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Abstract

We consider the singularly perturbed equation −ε2∆u + V (x)u = K(x)up−1

on a domain Ω ⊂ RN which may be bounded or unbounded. Under suitable
hypotheses on V,K we construct layered solutions u ∈ H1

0 (Ω) which concen-
trate on certain high-dimensional subsets of Ω. This gives a positive answer to
a problem proposed by Ambrosetti, Malchiodi and Ni in [1].
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1 Introduction and main results

In this paper, we are concerned with the existence of solutions which concentrate on
some higher dimensional subsets of RN for the following singularly perturbed elliptic
equation

(1.1)

{
−ε2∆u+ V (x)u = K(x)up−1, u > 0, x ∈ Ω,

u ∈ H1
0 (Ω)

on a domain Ω ⊂ RN which may be bounded or unbounded.
A basic motivation for the study of (1.1) comes from looking for standing-wave

solutions
ψ(x, t) = exp(−iEt/ε)u(x)

∗Supported by the Alexander von Humboldt foundation in Germany.
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of the nonlinear Schrödinger equation

(1.2) iε
∂ψ

∂t
= − ε2

2m
∆xψ + (V (x) + E)ψ −K(x)|ψ|p−2ψ for (t, x) ∈ R× Ω,

where ε is the Planck constant. Plugging the standing-wave ansatz into (1.2) one is
lead to equation (1.1) for u. Equation (1.2) arises in many applications, for instance
in nonlinear optics, plasma physics, and in condensed matter physics. The presence
of many particles leads one to consider nonlinear terms which model the interaction
effect among them. We shall find solutions for ε > 0 small, i. e. in the semiclassical
case which describes the transition from quantum to classical mechanics. Another
motivation for studying equation (1.1) are models for pattern formation in mathe-
matical biology or reaction-diffusion equations with small diffusion coefficients; see
[21].

Equation (1.1) has been in the focus of research in nonlinear analysis in the last
two decades since the pioneering work [17] of Floer and Weinstein. This is of course
due to its importance in applications but also to the fascinating complexity and
richness of the structure of the solution set of (1.1) and the necessity to develop new
techniques to investigate this. Most papers deal with single- or multi-peak spike-layer
solutions, i. e. solutions uε which develop as ε→ 0 one or several spikes whose peaks
are located at critical points of the potential function V . We refer to the recent
papers [3, 6, 7, 9, 10, 11, 12, 15, 16, 18, 19, 23, 24, 30, 31] and the references therein.
In all these papers, the authors used the least energy solution of the related limiting
equation in RN to construct spike-layer solutions for problem (1.1). Furthermore, all
the solutions concentrate near one or more isolated points.

Malchiodi and Montenegro [20] seem to be the first to construct solutions of (1.1)
which concentrate on higher-dimensional subsets of RN . They considered (1.1) with
Neumann boundary conditions on smooth bounded domains in R2 and for V,K ≡ 1.
The new type of solutions found in [20] concentrate on the boundary of the domain.
Recently, Ambrosetti, Malchiodi and Ni [1] extended [20] to higher-dimensional lay-
ers for problem (1.1) on Ω = RN with K ≡ 1 and V (x) = V (|x|) being radially
symmetric. Under certain conditions on V they found radial solutions which concen-
trate near an (N − 1)-dimensional sphere {|x| = ρ}. In [1] they considered the case
of a ball or an annulus with Dirichlet or Neumann boundary conditions. Del Pino,
Kowalczyk and Wei [13] considered (1.1) on R2 with K ≡ 1 and without any symme-
try conditions on V . For certain values 0 < ε � 1 they obtained solutions of (1.1)
concentrating on a prescribed curve Γ ⊂ R2 which is stationary and nondegenerate
for the weighted area functional

∫
Γ
V σ, σ = p

p−2
− 1

2
.

In [4], we considered problem (1.1) in the non-autonomous case with V and K
being radially symmetric. We constructed constructed radially symmetric solutions
which concentrate simultaneously on several spheres. Recently, Dancer and Yan [14]
studied (1.1) with V = K ≡ 1 on certain domains Ω and obtained solutions which
concentrate near (m−1) dimensional spheres, 1 < m ≤ N . In the terminology of [21],
these solutions are (m− 1)-dimensional layer solutions. In this paper, we extend the
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work of [14] to the non-autonomous case. Whereas in [14] the location of the spheres
was determined by the geometry of the domain, in our case the potential functions
V and K are essential. Our techniques also allow to find solutions concentrating on
other types of manifolds like tori.

Now we describe the class of domains Ω ⊂ RN and potentials we consider.

(Ω) There is an integer m, 1 < m ≤ N , and a relatively open subset Ω0 ⊂ R+
0 ×

RN−m such that Ω = {x = (x′, x′′) ∈ Rm × RN−m = RN : (|x′|, x′′) ∈ Ω0}

For x = (x′, x′′) ∈ Rm × RN−m we write x̃ = (|x′|, x′′) ∈ R+
0 × RN−m.

(V K)1 There exist functions V0, K0 ∈ C1(Ω0,R) such that V (x) = V0(x̃) and K(x) =
K0(x̃) for x ∈ Ω.

(V K)2 V,K are bounded and inf V > 0, inf K > 0.

The solutions we obtain will have the same symmetry, there is a limiting equation
on RN−m+1, so the critical exponent is

pc :=

{
2(N −m+ 1)/(N −m− 1) if m < N − 1;

∞ if m ≥ N − 1.

For 2 < p < pc we define

θ =
p

p− 2
− N −m+ 1

2

and the function Γ : Ω0 → R by:

(1.3) Γ(z0, · · ·, zN−m) = zm−1
0

(
V0(z0, . . . , zN−m)

)θ(
K0(z0, . . . , zN−m)

)−2/(p−2)
.

Our last assumption concerns the localization of the spheres where the solutions
concentrate.

(V K)3 Γ has k critical points Zj = (Zj,0, . . . , Zj,N−m) ∈ Ω0 such that Zj,0 > 0,
D2Γ(Zj) exists and is nondegenerate, j = 1, . . . , k

In order to formulate our results let U ∈ H1(RN−m+1) be the unique solution of
the problem

(1.4)


−∆v + v = vp−1, v > 0,

v(0) = max v,

v ∈ H1(RN−m+1).

For given z ∈ RN−m+1 we set

α(z) =

(
V0(z)

K0(z)

)1/(p−2)

and β(z) =
√
V0(z).
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Finally we define

(u, v)ε =

∫
Ω

(ε2∇u∇v + V (x)uv)dx and ‖u‖2
ε = (u, u)ε.

The main result of this paper is the following:

Theorem 1.1. Let (Ω) and (V K)1 − (V K)3 hold, p ∈ (2, pc). Then for ε > 0
sufficiently small, (1.1) has a solution uε ∈ H1

0 (Ω) of the form

uε(x) =
k∑
j=1

α (Zε,j)U

(
β (Zε,j)

(
x̃− Zε,j

ε

))
+ wε(x̃),

with x̃ = (|x′|, x′′) as above and

Zε,j ∈ Ω0, |Zε,j − Zj| = O
(
εmin{1,p−2}) , ‖wε‖2

ε = O
(
εN−m+3

)
, |wε|∞ = O(ε).

This result can be extended in various directions. We state one such variation
dealing with the case where the critical points are allowed to be degenerate.

(V K)4 Γ has k isolated critical points Z1, . . . , Zk ∈ Ω0 with nontrivial local degree:
deg(∇Γ, Bδ(Zj), 0) 6= 0 for δ > 0 small, j = 1, . . . , k.

Theorem 1.2. Suppose (Ω), (V K)1, (V K)2, and (V K)4 hold, p ∈ (2, pc). Then for
ε > 0 sufficiently small, (1.1) has a solution uε ∈ H1

0 (Ω) of the form

uε(x) =
k∑
j=1

α (Zε,j)U

(
β (Zε,j)

(
x̃− Zε,j

ε

))
+ wε(x̃),

with

Zε,j ∈ Ω0, |Zε,j − Zj| = o(1), ‖wε‖2
ε = O

(
εN−m+3

)
, |wε|∞ = O(ε).

Theorem 1.1 and Theorem 1.2 continue to hold with Neumann boundary condi-
tions if the boundary is non-empty.

Our arguments can also be used to construct other types of solutions. Fix integers
N1, . . . , Nh ∈ N with N1 + . . .+Nh = N and write

x = (x1, . . . , xh) ∈ RN = RN1 × · · · × RNh

accordingly. Setting

z = z(x) = (z1, . . . , zh) with zi =

{
xi if Ni = 1,

|xi| if Ni ≥ 2,
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we require Ω = {x ∈ RN : z(x) ∈ Ω0}, V (x) = V0(z) and K(x) = K0(z) with
C1-functions V0, K0 : Ω0 ⊂ Rh → R. Thus Ω, V,K are radially symmetric in xi for
all i with Ni ≥ 2. In Theorem 1.1 we have h = N − m + 1, N1 = m, Ni = 1 for
i = 2, . . . , h. Here we consider the function

Γ(z1, . . . , zh) = zN1−1
1 · . . . · zNh−1

h V0(z)
p
p−2
−h

2K0(z)−
2
p−2 ,

and assume that Γ has k nondegenerate critical points Z1, . . . , Zk with Zji > 0, if
Ni ≥ 2, j = 1, . . . , k, i = 1, . . . , h. The critical exponent here is pc = 2h/(h − 2) if
h > 2 since the limiting equation lives on Rh.

Theorem 1.3. Suppose p ∈ (2, pc). Then for ε > 0 sufficiently small, (1.1) has a
solution uε ∈ H1

0 (Ω) of the form

uε(x) =
k∑
j=1

α(Zε,j)U

(
β(Zε,j)

(
z − Zε,j

ε

))
+ wε(z),

with z = z(x) as above and

Zε,j ∈ Ω0, |Zε,j − Zj| = O(εmin{1,p−2}), ‖wε‖2
ε = O(εh+2), |wε|∞ = O(ε).

where U is the unique solution of equation

(1.5)


−∆v + v = vp−1, v > 0,

v(0) = max v,

v ∈ H1(Rh).

The solutions of Theorem 1.3 concentrate near the k manifolds Mj = {x ∈ RN :
z(x) = Zj}, j = 1, . . . , k. Observe that each Mj is diffeomorphic to the product of
spheres SN1−1 × . . .× SNh−1.

In the subsequent paper [5] we construct yet another type of solutions of (1.1)
which concentrate simultaneously on a prescribed number of (m − 1)-dimensional
spheres and such that the spheres converge towards the same sphere as ε→ 0. Thus
these solutions have the form as in Theorem 1.1 with Zε,j → Z as ε→ 0 for all j.

In the radially symmetric case m = N , our result with k = 1 is the same as that
of [1]. We believe that our arguments are simpler and can be applied to more general
cases. The case k > 1 is new even if m = N .

Our arguments are based on variational methods. The basic idea is to use the
least energy solution of the related limiting equation in RN−m+1 as a building block
to construct solutions for (1.1). We first reduce the problem we are dealing with to
a finite-dimensional one by a kind of Lyapunov-Schmidt reduction (see [8] or [28]).
For this reduction it is essential to work in the subspace

Hs := {u ∈ H1
0 (Ω) : u(x) = u0(|x′|, x′′)}.
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of H1
0 (Ω) consisting of functions having the same symmetry as the problem. The

reason is the lack of control in some directions for the corresponding linearized op-

erator Lv(x) := −∆v(x) + v(x)− (p− 1)
(
U(|x′|, x′′)

)p−2
v(x) in H1(RN). This leads

to spectral problems for L which disappear in H1
s (RN). After making the reduction

we use the Brouwer degree and apply energy comparison techniques. In order to
obtain the existence result in the supercritical range p ∈ (2N/(N − 2), pc), we also
employ a penalty function argument which needs some truncation. Consequently we
use a local approach in the finite dimensional reduction. This is essential for finding
a fixed-point in a subspace where the functions are L∞ uniformly bounded. In [1]
where m = N , Strauss’s inequality[29] and Green’s function were used in the proce-
dure of reduction. But it seems that the argument of [1] fails to work in our case since
we do not have Strauss’s inequality if 1 < m < N . We also improve the techniques
developed in [14]. We believe that our arguments can work well to generalize most
of the results obtained in the case m = 1 to the case 1 < m ≤ N .

The paper is organized as follows: in Section 2 we first introduce some notation
and explain the framework of the proof. Then we prove some preliminary estimates
which play a key role in the rest of the proof. In Section 3 we reduce the problem to
the study of a finite dimensional variational problem. The proofs of the main results
are given in Section 4. Finally, in the Appendix we prove a technical result.

Throughout this paper, we will use C, c and Cj, j ∈ N, to denote various positive
constants. O(t), o(t) means |O(t)| ≤ C|t| and o(t)/t→ 0 respectively as t→ 0. Given
D0 ⊂ RN−m+1 such that f(|x′|, x′′) is integrable over D := {x ∈ RN : (|x′|, x′′) ∈ D0}
we write

∫
D
f(|x′|, x′′)dx =

∫
D0
zm−1

0 f(z)dz. So z = (z0, . . . , zN−m) and
∫
dz includes

the factor ωm−1, the (m− 1)-dimensional volume of the unit sphere in Rm.

2 Preliminaries

Recall that the unique solution U ∈ H1(RN−m+1) of (1.4) is radially symmetric and
satisfies

lim
|z|→∞

|z|(N−m)/2e|z|U(z) = αN,m,p > 0 and lim
|z|→∞

U ′(z)

U(z)
= −1,

where αN,m,p is a constant depending only on N, m and the exponent p. Moreover, U
is non-degenerate, that is, the kernel of the operator w 7→ −∆w+w− (p− 1)Up−2w
in H1(RN−m+1) is spanned by {∂U/∂zl : l = 0, . . . , N−m}; see [6] or [8] for instance.

For fixed ε > 0 and y ∈ Ω0 ⊂ RN−m+1 we define

Uε,y(z) = αyU

(
βy(z − y)

ε

)
.

where

αy :=

(
V0(y)

K0(y)

)1/(p−2)

and βy := V0(y)1/2
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It is easy to check that Uε,y satisfies

(2.1) −ε2∆v(z) + V0(y)v(z) = K0(y)v(z)p−1 in RN−m+1.

Moreover, there exist constants c, C, λ > 0 such that

(2.2)

Uε,y(z) ≤ Ce−λ(z−y)/ε,

U ′ε,y(z) ≤ Cε−1e−λ(z−y)/ε + e−c/ε,

U ′′ε,y(z) ≤ Cε−2e−λ(z−y)/ε + e−c/ε.

The function Ũε,y(x) = Uε,y(x̃) satisfies

(2.3)

− ε2∆Ũε,y + V0(y)Ũε,y

= K0(y)Ũp−1
ε,y − εβjαy

m− 1

|x′|
|x′| − y0

|x̃− y|
U ′
(
βy(x̃− y)

ε

)
with x̃ = (|x′|, x′′).

Set κ = min{dist(Zj, ∂Ω0) : j = 1, . . . , k} and let η ∈ C∞(RN−m+1, [0, 1]) be such
that {

η(z) = 1, if z ∈ Ω0, dist(z, ∂Ω0) ≥ κ/4,

η(z) = 0, if z /∈ Ω0 or dist(z, ∂Ω0) ≤ κ/8.

The function
Wε,y(x) = η(x̃)Ũε,y(x),

satisfies

(2.4)

{
−ε2∆Wε,y + V0(y)Wε,y = ηK0(y)Ũp−1

ε,y + fε,y(x) in Ω,

Wε,y = 0, on ∂Ω,

where

fε,y(x) = −η(x̃)εβyαy
m− 1

|x′|
|x′| − y0

|x̃− y|
U ′
(
βy(x̃− y)

ε

)
− 2εαyβy∇η(x̃)∇U

(
βy(x̃− y)

ε

)
− ε2αyU

(
βy(x̃− y)

ε

)
∆η(x̃).

Hence we can easily check that fε,y depends smoothly on x and y. Moreover,

(2.5) |fε,y| ≤ CεU

(
βy(x̃− y)

ε

)
.

Fix δ > 0 small so that B4δ(Zj) ⊂ int Ω0 and B4δ (Zj) ∩ B4δ (Zi) = ∅ for i 6= j,
i, j = 1, . . . , k. Set

(2.6) Dδ = Bδ (Z1)× . . .×Bδ (Zk) ⊂ Rk(N−m+1)
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and Bj = {x ∈ Ω : x̃ ∈ Bδ(Zj)}. We replace the nonlinearity up−1 by

(2.7) g(x, t) =
k∑
j=1

χBj t
p−1
+ +

(
1−

k∑
j=1

χBj

)
g0(t),

where χBj is the characteristic function of Bj and

g0(t) =

t
p−1
+ for t ≤ a,

ap−2t for t > a,

with a := kU(0) + 1.
Now we consider the following new problem

(2.8)

{
−ε2∆u+ V (x)u = K(x)g(x, u), u > 0, in Ω,

u ∈ H1
0 (Ω)

The functional associated to problem (2.8) is

Iε(u) =
1

2

∫
Ω

(
ε2|∇u|2 + V (x)u2

)
dx−

∫
Ω

K(x)G(x, u)dx,

where G(x, t) =
∫ t

0
g(x, s)ds. For any x ∈ Bj, we have |x′| ≥ c > 0, so Iε is well

defined in Hs for 2 < p < pc. It is easy to check that Iε ∈ C1(Hs), hence its positive
critical points are solutions of problem (2.8).

For Y = (Y1, . . . , Yk) ∈ Dδ we define the subspace

Eε,Y =
{
v ∈ Hs :

(
v, ∂Wε,Yj/∂Yj,l

)
ε

= 0, j = 1, . . . , k, l = 0, . . . , N −m
}

of Hs of codimension k(N −m + 1). We restrict our arguments to the existence of
critical points of Iε of the form

u =
k∑
j=1

Wε,Yj + wε,

where Yj is close to Zj, wε ∈ Eε,Y and ‖wε‖2
ε = o(εN−m+1). In order to do this we

consider the functional

Jε(Y,w) := Iε

(
k∑
j=1

Wε,Yj + w

)

defined for Y ∈ Rk(N−m+1) and w ∈ Hs. Clearly Jε is of class C1. We need to
constrain Jε to the k(N −m+ 1)-codimensional submanifold

Mε,δ := {(Y,w) : Y ∈ Dδ, w ∈ Eε,Y }

of Rk(N−m+1) ×Hs.
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Lemma 2.1. There exist δ0 > 0 and ε0 > 0 such that if ε ∈ (0, ε0] and δ ∈ (0, δ0],
then (Y,w) is a critical point of Jε constrained to Mε,δ if and only if

u =
k∑
j=1

Wε,Yj + wε

is a critical point of Iε in Hs.

Proof. The proof of Lemma 2.1 proceeds analogous to the proof of [4, Lemma 2.3].
We therefore just give a sketch. We define

ϕ(Y ) =
k∑
j=1

Wε,Yj

and, for δ, ε > 0,

W (δ, ε) = {u ∈ Hs : ‖u− ϕ(Y )‖ε < δε(N−m+1)/2 for some Y ∈ Dδ}.

Then one shows that there exist δ0, ε0 > 0 such that if δ ∈ (0, δ0] and ε ∈ (0, ε0], then
given u ∈ W (δ, ε) the minimization problem

(2.9) inf{‖u− ϕ(Y )‖ε : Y ∈ Dδ}

is achieved in D2δ and not in D4δ \ D2δ. If Y ∈ D2δ is a minimizer of (2.9) then
w := u− ϕ(Y ) satisfies(

w,
∂Wε,Yj

∂Yj,l

)
ε

= 0 for j = 1, . . . , k, l = 1, . . . , N −m+ 1.

Finally one shows that (2.9) admits a unique solution provided δ0, ε0 are small enough.

We notice that, according to the Lagrange multiplier rule, (Y,w) is a critical
point of Jε constrained to Mε,δ if and only if there are scalars Aj,l ∈ R, j = 1, . . . , k,
l = 0, . . . , N −m, such that

(2.10)
∂Jε
∂Yj,l

(Y,w) =
N−m∑
n=0

Aj,n

(
∂2Wε,Yj

∂Yj,n∂Yj,l
, w

)
ε

,

and

(2.11)
∂Jε
∂w

(Y,w) =
k∑
j=1

N−m∑
l=0

Aj,l
∂Wε,Yj

∂Yj,l
.

In order to prove Theorem 1.1, we show first that for given Y and ε small enough,
there exist wε,Y ∈ Eε,Y and scalars Aj,l, j = 1, . . . , k, l = 0, . . . , N − m, such that
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(2.11) is satisfied and the mapping Y 7→ wε,Y is C1. We then show that for sufficiently
small ε, there exists a point Y ∈ Dδ, such that (Y,wε,Y ) ∈Mε,δ solves (2.10).

Expand Jε(Y,w) near w = 0 as follows

Jε(Y,w) = Jε(Y, 0) + hε,Y (w) +
1

2
Qε,Y (w)−Rε,Y (w),

where

hε,Y (w) =
k∑
j=1

∫
Ω

(
ε2∇Wε,Yj∇w + V (x)Wε,Yjw

)
−
∫

Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−1

w,

Qε,Y (w) =

∫
Ω

(ε2|∇w|2 + V (x)w2)− (p− 1)

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−2

w2,

Rε,Y (w) =

∫
Ω

K(x)G

(
x,

k∑
j=1

Wε,Yj + w

)
− 1

p

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p

−
∫

Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−1

w

− p− 1

2

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−2

w2.

Lemma 2.2. hε,Y : Eε,Y → R is a bounded linear map satisfying

|hε,Y (w)| ≤ Cε(N−m+1)/2(ε+ e−c/ε)‖w‖ε

for some constants c, C > 0.

Proof. By (2.4), we have

hε,Y (w) =
k∑
j=1

∫
Ω

(
ηK0(Yj)Ũ

p−1
ε,Yj

+ fε,j

)
w −

k∑
j=1

∫
Ω

K0(Yj)
(
Wε,Yj

)p−1
w

+
k∑
j=1

∫
Ω

V (x)Wε,Yjw −
k∑
j=1

∫
Ω

V0(Yj)Wε,Yjw

+
k∑
j=1

∫
Ω

K0(Yj)
(
Wε,Yj

)p−1
w −

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−1

w.

On the other hand, by (2.2),∣∣∣∣∣
k∑
j=1

∫
Ω

(
ηK0(Yj)Ũ

p−1
ε,Yj

)
w −

k∑
j=1

∫
Ω

K0(Yj)
(
Wε,Yj

)p−1
w

∣∣∣∣∣
10



≤
k∑
j=1

∫
Ω

K0(Yj)
∣∣∣ηŨp−1

ε,Yj
−W p−1

ε,Yj

∣∣∣ |w|
= O(ε

N−m+1
2 e−

c
ε )‖w‖ε,∣∣∣∣∣

k∑
j=1

∫
Ω

V (x)Wε,Yjw −
k∑
j=1

∫
Ω

V0(Yj)Wε,Yjw

∣∣∣∣∣
≤

k∑
j=1

∫
Ω

|V (x)− V0(Yj)|Wε,Yj |w|

≤
(∫

Ω

|V (x)− V0(Yj)|2W 2
ε,Yj

) 1
2

‖w‖ε

= O(εε
N−m+1

2 )‖w‖ε,∣∣∣∣∣∣
k∑
j=1

∫
Ω

K0(Yj)
(
Wε,Yj

)p−1
w −

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−1

w

∣∣∣∣∣∣
=

k∑
j=1

∫
Ω

|K0(Yj)−K(x)|W p−1
ε,y |w|

+


O

(∑
i 6=j

∫
Ω

W
p−1
2

ε,Yj
W

p−1
2

ε,Yi
|w|

)
(2 < p < 3)

O

(∑
i 6=j

∫
Ω

W p−2
ε,Yj

Wε,Yi|w|

)
(p ≥ 3)

≤
k∑
j=1

(∫
Ω

|K0(Yj)−K(x)|2W 2(p−1)
ε,Yj

) 1
2

‖w‖ε

+



O

(∑
i 6=j

(∫
Ω

W p−1
ε,Yj

W p−1
ε,Yi

) 1
2

)
‖w‖ε (2 < p < 3)

O

(∑
i 6=j

(∫
Ω

W
2(p−2)
ε,Yj

W 2
ε,Yi

) 1
2

)
‖w‖ε (p ≥ 3)

= O(εε
N−m+1

2 )‖w‖ε +O(ε
N−m+1

2 e−
c
ε )‖w‖ε,

∣∣∣∣∫
Ω

fε,j(x)w

∣∣∣∣ ≤ (∫
Ω

|fε,j|2
) 1

2

‖w‖ε = O(εε
N−m+1

2 )‖w‖ε.
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Adding the above four inequalities we obtain the desired estimate.

3 The finite-dimensional reduction

In this section, we solve equation (2.11) for any given Y = (Y1, . . . , Yk) ∈ Dδ. Associ-
ated to the quadratic form Qε,Y : Hs → R is the bounded linear map Lε,Y : Hs → Hs,
defined by

(Lε,Yw1, w2)ε =

∫
Ω

(ε2∇w1∇w2 + V (x)w1w2)− (p− 1)

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−2

w1w2

so that Qε,Y (w) = (Lε,Yw,w). Constraining Qε,Y yields the quadratic form QE
ε,Y :

Eε,Y → R which induces a bounded linear map LEε,Y : Eε,Y → Eε,Y given by LEε,Yw =
PLε,Yw with P : Hs → Eε,Y the orthogonal projection (with respect to the scalar
product ( · , · )ε).

Proposition 3.1. For ε small enough and Y ∈ Dδ, the operator LEε,Y is invertible
with uniformly bounded inverse. In other words, there exist constants ε0 > 0 and
τ > 0, such that for each ε ∈ (0, ε0] and Y ∈ Dδ

‖LEε,Yw‖ε ≥ τ‖w‖ε, for all w ∈ Eε,Y .

The proof of Proposition 3.1 will be postponed to the Appendix.
Let

Fε,Y =

{
w ∈ Hs : |w(x)| ≤

k∑
j=1

ηe−ν|x̃−Yj |
/
ε + Ce−

σ
ε

}
,

where ν, σ > 0 are small constants to be determined later. The following estimates
were essentially observed by Dancer and Yan in [14].

Lemma 3.2. For any w ∈ Fε we have, provided ε > 0 is small:

|Rε,Y (w)| ≤ CεN−m+1(ε−(p∗−2)(N−m+1)/2‖w‖p∗−2
ε ) + Ce−c/ε‖w‖2

ε(3.1)

|R′ε,Y (w)v| ≤ Cε(N−m+1)/2ε−(p∗+1)(N−m+1)/2‖w‖p∗+1
ε ‖v‖ε + Ce−c/ε‖w‖ε‖v‖ε(3.2)

|R′′ε,Y (w)[v1, v2]| ≤ C(ε−p
∗(N−m+1)/2‖w‖p∗ε + e−c/ε)‖v1‖ε‖v2‖ε(3.3)

where p∗ = min{1, p− 2}.

Proof. For any w ∈ Fε and small ε, we have |w| ≤ 1
2

and
k∑
j=1

Wε,Yj ≤ 1
2

in Ω\
⋃k
j=1Bj.

This implies

|Rε,Y (w)| =

∣∣∣∣1p
∫

Ω

K(x)

(
k∑
j=1

Wε,y + w

)p

+

− 1

p

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p

12



−
∫

Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−1

w − p− 1

2

∫
Ω

K(x)

(
k∑
j=1

Wε,Yj

)p−2

w2

∣∣∣∣
≤ C

∫
⋃k
j=1Bj

|w|p∗−2 + C

∫
Ω\

⋃k
j=1Bj

|w|p∗−2

≤ C

∫
⋃k
j=1Bj

|w|p∗−2 + C|w|p
∗

L∞(Ω\
⋃k
j=1Bj)

∫
Ω\

⋃k
j=1Bj

w2

≤ C

∫
⋃k
j=1Bj

|w|p∗−2 + Ce−c/ε‖w‖2
ε.

Fix some j = 1, . . . , k and set w̃(z) = w(εz+Yj) and Bε,j = {z : εz+Yj ∈ Bδ(Zj)}.
By the fact that |x′| ≥ c > 0 for x ∈ Bj, we see∫
Bj

|w|p∗−2dx =

∫
Bδ(Zj)

zm−1
0 |w|p∗−2dz ≤ C

∫
Bδ(Zj)

|w|p∗−2dz

= CεN−m+1

∫
Bε,j

|w̃|p∗−2dz ≤ CεN−m+1

(∫
Bε,j

(|∇w̃|2 + w̃2)dz

)(p∗−2)/2

= CεN−m+1

(
ε−(N−m+1)

∫
Bδ(Zj)

(ε2|∇w|2 + w2)dz

)(p∗−2)/2

≤ CεN−m+1
(
ε−(p∗−2)(N−m+1)/2‖w‖p∗−2

ε

)
.

Combining the last two estimates, we obtain (3.1). (3.2) and (3.3) can be verified
similarly.

Now we are in the position to state the main result of this section.

Proposition 3.3. For ε sufficiently small, there exists a C1-map Dδ → Hs, Y 7→
wε,Y , such that wε,Y ∈ Eε,Y and (Y,wε,Y ) satisfies (2.11) for some Aj,l ∈ R, j =
1, . . . , k, l = 0, . . . , N −m. Moreover,

(3.4) ‖wε,Y ‖2
ε ≤ CεN−m+3.

Proof. Lemma 2.2 implies that the map hε,Y |Eε,Y is represented by an element of Eε,Y
which we denote by hEε,Y . So hEε,Y ∈ Eε,Y satisfies

(hEε,Y , w)ε = hε,Y (w), for all w ∈ Eε,Y .

Thus, solving (2.11) is equivalent to solving

(3.5) hEε,Y + LEε,Yw + (RE
ε,Y )′(w) = 0, w ∈ Eε,Y

where (RE
ε,Y )′(w) ∈ Eε,Y represents R′ε,Y (w)|Eε,Y . As a consequence of Proposition 3.1,

QE
ε,Y is invertible. So we can rewrite (3.5) as

w = −(QE
ε,Y )−1(hEε,Y + (RE

ε,Y )′(w)) =: Aε,Y (w).

13



For ν > 0, 0 < σ � ν, and γ > 0 to be determined later, define

Cε :=

{
w ∈ Eε,Y : |w(x)| ≤ γε

k∑
j=1

ηe−ν|x̃−Yj |/ε + γe−σ/ε, ‖w‖ε ≤ γε(N−m+3)/2

}
.

Now we prove that for a suitable choice of γ, the map Aε,Y is a contraction on
the set Cε endowed with the norm ‖ . ‖ε. For any w1, w2 ∈ Cε, we have by (3.3),

‖Aε,Y (w1)− Aε,Y (w2)‖ε
≤ C‖(RE

ε,Y )′(w1)− (RE
ε,Y )′(w2)‖ε

≤ C(ε−p
∗(N−m+1)/2‖w1 + (1− %)w2‖p

∗

ε + e−c/ε)‖w1 − w2‖ε
≤ Cγp

∗
εp
∗‖w1 − w2‖ε,

where % ∈ [0, 1]. Thus Aε,Y is a contraction for ε small enough.
For w ∈ Cε we have

(3.6)

‖Aε,Y (w)‖ε ≤ C‖hε,Y ‖ε + C‖(RE
ε,Y )′(w)‖ε

≤ C(εε(N−m+1)/2 + e−c/ε)

+ Cε(N−m+1)/2(ε−(p∗+1)(N−m+1)/2‖w‖p∗+1
ε ) + Ce−c/ε‖w‖ε

≤ C0ε
(N−m+3)/2(1 + γp

∗+1εp
∗
).

In order to see that Aε,Y (w) ∈ Cε, it suffices to prove that for a suitable γ > 0,

|Aε(w)(x)| ≤ γε
k∑
j=1

ηe−ν|x̃−Yj |/ε + γe−σ/ε.

Setting w1 = Aε,Y (w) we obtain

LEε,Yw1 = −hEε,Y − (RE
ε,Y )′(w)

that is,

(3.7) Lε,Yw1 + hε,Y +R′ε,Y (w) =
k∑
j=1

N−m∑
l=0

Aj,l
∂Wε,Yj

∂Yj,l
,

for some Aj,l ∈ R, j = 1, . . . , k, l = 0, . . . , N−m; here we identify the bounded linear
maps hε,Y , R

′
ε,Y (w) : Hs → R with elements of Hs using the scalar product ( · , · )ε.

We claim that

(3.8) |Aj,l| ≤ C1ε
2(1 + γp

∗+1εp
∗
), j = 1, . . . , k, l = 0, . . . , N −m.

In fact, first, we can easily check that(
∂Wε,Yj

∂Yj,l
,
∂Wε,Yj

∂Yj,l

)
ε

= CεN−m−1 +O(εN−me−
c
ε ),
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(
∂Wε,Yj

∂Yj,l
,
∂Wε,Yi

∂Yi,n

)
ε

= O(εN−m + εN−me−
c
ε ), i 6= j or l 6= n.

Thus, taking the scalar product in Hs of (3.7) with
∂Wε,Yj

∂Yj,l
for j = 1, . . . , k,

l = 0, . . . , N − m, respectively, we get a quasi-diagonal linear system with Aj,l as
unknowns, which yields,

|Aj,l| ≤ Cε−
N−m−1

2 (‖w1‖ε + ‖hε,Y ‖ε + ‖R′ε,Y (w)‖ε)

≤ Cε−(N−m−1)/2

(
C0ε

(N−m+3)/2(1 + γp
∗+1εp

∗
) + Cε(N−m+3)/2

+ Cγp
∗−1ε(N−m+3)/2εp

∗
)

≤ C1ε
2(1 + γp

∗+1εp
∗
).

By duality, (3.7) can be written as

−ε2∆w1 + V (x)w1 − (p− 1)K(x)
( k∑
j=1

Wε,Yj

)p−2

w1

= −
k∑
j=1

(
ηK0(Yj)Ũ

p−1
ε,Yj

+ fε,j

)
+K(x)

( k∑
j=1

Wε,Yj

)p−1

+
k∑
j=1

(V (x)− V0(Yj))Wε,Yj

−K(x)
{
g
(
x,

k∑
j=1

Wε,Yj + w
)
−
( k∑
j=1

Wε,Yj

)p−1

− (p− 1)
( k∑
j=1

Wε,Yj

)p−2

w
}

+
k∑
j=1

N−m∑
l=0

Aj,l

(∂qε,j
∂Yj,l

− ∂V0(Yj)

∂Yj,l
Wε,y

)
=: Gε,Y (x),

where
qε,j = ηK0(Yj)Ũ

p−1
ε,Yj

+ fε,j.

Since w ∈ Cε, we have |w| ≤ 1/2 in Ω \
⋃k
j=1Bj. Therefore,

(3.9)∣∣∣K(x)g
(
x,

k∑
j=1

Wε,Yj + w
)
−K(x)

( k∑
j=1

Wε,Yj

)p−1

− (p− 1)K(x)
( k∑
j=1

Wε,y

)p−2

w
∣∣∣

≤ C|w|p∗+1.
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Now direct calculations yield:
(3.10)∣∣∣− k∑

j=1

(
ηK0(Yj)Ũ

p−1
ε,Yj

)
+K(x)

( k∑
j=1

Wε,Yj

)p−1∣∣∣
≤
∣∣∣− k∑

j=1

(
K0(Yj)W

p−1
ε,Yj
−K(x)W p−1

ε,y

)∣∣∣
+K(x)

∣∣∣( k∑
j=1

Wε,Yj

)p−1

−
k∑
j=1

W p−1
ε,Yj

∣∣∣+O(e−c/ε)

≤ C

k∑
j=1

|x̃− Yj|W p−1
ε,Yj

+O(e−c/ε) +


C
∑
i 6=j

W
(p−1)/2
ε,Yj

W
(p−1)/2
ε,Yi

2 < p < 3

C
∑
i 6=j

W p−2
ε,Yj

Wε,Yi p ≥ 3

≤ C
k∑
j=1

|x̃− Yj|W p−1
ε,Yj

+O(e−c/ε),

and

(3.11)
k∑
j=1

|V (x)− V0(Yj)|Wε,Yj ≤ C
k∑
j=1

|x̃− Yj|Wε,Yj +O(e−c/ε).

On the other hand, it follows from the definitions of Wε,Yj and fε,j that for j = 1, . . . , k

(3.12)
∣∣∣∂qε,j
∂Yj,l

− ∂V0(Yj)

∂Yj,l
Wε,y

∣∣∣ ≤ Cε−1Up−1

(
βj(x̃− Yj)

ε

)
+ CU

(
βj(x̃− Yj)

ε

)
.

Hence combining (2.2), (2.5) and (3.8)-(3.12), we obtain

|Gε,Y (x)| ≤ C
k∑
j=1

|x̃− Yj|Up−1

(
βj(x̃− Yj)

ε

)
+ C

k∑
j=1

|x̃− Yj|U
(
βj(x̃− Yj)

ε

)

+ C1

k∑
j=1

(
ε(1 + γp

∗+1εp
∗
)U

(
βj

(x̃− Yj)
ε

))
+ Ce−c/ε + C|w|p∗+1

≤ C
k∑
j=1

|x̃− Yj|e−(p−1)λ|x̃−Yj |/ε + C
k∑
j=1

|x̃− Yj|e−λ|x̃−Yj |/ε

+ C1

k∑
j=1

(
ε(1 + γp

∗+1εp
∗
)e−λ|x̃−Yj |/ε

)
+ Ce−c/ε

+ Cγp
∗+1εp

∗+1

k∑
j=1

ηe−(p∗+1)ν|x̃−Yj |/ε + Cγp
∗+1e−(p−1)σ/ε.
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It is easy to check that for 0 < ν < λ and r ≥ 0

re−λr/ε

εe−νr/ε
≤ e−1

λ− ν
.

Consequently,

(3.13)
|Gε,Y (x)| ≤ C2ε(1 + γp

∗+1εp
∗
)

λ− ν

k∑
j=1

ηe−ν|x̃−Yj |/ε + C2e
−c/ε

+ C2γ
p∗+1e−(p∗+1)σ/ε,

where C2, c, ν and σ are independent of γ, 0 < ν < λ.
We claim that there exists C3 > 0 independent of γ, such that

(3.14) |w1| ≤
C3ε(1 + γp

∗+1εp
∗
)

λ− ν
in

k⋃
j=1

Bj.

Indeed, setting

gε,Y (x,w1) = −V (x)w1 + (p− 1)K(x)

(
k∑
j=1

Wε,Yj

)p−2

w1,

and w̃1(z) = w1(εz + Yj), z = x̃ = (|x′|, x′′), then

−∆w̃1(z) = Gε,Y (εz + Yj) + gε(εz + Yj, w̃1) in Bε,j,

where Bε,j = {z : εz + Yj ∈ Bδ(Zj)}.
For any z̄ ∈ Bε,j, since |x′| > c > 0 in Bj, we have∫

B1(z̄)

|w̃1|2dz ≤ ε−(N−m+1)

∫
Bj

|w1|2dz ≤ Cε−(N−m+1)‖w1‖2
ε

= Cε−(N−m+1)‖Aε,Yw‖2
ε ≤ CC0ε

2(1 + γp
∗+1εp

∗
).

So, we deduce from (3.13) that

|w̃1|L∞(B1(z̄)) ≤ C‖gε,Y (εz + Yj, w̃1)‖L2(B1(z̄)) + C|Gε,Y (εz + Yj)|L∞B1(z̄)

≤ C‖w̃1‖L2(B1(z̄)) + C|Gε,Y |L∞(Ω)

≤ C3ε(1 + γp
∗+1εp

∗
)

λ− ν
.

Thus, our claim follows.
For a smooth function ψ satisfying ψ = 0 in Bj, define

aε(x) = K(x)

(
k∑
j=1

Wε,Yj(x)

)p−2

ψ(x).
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It is easy to see that aε → 0 uniformly in Ω as ε→ 0. It follows from (3.14) that w1

satisfies

(3.15)

− ε2∆w1 + (V (x)− (p− 1)aε(x))w1

≤ Gε,Y (x) +
C3ε(1 + γp

∗+1εp
∗
)

λ− ν

(
k∑
j=1

Wε,Yj

)p−2

.

Setting

v = γε

k∑
j=1

ηe−ν|x̃−Yj |/ε + γe−σ/ε.

direct computations yield that for ε sufficiently small, there exists C4 > 0 independent
of ε and γ such that

− ε2∆v + (V (x)− (p− 1)aε(x))v

≥ (V (x)− (p− 1)aε(x)− ν2)

(
γε

k∑
j=1

ηe−ν|x̃−Yj |/ε + γe−σ/ε

)

+O

(
ε|∇η|+ ε2

N−m∑
l,n=0

∣∣∣ ∂2η

∂zl∂zn

∣∣∣)(γε k∑
j=1

e−ν|x̃−Yj |/ε + γe−σ/ε

)

≥ (λ− ν2)γ

2

(
ε

k∑
j=1

ηe−
ν|x̃−Yj |

ε + e−σ/ε

)

≥ C4ε(1 + γp
∗+1εp

∗
)

λ− ν

k∑
j=1

ηe−ν|x̃−Yj |/ε + C4e
−c/ε + C4γ

p∗+1e−(p∗+1)σ/ε

≥ Gε,Y (x) +
C3ε(1 + γp

∗+1εp
∗
)

λ− ν

(
k∑
j=1

Wε,Yj

)p−2

,

provided σ > 0 is small, 0 < ν < λ, 0 < ν2 < λ and (λ− ν2)γ/4 ≥ C4/λ− ν).
Using the comparison principle, we obtain

w1 ≤ v = γε
k∑
j=1

ηe−ν|x̃−Yj |/ε + γe−σ/ε.

Therefore, choosing γ > max{2C0, 4C4/(λ− ν)(λ− ν2)} and 0 < σ � ν � λ , where
C0 is from (3.6), we see that w1 ∈ Cε. Thus, Aε,Y is a contraction from Cε into itself.
As a consequence, there exists wε,Y ∈ Cε satisfying wε,Y = Aε,Y (wε,Y ), that is, wε,Y
satisfies (2.11) for some scalars Aj,l, j = 1, . . . , k, l = 0, . . . , N −m. Moreover,

(3.16) ‖wε,Y ‖2
ε ≤ CεN−m+3.
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Finally we claim that wε,Y is C1−smooth with respect to Y . Using similar argu-
ments as in [8], we can deduce that there exists a unique C1-map wε,Y : Dδ → Eε,Y
which satisfies (2.11). As a consequence of the uniqueness, wε,Y = wε,Y and the claim
follows.

4 Proofs of the main results

In this section, we prove the main theorems stated in section 1.

Lemma 4.1. Let wε,Y and Aj,l, j = 1, . . . , k, l = 0, . . . , N − m be as in Proposi-
tion 3.3. Then for each j = 1, . . . , k and l = 0, . . . , N −m,

∂Jε
∂Yj,l

(Y,wε,Y ) =

(
1

2
− 1

p

)
B
∂Γ(Yj)

∂Yj,l
εN−m+1 +O(εN−m+1+min{1,p−2})

where B =

∫
RN−m+1

Updz.

Proof. For w := wε,Y ∈ Cε, j = 1, . . . , k, l = 0, . . . , N −m, we have:

∂Jε
∂Yj,l

=

∫
Ω

(
ε2∇

(
k∑
i=1

Wε,Yi + w

)
∇
∂Wε,Yj

∂Yj,l
+ V (x)

(
k∑
i=1

Wε,Yi + w

)
∂Wε,Yj

∂Yj,l

)
dx

−
∫

Ω

K(x)

(
k∑
i=1

Wε,Yi + w

)p−1
∂Wε,Yj

∂Yj,l
dx

=

∫
Ω

(
ε2∇

(
k∑
i=1

Wε,Yi

)
∇
∂Wε,Yj

∂Yj,l
+ V (x)

(
k∑
i=1

Wε,Yi

)
∂Wε,Yj

∂Yj,l

)
dx

−
∫

Ω

K(x)

(
k∑
i=1

Wε,Yi + w

)p−1
∂Wε,Yj

∂Yj,l
dx.

For i 6= j, i, j = 1, . . . , k, the exponential decay of Wε,Yi and
∂Wε,Yi

∂Yi,l
implies:

(4.1)

∫
Ω

(
va2∇Wε,Yi∇

∂Wε,Yj

∂Yj,l
+ V (x)Wε,Yi

∂Wε,Yj

∂Yj,l

)
dx

=

∫
Ω

(
ηK0(Yi)Ũ

p−1
ε,Yi

∂Wε,Yj

∂Yj,l
+ fε,j

∂Wε,Yj

∂Yj,l

)
dx

+

∫
Ω

(V (x)− V0(Yi))Wε,Yi

∂Wε,Yj

∂Yj,l
dx

= O(εN−me−c/ε)
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for some c > 0. Hence

(4.2)

∂Jε
∂Yj,l

=

∫
Ω

(
ε2∇Wε,Yj∇

∂Wε,Yj

∂Yj,l
+ V (x)Wε,Yj

∂Wε,Yj

∂Yj,l

)
dx

−
∫

Ω

K(x)

(
k∑
i=1

Wε,Yi + w

)p−1
∂Wε,Yj

∂Yj,l
dx+O(εN−me−c/ε)

=: I1 + I2 +O(εN−me−c/ε).

A direct calculation gives

2I1 =
∂

∂Yj,l

∫
Ω

(
ε2|∇Wε,Yj |2 + V (x)|Wε,Yj |2

)
dx

=
∂

∂Yj,l

(∫
Ω

ηK0(Yj)Ũ
p−1
ε,Yi

Wε,Yjdx+

∫
Ω

fε,jWε,Yjdx+

∫
Ω

(V (x)− V0(Yj))W
2
ε,Yj

dx

)
=

∂

∂Yj,l

∫
Ω

ηK0(Yj)Ũ
p−1
ε,Yi

Wε,Yjdx+
∂

∂Yj,l

∫
Ω

fε,jWε,Yjdx

+
∂

∂Yj,l

∫
Ω

(V (x)− V0(Yj))W
2
ε,Yj

dx

=: I3 + I4 + I5.

Moreover,

I3 =
∂

∂Yj,l

∫
Ω

η2K0(Yj)Ũ
p
ε,Yj

dx

=
∂

∂Yj,l

∫
Ω

K0(Yj)Ũ
p
ε,Yi
dx+

∂

∂Yj,l

∫
Ω

(η2 − 1)K0(Yj)Ũ
p
ε,Yj

dx

=
∂

∂Yj,l

∫
RN
K0(Yj)Ũ

p
ε,Yj

dx+O(εN−me−c/ε)

=
∂

∂Yj,l

∫ ∞
0

∫
RN−m

zm−1
0 K0(Yj)α

p
iU

p

(
(z − Yj)βj

ε

)
dz +O(εN−me−c/ε)

= εN−m+1 ∂

∂Yj,l

∫ +∞

−
βj
ε
Yj,0

∫
RN−m

∣∣∣∣Yj,0 +
ε

βj
z0

∣∣∣∣m−1

V0(Yj)
θK0(Yj)

− 2
p−2Up(z)dz

+O(εN−me−c/ε)

= εN−m+1

{
∂

∂Yj,l

∫ +∞

−
βj
ε
Yj,0

∫
RN−m

Y m−1
j,0 V0(Yj)

θK0(Yj)
−2/(p−2)Up(z)dz

+
∂

∂Yj,l

∫ +∞

−
βj
ε
Yj,0

∫
RN−m

(∣∣∣∣Yj,0 +
ε

βi
z1

∣∣∣∣m−1

− Y m−1
j,0

)
V0(Yj)

θK0(Yj)
− 2
p−2Up(z)

}
+O(εN−me−c/ε)

= εN−m+1 ∂

∂Yi,l
Γ(Yi)

∫
RN−m+1

Updz +O(εN−m+2) +O(εN−me−c/ε).
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Similarly we obtain

I4 =
∂

∂Yj,l

∫
RN
fε,jWε,Yjdx+O(εN−me−c/ε)

=
∂

∂Yj,l

∫ ∞
0

∫
RN−m

zm−1
0 fε,j(z)αjU

(
(z − Yi)βi

ε

)
dz +O(εN−me−c/ε)

= εN−m+1 ∂

∂Yj,l

∫
RN−m+1

αiβ
−N+m−1
i

∣∣∣∣Yj,0 +
ε

βj
z0

∣∣∣∣m−1

fε,j(Yj +
ε

βj
z)U(z)dz

+O(εN−me−c/ε)

= O(εN−m+2) +O(εN−me−c/ε)

and,

I5 =
∂

∂Yj,l

∫ ∞
0

∫
RN−m

zm−1
0 (V (z)− V0(Yj))α

2
jU

2

(
(z − Yi)βi

ε

)
dz +O(εN−me−c/ε)

= εN−m+1 ∂

∂Yj,l

∫
RN−m+1

α2
jβ
−N+m−1
j

∣∣∣∣Yj,0 +
ε

βi
z1

∣∣∣∣m−1(
V0

(
Yj +

ε

βj
z

)
− V0(Yj)

)
U2(z)dz

+O(εN−me−c/ε)

= O(εN−m+2) +O(εN−me−c/ε).

Therefore

(4.3) 2I1 = εN−m+1 ∂

∂Yj,l
Γ(Yj)

∫
RN−m+1

Updz +O(εN−m+2) +O(εN−me−c/ε).

Since w ∈ Cε we deduce from the exponential decay of Wε,Yj and
∣∣∣ ∂
∂Yj,l

Wε,Yj

∣∣∣ that

I2 =

∫
Ω

K(x)W p−1
ε,Yj

∂Wε,Yj

∂Yj,l
dx+

∫
Ω

K(x)
k∑
i 6=j

W p−1
ε,Yi

∂Wε,Yj

∂Yj,l
dx

+ (p− 1)

∫
Ω

K(x)W p−2
ε,Yj

w
∂Wε,Yj

∂Yj,l
dx+ (p− 1)

∫
Ω

K(x)
k∑
i 6=j

W p−2
ε,Yi

w
∂Wε,Yj

∂Yj,l
dx

+

∫
Ω

|w|p∗+1

∣∣∣∣∂Wε,Yj

∂Yj,l

∣∣∣∣ dx
=

∫
Ω

K(x)W p−1
ε,Yj

∂Wε,Yj

∂Yj,l
dx+ (p− 1)

∫
Ω

K(x)W p−2
ε,Yj

w
∂Wε,Yj

∂Yj,l
dx

+

∫
Ω

|w|p∗+1

∣∣∣∣∂Wε,Yj

∂Yj,l

∣∣∣∣ dx+O(εN−me−c/ε).
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On the other hand, similar computations as for I1 lead to∫
Ω

K(x)W p−1
ε,Yj

∂Wε,Yj

∂Yj,l
dx =

1

p

∂

∂Yj,l

(∫
Ω

K0(Yj)W
p
ε,Yj

dx−
∫

Ω

(K(x)−K0(Yj))W
p
ε,Yj

dx

)
= εN−m+1 1

p

∂

∂Yj,l
Γ(Yj)

∫
RN−m+1

Updz +O(εN−m+2)

+O(εN−me−c/ε),

and∫
Ω

K(x)W p−2
ε,Yj

w
∂Wε,Yj

∂Yj,l
dx

=

∫
Ω

K0(Yj)W
p−2
ε,Yj

w
∂Wε,Yj

∂Yj,l
dx+

∫
Ω

(K(x)−K0(Yj))W
p−2
ε,Yj

w
∂Wε,Yj

∂Yj,l
dx

=

∫
Ω

K0(Yj)ηŨ
p−2
ε,Yj

w
∂Ũε,Yj
∂Yj,l

dx+O

(
|w|L∞(Ω)

∫
Ω

|K(x)−K0(Yj)|W p−2
ε,Yj

∣∣∣∣∂Wε,Yj

∂Yj,l

∣∣∣∣ dx)
+O(εN−m+1e−c/ε)

=
1

p− 1

(
∂Wε,Yj

∂Yj,l
, w

)
ε

+
1

p− 1

∫
Ω

(
∂V0(Yj)

∂Yj,l
Wε,Yjw − η

∂K0(Yj)

∂Yj,l
Ũp−1
ε,Yj

w − ∂fε,j
Yj,l

w

)
dx

+

∫
Ω

(V0(Yj)− V (x))w
∂Wε,Yj

∂Yj,l
dx+O(ε2+N−m) +O(εN−m+1e−c/ε)

= O(ε2+N−m) +O(εN−m+1e−c/ε),

and ∫
Ω

|w|p∗+1

∣∣∣∣∂Wε,Yi

∂Yi,l

∣∣∣∣ dx = O(|w|p
∗+1
L∞(Ω))

(∫
Ω

∣∣∣∣∂Wε,Yj

∂Yj,l

∣∣∣∣ dx)
≤ Cεp

∗+1
(
εN−m + εN−me−c/ε

)
.

It follows that

(4.4) I2 = εN−m+1 1

p

∂

∂Yj,l
Γ(Yj)

∫
RN−m+1

Updz +O(εN−m+2) +O(εN−m+1+p∗).

Now plugging the estimates for I1 and I2 into (4.2), we obtain for ε sufficiently
small:

(4.5)
∂Jε
∂Yj,l

(Y,wε,Y ) =

(
1

2
− 1

p

)
B
∂Γ(Yj)

∂Yj,l
εN−m+1 +O(εN−m+1+p∗),

as required.
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Lemma 4.2. For j = 0, . . . , k there holds:

N−m∑
n=0

Aj,n

(
∂2Wε,Yj

∂Yj,l∂Yj,n
, w

)
= O(ε2+N−m}).

Proof. By direct computation, we have∥∥∥∥∥ ∂2Ũε,Yj
∂Yj,l∂Yj,n

∥∥∥∥∥
2

ε

= O(εN−m−3).

Hence, (3.8) and (3.16) yield∣∣∣∣Aj,n( ∂2Wε,Yj

∂Yj,l∂Yj,n
, w

)∣∣∣∣ ≤ |Aj,n|
∥∥∥∥∥ ∂2Ũε,Yj
∂Yj,l∂Yj,n

∥∥∥∥∥
ε

‖w‖ε +O(εN−m+1e−c/ε)

= O(ε2+N−m)

and the lemma follows.

Proof of Theorem 1.1. We have to show that for ε > 0 small, there exists Zε ∈ Dδ

solving (2.10), that is

(4.6)
∂Jε
∂Yj,l

(Y,wε,Y ) =
N−m∑
n=0

Aj,n

(
∂2Wε,Yj

∂Yj,n∂Yj,l
, w

)
ε

holds at Y = Zε for j = 1, . . . , k, l = 0, . . . , N −m. By Lemma 4.1 and Lemma 4.2,
equation (4.6) is equivalent to

(4.7)

(
1

2
− 1

p

)
B
∂Γ

∂Yj,l
(Yj) +O

(
εp
∗)

= ε−1−N+m

N−m∑
n=0

Aj,n

(
∂2Wε,Yj

∂Yj,n∂Yj,l
, w

)
ε

= O(ε)

for j = 1, . . . , k, l = 0, . . . , N −m. We use a degree argument to prove the existence
of a solution. Equation (4.7) has the form Φ(Y ) = Ψε(Y ) where Φ,Ψ : Dδ ⊂
Rk(N−m+1) → Rk(N−m+1) are continuous, DΦ(Z) exists and is an isomorphism by
assumption (V K)3, and |Ψε|∞ ≤ Cεp

∗
. It follows that there exist constants C0, Cρ >

0 with Cρ → 0 as ρ→ 0 such that |Φ(Y )| > (C0 − Cρ)ρ for |Y | = ρ, hence |Φ(Y )| >
|Ψε(Y )| for |Y | = ρ = Cεp

∗
/(C0−Cρ) and ε small. Now the Brouwer degree yields a

solution Zε of (4.7) with |Zε| < Cεp
∗
/(C0 − Cρ).

Now uε =
k∑
j=1

Wε,Zε,j+wε,Zε is a critical point of Iε by Lemma 2.1. Since g(x, t) = 0

for t ≤ 0, we see that uε is non-negative. Hence the maximum principle yields that
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uε satisfies (2.8). Moreover, wε,Zε ∈ Cε, and thus |wε,Zε | ≤ 1
2

for ε small enough. This
implies that for ε sufficiently small

g

(
x,

k∑
j=1

Wε,Zε,j + wε,Zε

)
=
(
Wε,Zε,j + wε,Zε

)p−1

+
.

Consequently, uε =
k∑
j=1

Wε,Zε,j + wε,Zε is a solution of the original problem (1.1).

Recalling the definition of Wε,Yj , the proof of Theorem 1.1 can be finished easily. �

Proof of Theorem 1.2. The proof proceeds as the one of Theorem 1.1 except that in
the application of the Brouwer degree we only obtain a solution Zε with |Zε,j−Zj| → 0
as ε→ 0. �

We leave the details f the proof of Theorem 1.3 to the interested reader.

5 Appendix

Proof of Proposition 3.1. The proof can be carried out in a similar way to [4, Propo-
sition 2.1]. However, here we give a different proof which essentially goes back to
[14].

Suppose to the contrary that Proposition 3.1 does not hold. Then there exist
εn → 0, Y (n) = (Y

(n)
1 , . . . , Y

(n)
k ) ∈ Dδ and wn ∈ Eεn,Y (n) , such that

(5.1) ‖Lεn,Y (n)wn‖εn = on(1)‖wn‖εn .

So we have for ϕ ∈ Eεn,Y (n) :

(5.2)

∫
Ω

(ε2∇wn∇ϕ+ V (x)wnϕ)− (p− 1)

∫
Ω

K(x)

(
k∑
j=1

W
εn,Y

(n)
j

)p−2

wnϕ

= on(1)‖wn‖εn‖ϕ‖εn .

We may assume without loss of generality that

(5.3) ‖wn‖εn = ε(N−m+1)/2
n .

For each fixed j = 1, . . . , k let

w̃n,j(x̃) := wn

(
εn
βn,j

x̃+ Y
(n)
j

)
,

where βn,j =
(
V0(Y

(n)
j )

)1/2

. Since Y
(n)
j,0 > c > 0, by (5.3),

(5.4)

∫
BR(0)

|∇w̃n,j|2 +
V0

(
εn
βn,j

x̃+ Y
(n)
j

)
β2
n,j

|w̃n,j|2 ≤ C,
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for any R > 0 large; here C > 0 is independent of R and BR(0) is the ball in RN−m+1

with radius R and centered at the origin. After passing to a subsequence we have for
any R > 0,

(5.5) w̃n,j → w̃j as n→∞ weakly in H1(BR(0)),

and

(5.6) w̃n,j → w̃j as n→∞ strongly in L2(BR(0)).

We claim that w̃j ≡ 0.
In fact, as a consequence of (5.2), w̃n,j satisfies for ϕ ∈ Ẽn

(5.7)∫
Dn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1
∇w̃n,j∇ϕ+

V0

(
εn
βn,j

z + Y
(n)
j

)
β2
n,j

w̃n,jϕ

 dz

− (p− 1)

∫
Ωn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1 K0

(
εn
βn,j

z + Y
(n)
j

)
β2
n,j

(
k∑
i=1

Hn,i

)p−2

w̃n,jϕdz

= on(1)‖ϕ‖εn ,

where Ωn,j = {z ∈ RN−m+1 : εn
βn,j

z+Y
(n)
j ∈ Ω0}, Hn,j(z) =

(
W
εn,Y

(n)
j

)(
εn
βn,j

z + Y
(n)
j

)
,

and

Ẽn,j =

{
ϕ : ϕ

(
βn,j(x̃− Y (n)

j )

εn

)
∈ Hs,

∫
Ωn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1
(
∇∂Hn,i

∂Y
(n)
i,l

∇ϕ

+
V0

(
εn
βn,j

z + Y
(n)
j

)
β2
n,j

∂Hn,i

∂Y
(n)
i,l

ϕ

)
dz = 0, i = 1, . . . , k, l = 1, . . . , N −m+ 1

}
.

Now decompose ϕ ∈ C∞0 (RN−m+1) as follows:

ϕ = ϕn,j +
k∑
i=1

N−m∑
l=0

an,i,l
∂Hn,i

∂Y
(n)
i,l

,

where ϕn,j ∈ Ẽn,j, an,i,l ∈ R for i = 1, . . . , k, l = 0, . . . , N − m. Then due to the

exponential decay of ∂Hn,i/∂Y
(n)
i,l , we obtain for i = 1, . . . , k, h = 1, . . . , k, i 6= j and

i 6= h:

∫
Ωn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1
∇∂Hn,i

∂Y
(n)
i,l

∇ϕ+
V0

(
εn
βn,j

z + Y n
j

)
β2
n,j

∂Hn,i

∂Y
(n)
i,l

ϕ

 dz = on(1),
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and

∫
Ωn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1
∇∂Hn,i

∂Y
(n)
i,l

∇∂Hn,h

∂Y
(n)
h,l

+
V0

(
εn
βn,j

z + Y
(n)
j

)
β2
n,j

∂Hn,i

∂Y
(n)
i,l

∂Hn,h

∂Y
(n)
h,l

 dz = on(1).

On the other hand,

∫
Ωn

∣∣∣∣ εnβn,j z0 + Y
(n)
j,0

∣∣∣∣m−1
∣∣∣∣∣∇∂Hn,i

∂Y
(n)
i,l

∣∣∣∣∣
2

+
V0

(
εn
βn,j

z + Y
(n)
j

)
β2
n,j

∣∣∣∣∣∂Hn,i

∂Y
(n)
i,l

∣∣∣∣∣
2
 dz ≥ C > 0.

It follows that an,i,l → 0 as n→∞ for i 6= j, while an,j,l → aj,l up to a subsequence.
It is easy to verify that for l = 0, . . . , N −m,

(5.8)
∂W

εn,Y
(n)
j

∂Y
(n)
j,l

= −
∂W

εn,Y
(n)
j

∂zl
+W

εn,Y
(n)
j

∂αn,j

∂Y
(n)
j

+
x̃− Y (n)

j

εn
W ′
εn,Y

(n)
j

∂βn,j

∂Y
(n)
j

.

Hence, plugging ϕn,j into (5.7) and letting n → ∞, we deduce from the fact Y
(n)
j,0 >

c > 0 that∫
RN−m+1

(∇w̃j∇ϕ+ w̃jϕ)dz − (p− 1)

∫
RN−m+1

Up−2w̃jϕdz

+
N−m∑
l=0

aj,l

(∫
RN−m+1

(
∇w̃j∇

∂U

∂zl
+ w̃j

∂U

∂zl

)
dz − (p− 1)

∫
RN−m+1

Up−2w̃j
∂U

∂zl
dz

)
= 0.

From the fact that U solves (1.4), we deduce for l = 0, . . . , N −m that∫
RN−m+1

(
∇w̃j∇

∂U

∂zl
+ w̃j

∂U

∂zl

)
dz − (p− 1)

∫
RN−m+1

Up−2w̃j
∂U

∂zl
dz = 0.

Therefore

(5.9)

∫
RN−m+1

(∇w̃j∇ϕ+ w̃jϕ)dz − (p− 1)

∫
RN−m+1

Up−2w̃jϕdz = 0.

Since ϕ ∈ C∞0 (RN−m+1) is arbitrary in (5.9), the non-degeneracy of U yields that

(5.10) w̃j ∈ span {∂U/∂zl : l = 0, . . . , N −m}

But (5.8) and wn ∈ Eεn,k imply∫
RN−m+1

(
∇w̃j∇

∂U

∂zl
+ w̃j

∂U

∂zl

)
dz = 0

for l = 0, . . . , N −m. Therefore, w̃j ≡ 0, which is exactly our claim.
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Now, for j = 1, . . . , k let Bn,j,R = {x ∈ Ω : x̃ ∈ B ε
βn,j

R(Yj)}. Then, using (5.6) we

deduce∫
Ω

K(x)

(
k∑
j=1

W
εn,Y

(n)
j

)p−2

w2
ndx =

∫
⋃k
j=1Bn,j,R

K(x)

(
k∑
j=1

W
εn,Y

(n)
j

)p−2

w2
ndx

+

∫
Ω\

⋃k
j=1Bn,j,R

K(x)

(
k∑
j=1

W
εn,Y

(n)
j

)p−2

w2
ndx

≤ C

∫
⋃k
j=1Bn,j,R

w2
ndx+ oR(1)‖wn‖2

εn

= o(εN−m+1
n ) + oR(1)εN−m+1

n ,

where oR(1)→ 0 as R→∞. Hence from (5.2), we have

o(εN−m+1
n ) = ‖wn‖2

εn + o(εN−m+1
n ) + oR(1)εN−m+1

n ,

which is impossible. This completes the proof. �
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