N N(N— 2) N(N— 2)

< [ 10PUse) ~ iU e U 4 0™ +ZO (6,7

(&%) #l

N(N—2) k N(N—2)
< O(O’ N+2 )+ZO(52 N+2 )
i=1
For i # [, we have
k
/ ‘(f(;(z TiPUs; ¢, + PVU) - fé(U5z7fz))\P?|2N/(N+2)
B(&:,%) i=1
2N/(N+2)
_ k N—-2

= [ @0 T+ X o) o) | o

B(&i,3) j=1

J#LI#L

N(N—=2)
o, ") ifh=1,...,N,
= N(N—4)

05, ") ifh=0.




At last,

k 2N/(N+2)
f/ ( TiPUJz‘éz‘—’_PVJ) _f/(U(ShEI,))\II
/ﬂ\(Bm,Z)u?:l B, D)) ( ’ ; 0
N(N-2) . AN
O3, "7 ) (0(e¥5) + T, 0(677) ) ifh=1...N,
< N(N—4) AN AN
0(5, " ) (O(o™=) + X1, 0(677) ) ifh=0.
Now b) follows.
Lemma A.4.
. b N—-2 1
o (Z Tifo(Us,e.) + fo(Va)> —Veel| <D 0(ud)+0((no~=)?)
i=1 i=1

m

as t,0,0; = 0 uniformly for & in Q.

Proof. By (3.1), there holds

/VL (fo(V 2 (fo(Ve)) = PV,) _“/Q i (fo(Va)) (e (fo(Va)) — PV;)

EE
- / (Vo) (&5 (fo(Vi)) = PV:).

—APV, = AV, = u‘% + fo(Vy)  inQ,
PV, =0 on 99.

We also have

Now we obtain

/QVP VoV (5 (alVa)) = Vo)~ [ Volti(fo(Va)) = PVo)

) [ ?

/fo 1 (fo(Ve)) = PVs).
Combining (A.5) and (A.6) yields

/ |V (fo(V, )\ ’u/ﬂ (LZ(fo(V,,)) - Vs) (L;(fo(va)) - PV,) .

|2

Next (3.5) implies

15 (fo (Vi) = PVl = /IV PV,) |I|2<v>>—m>|

Similarly to (A.5) and (A.6) we also have

v (fo(Us, ) (5 (fo(Us, e.)) — PUs, ¢,)

/ VL:L(fO(U(SLSL))V<LZ<f0(U5u§L)) - PU(Si,fi) - M/ = |$|2
Q Q

/fo Us..e.)(t,(fo(Us, ¢.)) — PUs, ¢,)

and
/QVPU&i,fiV(LZ(fO(Utsufi)) - PU(Sszi) = /QfO(U&i,fi)(LZ(fO(Uémﬁi)) - PU51:75¢)'

Then
LZ(fo(U5i7£i))([’:b(f0(U6i7£i)) - PUéi,fz‘)
|z[? '

/Q |V(LZ(fO<U6i’€i)) - PU(S:',&)IQ = /”L/Q
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Therefore, by the Holder and Hardy inequalities,

N

PUs, ¢, (¢}, (fo(Us, ¢,)) — PU&@))

>

(/ﬂ W)i (/Q (LZ(fO(U%&;iz PU&,,&V)‘I*

< C(pdille, (fo(Us,e.)) — PUs, e ll,) 7,

”LZ(fO(U(;i’fi)) - PU!%&H# = (:U'/Q

Nl=

<u

which implies
||L;(fO(U6i7£i)) - PU§i7§i||lt < O(/Mst) (AB)

Hence, Lemma A.4 follows from (A.7) and (A.8). O

Lemma A.5. The following estimates hold uniformly for 0 < p < @ and (A, &) € §,,.

1(fe(Verg) = fo(Vere))Bllany(n+2) = O(e) 8]l as e — 0. (A.9)

|fe(Verne) = fo(Vepre)llany(nvt2) = O(e)  ase — 0. (A.10)

k
N2 N+42

=002 )+> 0(6,*) asa,6 —0. (All)
2N/(N+2) 1=1

k
fo(Vere) — (Z 7i fo(Us, &) + fo(Va)>

i=1

Proof. We only prove (A.11), since (A.9) and (A.10) are easier. Using (3.7) and (3.8) we can estimate:

(/B(O»E)

2N/(N+2)) (N+2)/2N

k
Jo(Vere) — (Z 7 fo(Us,.¢e,) + fo(Va)>

(N+2)/2N s
<C (/ (PV,)* " = Vﬁ*—1|2N/<N+2>> +)06;,7)
B(ng i=1
(N+2)/2N k Nis
< Co 2 (/ |(VU)2*_2|2N/(N+2)> + Zo(ézT)
B(0,3) i=1
N+2 k N+2
= 0(c" ) + Y0, 7),
i=1
We also have:
. aN/(N+2)\ (N+2)/2N
/ Jo(Vere) — (Z Tifo(Us,.¢,) + fo(Va)>
B(&:i,%) i=1
(N+2)/2N k Nis
. . N+2 N2
<C </ (PUs, ) = U3 ! 2N/<N+2>> +0(@™2)+> 0(5,%)
B(&i,%) i=1
i
N+2 k Nt2
:O(O’ 2 )+ZO(5Z 2 ),
i=1
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and

& 2N/(N+2)
(/ fo(Vene) = (Z Tifo(Us,e.) + fo(V(,)) (N FD/2N
O\(B(0,3) Uk, B(&:. %)) i—1
k
Ni2
=0 )+ 306, 7).
i=1
Now (A.11) follows immediately. O

Lemma A.6. The following estimates hold for i = 1,...,k, j,l = 1,..., N with j # [, uniformly for
0<pu<pand (NE) € Q.

105, P, = O(e™257%)  as e,6; = 0. (A.12)
19e.)s PYINl, = O(6;%)  as 6; — 0. (A.13)
|0q¢,y: P, = O(5;%) as 6; — 0. (A.14)

185, P¥O||,, = O(e7-2672) ase,8; = 0. (A.15)
1015 P¥3 |l = O(6;2)  as 6; = 0. (A.16)

|05P¥||,, = O(e¥2072) ase,o— 0. (A.17)

Proof. We only prove (A.12) and (A.17) here because the proofs of the other parts are analogous. For
(A.12) we compute:

2

e~=2|95, PU]|I7:

105, PY] I

IN

Cev=s / AR AT
Q

2

—cews [ (2 - 0@ - UE W + 2 - DUE 205, ) 05, PV
Q

= 0(e™2674).

And (A.17) is obtained as follows.

— i —
105 PP}, = ™= |0, P[],

9,90,PT  9,PU(9,T — 9, PT)
EE EE

=2 / Vo,UV0, PV —
Q

— N3 * * o* 372 - 2o = _ o
=c (/Q((Q 12" =2V 0+ (2" - )V 7?0, 0)0, PU + (1))

=0(ev20"%)
]
Lemma A.7. Fori,j=1,...,k, i # j, the following estimates hold uniformly for (X, &) € Q,,.
a) For p,0 — 0:
PV, ,|?
[ PPl
Q || (A.18)

N . _ 1 _
=5 ~ GO T HO.00M | + 000 ) + 0™
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b) For p,6;,0 — 0:

/ VPV, ,VPUs ¢ — 1
Q

|z[?
o _q N-2 N=2 G(f 0) 0 N—2(SN*2 N725N;2 (A.19)
=C,C? ~ 7 . 2 / v + 25,2 J)4o0 5, % ).
T o ey TOWT AT el AT
¢) For 6; — 0:
|PUs, |2 C262 / 1 y
&l _ i + O(8H). A.20
L - L e o 20
d) For §; — 0:
PUs, ¢. PUs. ¢. N-2 N-2
/ —se b — 0(5,7 5,7 ). (A21)
Q |z|? !
e) For 6;,6;,0 — 0:
N x 1
| IVPUs & = 55— G H(,608Y 2 | o ol ), (4.22)
Q RN (1+ [2|%) 2
f) For p,8;,6;,0 = 0:
* N—-2 N-2 1 N—2 N-2
/ VPU(Si’giVPUgj’gj = Cg G(fz,ﬁj)éz 2 6j 2 / N1z +O(5i 2 5j 2 ) (A23)
Q RN (14 2)%) =2
Proof. The proofs of (A.22) and (A.23) are from [3]. We prove the remaining estimates.
PROOF OF (A.18). Integration by parts yields
PV, |? PV, |?
/|VPVJ|2—M| 2' :/(—AVU)PVJ—M| 2‘
Q || Q |z
. V., PV, — |PV,|?
:/Vf *1PV0+M—2| |
Q ||
* * o Vo‘ - ¥o
:/Vf */Vf’l%Jru/iw( 290)-
Q Q Q Ed
Next we compute:
/vf*—lﬂ(o,x)z/ VZLH(0,2) + 007 %)
Q B(0,3
= H(0,0)/ VE 40 )
B(0,3)
o
= H(0,0 02*—1/ +0(c)
OO o) e+ e
. v
— 10,005 [ T 40
B(0.p) (|2[P1 + [2[72) 7=
x b3 1 N2
= H(0,0)C? _10‘W‘*“/ +O0(c72 ).
( ) 1 RN (|Z|51 N |Z|B2)N;2 ( )
__vE
Here p = 4 -0~ vi—# in the second to last line. Now, using (3.7) yields:
. . VEEE T 1
/ch 71900:0002 71H(0ﬂ0)0— ,“_““ ) / N+2
0 RV (|20 +[2]%) 7
N
+O(uo T 1 0(0M) (A.24)

. 1
= CoCh ’1H(0,0)0N’2/

=+ O(uo™72) + O(a™).
RY (|2] + [2]%) 5
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Moreover, we have

/ VR H (0, 2) 1 1
Q |z|2 (o2|z|Pr + |z|f2) 7> |x|VEHVER
L[ (o2l )
<C —

B |2 (02| |1 + |x|B2) T g | VEHVE—H

‘x|\/ﬁ+ﬁ—u _ (02‘x|ﬁ1 + |x‘/32)N;2

L

+C . _
B [T (02|z]Br + |2]f2) T |a | VAR
1 N =2 |VA—VEi

<C L
- B(0,p) |JJ|2 UN*2|z|\/ﬁ*\/ﬁ*#‘x|\/ﬁ+vﬁ*H

1 |m|\/ﬁ+m02|x| =2

+C Ml o R -
AN\B(0,p) |T[? || VATV R || VEHVE=R

VAR )
=0(c v )+ 0(0%),

JE
where p = o vi—r. It follows that

QDng — (1+0(1)) C2O_N—2 (a(x))ﬁ_ H_H]:I(Oaft)
q |z? aZ Q | |2| x| VA+HVE—H

= O(po™?).

It is also easy to see that
5

N—-2
e )

jz = O(uo

and
/ V2 = SF 1+ 0(M).
Q
Now (A.24), (A.26), (A.27), and (A.28) yield (A.18).
PROOF OF (A.19). Using (3.8) integration by parts yields

VPV, VP PV, PUs, ¢.
VoV PUs, ¢, _MTM
Q

x x o(Us, ¢. — ©s. ¢,
= / V<72 71U5i»§i _/ Va2 71(;061'751' +,u/ Pal busks 3 906“&)'
Q Q Q ||

Now we estimate these three summands.

/Vf*_lUgi,gi = (/ +/ +/ )Vf*_ani,gi
Q B(0,}) JB(.% Q\(B(0,4)UB(&:,4))

* N-2
B </ +/ >V‘72 71U6i7§i JrO(UN;Qéi : )
B(0,}) /B(&})
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For p — 0% we have:

/ Voz*ilUtsi,&
B(0,4)

. o* 1 Ntz N-2 1 1
—COCH o % 0 ( ~N+z N—2
B(0
B(0

N-—2

w1 N+2
:C()Cﬁ 10’ 2

)
B (@l + falP2) (@ + o - &)
)

K3

(
1 1
’ — +O(Jz[*)
a>wﬂx%+wﬂmfﬁz<wf+mww%2
CoC2 1 %5%—2/ : s ooV )
= Lo O VETEO; — o(0 VE=HO,
g BV (|2]B1 4 |2|82) 757 &[N 2

and
[ i

« 1 N42 N-2 1 1
= C()CEL 10’ 2 51' 2 / 5 NiT 5 D
BO.) (0?|o + &7 + o+ &%) 2 (07 + [f?) 2

N2 N2

<O(c™29; 2 ).

K2

Therefore (A.30) gives

5i7i = 0 O VE—K(. — . .
0 ” ¢ 8 P Jey (2B z ) R TGN i

Next we treat the second summand in (A.29).

N42 N=2

£57)

/V5*71<P5717£i :/ V<72*71<P6717§71 +O(g
Q B(0,7)

:COCQ*,lgszéiN;2/ H(¢,x) - +O(UN;25iN;2)
' B50.3) (02[a]f + |a|f2)

. HUE. 0 . (A.31)
_ Cocz*_lo_N;Zéi 5 / (gw ) N —I—O(O'N;26i 2 )
B(0.3) (02z]fr + |2]%) =
= _E_ N-2 H(;,0 " N—2
= Cocz _10"/ﬂ(5i 2 / (5 ) N+2 +O(Um6i : )
2 (J2PPs 412l
Concerning the third summand in (A.29) we observe that similarly to (A.25)
/ Y H(0, 2) 1 - 1 < o)
2 o @G +le—&)= (z-a= )7
which yields
=VA—Vi—h
©oUs, ¢ No2 (N2 d (x)H (0, z) Noz N2
u/izuCCoa’zéi / = +o(uo = ¢,
o P MOk o FPogmr T ' s
_ N-—-2
= 0o 6,7 )
It is also easy to see that
_ N-—2
u/ % = O(uo 76, 7 ). (A.33)
Q X

Now (A.30), (A.31), (A.32), (A.33) imply (A.19).
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PROOF OF (A.20).
Uguﬁi _ 2cN-2 1
- 0061 2 N_
o |z? o 2?67 + [z — &PV 2
:025N—2 C+/ 1
o Be,2) |2[2(0F + |z — &[?)N 2
= C2N-2 0+/ 1
o B0.3) [T+ &[2(0F + [22)N 2

_ 1+ 0(|z]?)
= o2 C+/
0% < B(0,2) €2 (67 + |x[2)N—2

1 6N 1 O(|z)?)
—czoN2 o+ —/ +/ i + / __O(=l)
0 |€:]2 RM\B(0,-1) Jry | (L4 [22)N=2 0 |§)? B(0,2 (67 + |z[2)N =2

15,
G o 1 4
— 0 4 - - 5.
G L s 00
On the other hand, there holds

2
/ 9051',51' _ 0(55\[72) and / @51-,51'[]61',& _ 0(51]\772)
Q Q

|z[? |z[?

which together with (A.34) implies (A.20).

PROOF OF (A.21). This is similar to the proof of (A.20), and will therefore be omitted.

Lemma A.8. a) For pi,0 — 0 there holds:

N
2

/ |PVM7U|2* = Su
Q

x 1
—2°CoCy T H(0,0 N—2/
G OO L G

+ O(uo™72) + O(a™).

b) As 0; — 0 there holds uniformly for & in compact subsets of Q:

. N e N—2 1
/ |PU6'L7£1‘|2 = S02 -2 Cg H(glv&)él ’ / 1L a2 2 +O(6ZIV)
Q RN (1+[z)2) 2
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¢) For p,0,6; — 0 there holds uniformly in compact subsets of Q):

J

k 2

ZTIPU(; N —|—PVMU

N
2

. 1
=87 —2°CoC>, _1H(0,0)0N_2/
R

v (|2 4 |2182)

k * N—2 N=-2 P ;
+2°) CoC2 o / ( ”G(E“O)M
RN

i—1 |2]P1 + |2]P2) 2

k
N " 1
+ Sg —2°C3 H(fiv&)(ﬁv_z/ P EEE——
; < ’ (1+[22)%F

RN

2

*Zk or N2 No2 17 G(&is &)

+2 CO 51 2 5j 2 N+2

=1 RV (1 +]2]2) 72
J#i

X _g N-2 . .
+2* nLo O'N22(Si 2 / TlG(SZ’(J)\I)+2
v (14 [22)

N-—2 k N—2 N-2
T ol0 =8 T )+ D 00T 87 ) +0EY) | +0(uoN ) + 0™

Jj#i

Proof. a) By (A.24) we have:

L 1PViel = [ Vi =2 [ Vi e+ 0™)

o1 VT VE= ) 1
—52 —2"CoC,, " H(0,0)0  vis s
RN (|27 +|2|%) 3

VEG/E+ VIR
i O(’uo' B ;I:M I)) i O(o’N),
b) is from [3].
c) Here (3.7), (3.8), (A.30), (A.31) imply:

n
12

[ PV U= [ (VA OV ) W, — o)
B(0,4) B(0,3)

S VEWN =24 VI=R) N2
B B(0,2) Vlua (U&',fi - 905117671) + O(U rom 51 )
2

* N—2 N=-2 ; N_2 N-—2
=CoC¥ o7 6,7 / Sl wyz tolo = 6,7 ).
Ry (|2]8 + |2]%) 3
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Then using part a) we deduce:

k 2z

/ ZTiPU5i7§i +P‘//L,O'
B(0,3) |i=1

[ P / (PV) T PUse + 30 ([ PV (P

/B<o,g> Z " ‘ Z 503 ‘
v 1
= S = 2°CoC2 L H(0,0)0Y / —
v (2l + [212)

k * N—2 N-2 G(&,0
+ 2* Z Co .0 20 3 / ( TG (&, 0)
i=1 RN

2%+ |2)P2) 2

+3 0@ 6,7 )+ O(uo™ %) + 0(a™).

(A.35)
We also have

. . N-2 _
/ (PUs,e.)* "' PVyuo = / U e (Vi — #a) +0(6; o)
B(&:,4) B(&i,%)

N-—2

* —2 1 1 — = =
- C 02 0_N2 : 3 / — ( — —|d(x \/E_VN_HH 0752 )
n~0 RN (1+ |Z|2) + ‘El|\/ﬁ+m | ( )| ( )

- _o5 N-2 G 1’0 5 N-—2
=C.C; ot i / (67@4—0(0%262» 2,
w (14 [2f2)
hence

/B(&»Z)

k
N / (PUs,e)* +2° Y 7imi(PUs,e)* ~'PUs, ¢, + 2°7:(PUs,e,)” ' PVuo
B(&:,2) j=1,j74

* 2*
2

k
_ / PUs,c, + 377, PUs, ¢, + 7:PViuo
B(&:,%)

j=1
Jj#i

k
> 7iPUs, e, + PVyq
i=1

2

+ O / (PU(S,,g, 7 PUs. 5 JrPV“;
B(&:.3) Z T ’ (A.36)

J#l

~re e [ <1+|212>”2“+O(5’N)

7'17'] gzagj
+

/RN (1+|22)%=" Z
J#t

x 271 N2 o5 G (&, 0) N2 N2
+2*C,Cj 20, ° 71“2 olc™ >4, % ).

RV (14 ]2*) 72

where the last equality was obtained by the results in [3]. Finally we have:

N
2

=5

k g =2 N-2
* 2 2
+20 3 CF 6,7 g
i=1
G

2 k

Z O(6N) + O(a™). (A.37)

k
> 7iPUs, e, + PVyq

i=1

/ﬂ\(Bm,z)uu G=14B(&, D))
Now (A.35), (A.36), (A.37) yield c).
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Lemma A.9. For p,o,0; — 0 there holds uniformly in compact subsets of 2:

J

-
k
In|> 7PUs, ¢, + PVyo

=1

N -2 N -2 .
= lncr~/ VH1 ln(§1...5k)-/ Ui
2 RN 2 RN

)

k
> 7iPUs, e, + PVyq
=1

+/ VZ lnmlm/ Ui oInUi g+ o(1).
RN RN

Proof. Similarly to [17] we obtain:

/B(O’Z)

2% k
> 7iPUs, ¢, + PVyo

i=1

lna / / planM1+0(1)

N 2
= Ino - / / ulanM1+0(1)

k
> 7iPUs, ¢, + PVuo| In

i=1

and .
k 2 k
/ > 7iPUs,¢, + PVuo| W|Y 7iPUs, ¢+ PVyo
B(&:3) |i=1 i=1
N —2 . X
= — lnéz/ U120+/ U1201HU170+0(1)
2 RN RN
and .
k 2 k
/ > TiPUs, ¢, + PVio| W|> 7iPUs ¢, + PVyo| = o(1).
Q\(B(0,$)uUr, B %)) |im1 i=1
The Lemma follows now. ]

Lemma A.10. For u — 0% there holds:

/ / U{)O"_O 1) and / Vil InV,:= / Uf’o an1,0+0(1)
RN RN

forp>1 as well as

C _
Cp=0Co— N7_02,u+0(u2) and S, =Sy — S+ O(p?),
for some positive constant S independent of pu.

Proof. These equalities can be obtained by direct computations. O
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