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Critical points of theN-vortex Hamiltonian in bounded
planar domains and steady state solutions of the
incompressible Euler equations

THOMAS BARTSCH* f ANGELA PIsTOIA}

Abstract
We prove the existence of critical points of thevortex Hamiltonian

N N N
HKR(xl, Ceey xN) = ZF?h(xl) =+ Z FiFjG(aci, xj) +2 Zrzlbo(l’l)

=1 1};:; =1
in a bounded domaife C R? which may be simply or multiply connected. Hefedenotes the Green
function for the Dirichlet Laplace operator {#, more generally a hydrodynamic Green function, and
the Robin function. Moreovey, € C*(Q) is a harmonic function of2. The domain need not be simply
connected. We obtain new critical points= (z1,...,zn) for N = 3 or N = 4 under conditions on the
vorticitiesI'; € R\ {0}. These critical points correspond to point vortex equiditof the Euler equation
in vorticity form. The casd’; = (—1) of counter-rotating vortices with identical vortex strémgs
included. The point vortex equilibria can be desingulatifeobtain smooth steady state solutions of the
Euler equations for an ideal fluid. The velocity of these dyestates will be irrotational except fov
vorticFity blobs neat+, ..., znN.

Keywords: vortex dynamics, point vortices, counter-rotating voes, steady states of the Euler flow
AMS subiject classification 35J60, 35J25, 37J45, 76B47.

1 Introduction

The dynamics ofV point-vorticesz,, ..., zx € Qin a bounded domaift C R? in the plane is governed
by a Hamiltonian system
dz; OH
Fi zl = KR(.Z‘l,...,.Z‘N);
t 8:&-_2

(1.2) ’ i=1,...,N.

F,d$i2 _ OHgr (2 N);

ldt a axil L N7

HereI'; € R\ {0} denotes the strength of thigh vortexz;, the sign determining the orientation of the
vortex. The Hamiltonian is given by the Kirchhoff-Routh pditinction

N N N
(12) HKR(-rh ceey ,TN) = Zl—?h(l’l) + Z Fil"jG(xi, $j) +2 Zrlwo(mz)
i=1

i,j=1 i=1
i#]
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where )
Gla,y) = g(x,y) — 5-loglz —y|

is the Green function of the Dirichlet Laplacian i Hereg : Q x @ — R is the regular part, and
h:Q — R, h(z) = g(z, ), denotes the Robin function. Moreoves € C'(Q) is a harmonic function
on 2 modeling the boundary flux. In case of a solid boundary oneyhhas 0. Hyr is defined on the
configuration space

FNQ = {(zl,...,xN) eV # x; forz‘;éj}.

The domair) need neither be simply connected nor symmetric. More gépetacan be a hydrodynamic
Green function (see [13]), or even a function having cenpaoperties of Green functions.
Based on first ideas of Helmholtz [14] about vortices, thaesyshas been deduced by Kirchhoff [15],
Routh [23], and Lin [18, 19] from the Euler equations
(1.3) { v+ (v-V)v=-VP
V-v=0

for an incompressible and non-viscous fluidin Herev denotes the velocity field ankl the pressure of
the fluid. The scalar vorticity = V x v = dyvy — Jov Satisfies the equation

(1.4) wi+v-Vw=0.

The point vortex ansatz = Z,ﬁf:l I'yé4, ., Whered,, is the usual Dirac delta, leads to (1.1) for the point
vorticeszy (t). We refer to [13,20-22, 24] for modern treatments of vartioiethods.

There are many results about point vortex dynami€s # R? is the plane, or if2 is a special domain
like the disc, the half-disc, an annulus, an infinite strim thhese cases the Green function, hence the
Hamiltonian, is either explicitely known or one has goodresgntations of it. There are also many results
of numerical nature, due to the multiple applications offpeibrtex methods in science and engineering.
We just refer to the surveys [1, 2, 22] and the literaturedcitesrein.

In this paper we present new conditions on the vortex sthexigtsuch thati i z has a critical point.
Our results extend considerably earlier ones from [4, 6ydt3re only special cases have been treated, all
dealing withl'; € {41} andyy = 0. Observe thaF 52 C Q¥ is an open bounded subset®t", and that
Hg R is singular and not bounded from above nor below. Therefaexkistence of critical points is highly
nontrivial, in particular since we require no symmetry noy geometrical or topological properties of the
domain. Our results hold for functior’s : FxQ — R which areC!-close toHx r on certain compact
subsets ofF y 2. This allows to apply the methods from Cao, Liu and Wei [7,8}loe desingularization of
stationary point vortex solutions and to obtain statiorsiytions of the Euler equations (1.3), (1.4). This
is done by constructing familieg. of stream functions with vortex blobs which converge as 0 towards
the stationary point vortices we construct. The veloeityill be irrotational outside these vortex blobs.

The paper is organized as follows. First, in Section 2 wesstatr main results Theorems 2.1 to 2.3
about the existence of critical pointstidamiltonians of theV-vortex typeand we state in Theorem 2.4 our
results about solutions of the incompressible Euler eqnatiNext, in Section 3 we prove a compactness
result for the class of Hamiltonians we consider. This ig/technical but in a sense the core of our paper.
Section 4 contains the proofs of Theorems 2.1 to 2.3. Finalfection 5 we desingularize the stationary
point vortex solutions by proving Theorem 2.4.

2 Statement of results

Let Q) C R? be a bounded domain witt?-boundary. We fix, > 0 small so that the reflection &5 is
well defined inQ := {z € Q : dist(z,0Q) < 9} and maps to the complement Qf we denote it by



Qo — R2\ Q, z — z. Itis of classC! sinced( is of classC?. We write
1 _
P =09, p() = 5(0+7),

for the orthogonal projection onto the boundary, and

1
o -1

v:Qo— R v(x)

(‘T - j)a

for the interior normal; more precisely(x) is the interior unit normal gt(z) € 92 for z € Q. Clearly,
p(z) = z — dist(z, 0Q)v(z) andz = z — 2dist(z, ON)v(x).

Let N > 2andl'y,...,I'y € R\ {0} be given. We consideridamiltonian of theV-vortex typei. e.
a functionH : Fx{! — R of the form

N N

(2.1) H(z) =Y Tih(z:) + Y TilG(xs, x5) + f(x)
i=1 i,j=1
JiF#k

wheref ¢ Cl(ﬁN) and

1
(2.2) G(z,y) = g(z,y) — 5~ logla —y|
m
is ageneralized Green’s functidmy which we mean that the following properties hold.

(A1) G is bounded from below and symmetric, i.@&x,y) = G(y, x).

(A2) g: QxQ — RisacC!-function, bounded from above, ahdz) = g(z, z) — —oco as distz, Q) —
0.

(A3) Foreverye > 0 there is a constart; = C1(2,¢) > 0 such that
|h(z)| + |[Vh(z)| < C;  foreveryx € Q with dist(x, 9Q) > e
and

|G(z,y)| + |V G2, y)| + [V G(2,y)| < C1 foreveryz,y € Qwith [z —y| > e.

(A4) There exists a consta@t, = C»(2) > 0 such that)(z,y) := g(z,y) — 5 log|z — y| satisfies

(2, y)l + Vatb (@, y)| + [V (z,y) < C2 foreveryz,y € Q.

It is well known that these assumptions hold for the DiritlBgeen’s function, more generally for
a hydrodynamic Green'’s function (see [13] for the definifjafetails can be found in [6, 16]. Our first
theorem deals with a rather simple case.

Theorem 2.1. SupposéV = 2 andI'1I's < 0. There exists a compact subgétC F»(€2) andé > 0 such
that the following holds:

a) AnyC!-functionF : F»(Q) — R with | F|x — H|k || < & has at leastat F»(2)) critical points
(28,2%),i=1,...,cal(F(Q)) in K.

b) If Ty = —T'y and if F is symmetric, i. eF(z,y) = F(y,z), then F has at leastk :=
call F2(Q)/(z1,22) ~ (w2, 1)) pairs (xi, x%), (24, 2}) of critical points inK,i =1,..., k.



c) If F. : 72(Q) — R is a family ofC!-functions such tha F.|x — H|k|/c: — 0 then the critical
pointsz. obtained in a) or b) converge along a subsequence towardgieadmpoint of H.

Here cat denotes the Lusternik-Schnirelman category. did@em becomes considerably more difficult
if N > 2. We only deal with the case$ = 3, N = 4 and require the following assumption:

.y <0fori=1,...,N -1, and

(2.3) for every subsef C {1,..., N} with |I| > 3 there holds Z I,r; <o.
i,5€Ii#]

Theorem 2.2. Let N = 3 and assumé2.3). Then there exists a compact sub&etC F3(2) andd > 0
such that the following holds:

a) AnyC!-functionF : F3(Q) — Rwith | F|x — H|k||c: < ¢ has a critical point ink.

b) If F. : F»(2) — Ris a family ofC*-functions such tha{ F..|x — H|k||cx — 0 then the critical
pointsz. obtained in a) converge along a subsequence towards aa&irjtinint of H.

In the caseV = 4 we need an additional hypothesis on the vorticities:

Theorem 2.3. Let N = 4 and assumé€2.3), (2.4). Then there exists a compact sub&etC F4(2) and
0 > 0 such that the following holds:

a) AnyC!-functionF : F4(Q) — R with | F|x — H|x||c: < ¢ has a critical point inkK .

b) If F. : 7(Q) — R is a family ofC*-functions such that F.|x — H|k||c: — 0 then the critical
pointsz. obtained in a) converge along a subsequence towards aa&rjtigint of H.

Observe that (2.3) and (2.4) holdlif = (—1)%. This case has already been treated in [6]. The proof

of [6, Theorem 1.2] has a gap, however, which is being fixetiimpaper using a different method though.
Related results concerning point vortex equilibria on gahiegounded domains can also be found in [16]
and, if the domain is symmetric, in [17]. These papers compl& our results in that different conditions
on the set of vorticities are considered. Earlier resul&didg with the case df? not being simply connected
and alll’; = 1 can be found in [9, 12]. Periodic solutions of (HS) for anyegivww with all I'; = 1, on
bounded and unbounded domains, have been constructed in [5]

The point vortex equilibria obtained in Theorems 2.1-213lba regularized as limits of vorticity distri-
butions of smooth steady state solutions of the incompsksEuler equations in the following way. Lét
be the Green function of A in £ with homogeneous Dirichlet boundary conditions andiet C?(Q2) be
harmonic inQ2. We consider the Kirchhoff-Routh path functiéfik z : FnQ — R defined by

N N N
(2.5) Hgp(z) = Tih(zi)+ Y Til;Gai ;) + 2 Tito(w;).
i=1

i,j=1 i=1
i#]

We write% : 992 — R? for the tangential derivative afy on9f2, and we setw;, ws)* = J(w1,ws) :=
(U)Q, 7’[1)1).

Theorem 2.4. Consider one of the cases

(i) N =2andl'T'; < 0;



(i) N =3and(2.3)holds;
(i) N =4and(2.3) (2.4)hold.

Then fore > 0 small there exists a stationary solution: QO — R2 of (1.3)with pressureP. and boundary
fluxv(z) - v(z) = WBLT(I). Moreover, the scalar vorticity of, is of the formw, = V x v, = Zfil Wie
with supfw;,-) — z} € Q ase — 0 along a subsequencé, w; - — I';, where(z},...,a%) € FyQisa
critical point of the Kirchhoff-Routh path functiafi x r from (2.5).

Here supfw;.) — z; € Q means that fov > 0 the support supj; ) is contained in thej-
neighborhood of;; € Q) providede is small. Theorem 2.4 will be proved by the method of streancfu
tions. Recall that a stream functign: Q — R for v satisfiesv = JVy = (—9¢/dxq, 0 /dx1), hence
w=—Ayandv = JV(-A)"lw. If ¥ : Q — R satisfies

/

26) { A =F'(yp) forzeQ,

1 = g for x € 012,
for some arbitrary functiod’ € C%(R) thenv = JV¢ solves (1.3) with pressure field = F(y) — 1| V>
and vorticity F’ (). Using the method from [7, 8] and our Theorems (2.1)—(2.8)dhare appropriate
functionsF. and solutions of (2.6) wittF’ = F. which will yield Theorem 2.4. The theorems from [7, 8]
cannot be applied directly because there it is assumedhibdtitchhoff-Routh path functio®/ x z has an
isolated stable critical point. This will not be the case @ngral, for instance, it doesn’t hold fora disc
or an annulus. The latter case is excluded in [7] anyway lsecthere the domain is required to be simply
connected. This is needed when one wants to prescribe thmelouflux, not the functionp.

3 A compactness result

We fix a functionG as in (2.2) such that (A1)—(A4) hold, we fix a functigne C'(Q2), and we consider a
HamiltonianH as in (2.1). Then we introduce the functidn 75 — R defined by

N N
@(m) = ZF?h(mz) - Z |Fi1—‘j|G(l’i, acj).

=

Assumptions (A1) and (A2) imply
lim &(z) = —oc.
I‘)a]‘—NQ

Proposition 3.1. Assume thatv € {3,4} and(2.3)is satisfied. Then for any,b € R with a < b there
existsM, > 0 such that the following holds:

O(z) < =My, a < H(x) < b, VH(z) = AVD(x) = A>0.

The rest of this section is concerned with the proof of Prajmrs3.1. We argue by contradiction.
Suppose there exiat b € R with a < b, a sequence of points* = (z7,...,z%) € Fn, and a sequence
A, < 0 such that

(3.2) ®(z") = —o0, a < H(z™) < b, andVH (") = N\, VO(z").

Recall from Section 2 the reflectian— z at the boundary, the projectian— p(z) onto the boundary,
and the interior normat — v(z). These maps are defined fore Q) close to the boundary. We set
dy .= dist(z?, 0Q), andv! := v(zl), pl* := p(al), if 27 € Q. In the sequeD(1), o(1) refer ton — oc.
The following lemma holds for all sequencgg!),, in Fn Q.



Lemma3.2. (i) h(zl') = 5 log2d! + O(1) andd?|Vh(z)| = O(1) if 27 € Q.
(i) Vh(z}) = ﬁuﬁ +o(1)if d? — 0
(i) G(ap,ay) = —5=logla — x|+ 5= log|z} — 27| + O(1) if 27 € Qo.

(V) G(a?,2?) = O(1) if liminf 21 5

i

(V) 0,G (17 J) :_%(‘;1 ‘2+‘$ 1‘2)4—0() _%(\%—an‘i“z 1‘2)4'0() if
zi € Qo orz} € Lo, respectlvely

(Vi) di|Vg(zy, )| = O(1) if 2} € Qo.

(Vi) (OnGa, @), V) + (O1G (@, a), Vi) = 3 (a7 + d7) (e + T ) FO() f a2 €
Q.

(viii) |z} — 27 = |2} — 2} 2+ 4d}d} + of|x} — o [?) if af, 2l — 2 € 0.

(ix) (p; —p},vi") = O(|la — 23 |?) if 2, 2 € Qo.
Proof. These statements follow in a straightforward way from agsions (A1)—(A4). O

We write the proof of Proposition 3.1 fa¥ = 4. The caseV = 3 is simpler and can be deduced by
forgetting all arguments which involve}. In the sequel we drop the notatiean— oo from all kinds of
limits. The first lemma does not require hypothesis (2.3} $ufficientthat all’; £ 0 fori =1,...,4.

X X
Lemma 3.3. There exist indice&y # jo such thaflim inf —%—7°

7 — 0.
i0

Proof. Suppose to the contrary thaf’ — 2’| > cd; foralli # j. Then (3.1) implies that;; — 0 for some
k € {1,...,4}. Using Lemma 3.2 we can estimate the energy:

N N
= Tih(a}) Z DG (), ) =Y Tih(z)) + O(1)
i=1 i,j=1 i=1
]

1
<TIZh(z}) +O0(1) = o Ind; +0O(1) - —o0.

This contradicts (3.1). O
After passing to a subsequence we may assume forieadh, . .., 4}:
e —
(3.2) eitherz} — x| = o(dj) or liminf T" > 0.
i0
Setting
I:= {iE{l, A} |l — |:0(d?0)}

Lemma 3.3 implies

1 =2, -
(3.3) d

a7 — 2] = olja? —afl) for i, j €I k¢ I

— 1 and |z} — 2%| = o(d}) for i,j €1,



Lemma 3.4. The only possibilities fof are {1, 3} or {2,4}. Moreover\,, — —1.

Proof. We set

no._ (n n n._ i —ap 1€
2= (2, 2y), 2 {0 ¢l
and compute, using (A1)—(A4), Lemma 3.2, as well as (3.2)(8rR),
(VH (z =Y THVh(x}), 2} —i—QZZFF (Org(al, z), 20")
icl i€l j#i
(@f —af, z}")
= ZZF s
zEI j#i
zn,z? — )
= ) Iy Ix“]f ST o(1)
i,j€1,i<j ¢ J
i,j€1,i<j

Arguing in the same way, we also obtain that
1
(Ve("),2") = ~ Y Iyl +o(1).
i,j€1,i<j

Now the equatio’VH (z™) = A\, V®(z™) implies
Z i,J€1,1<] F F
Yijericy T4l
This implies > I.I'; > 0, hencell| < 2 by hypothesis (2.3). Now (3.3) yield$| = 2, and since

i,7€1,i<j
I;Ti41 < 0we musthavd = {1,3} or I = {2,4}. We also obtain immediately,, — —1. O

0>\, > —

Lemma 3.5. At least one of the following is true:

(i) I =1{1,3} satisfieg3.3)andd} — 0.

(i) I ={2,4} satisfieq3.3)anddy — 0.
Proof. Supposd; = {1, 3} satisfies (3.3) but, after passing to a subsequefice, ¢ > 0. Since2,4 ¢ I,
there holdgz} — 27| > cfori € {1,3},j € {2,4}. Now H(z") = O(1) implies h(zy) — —oo or
h(z}) — —oo, hencedy — 0 ordj — 0. Assuming without loss of generalitfy — 0, we consider the
equation

(Opy (H(z™) = Xy ®@(2™)), v4") = 0.

Usingd1 G(z5,27) = O(1) = 01G (25, %) and)\,, — —1 we deduce

FQ
(1=2X )27rd + (14 M)T2l401G(2h,2)) + O(1) =0
and therefore ) A )
I3 1+ A (28 — o, dBvg
— + 1l =o(1).
S N P T T R
This implies|zy — x| = o(d%). Then (3.3) holds fof, = {2, 4}, anddy — 0. O



Without loss of generality we may now assuthe- {1, 3} andd} — 0. Thus there holds:

o Tt ol = g = ofd) = ofd);
b,z = ped; |zl —al| > cd} forie {2,4}.

After passing to a subsequence we can also assumefdi, 3}:

dy dy dy
(3.5 —L o 2 1
|27 — @y

ds
W%az; W‘)ﬂl; W%ﬂ%

i Lyg i Ly

Ty — Ty
Clearly we havev,, as, 51, 82 > 0.

Lemma 3.6. Fix i € {1,3} and suppose’ — p € 9Q. Then there holds:

: alt — b vl
i dn( i PREE) N _
(i) d T — i a1 (a1 — as)
(i) (' — T5,v") a1(ag + ag)

b - 232 1+4aras

NN
(iii) %’chinm ~1— 2 providedas > 0.
2 Qaz
(iv) (xh —zP ah —zl) 14 201(e —aq)
|zh — z7|? 1+ 4oq0n

Proof. We compute using Lemma 3.2:

(x — ah v (dMvl — dsvy vl
di |§cn—j[;;l|2z = di— |;7_l_2xn2|2, = +o(1)
i 2 i 2
\dz |2 drdz
“ TP e O ) + o)
K3 3

— ai(ar — ag),
This proves (i). Next, (ii) follows from:

e A PLZ (divi + dgvy, vi')

d 2l = g - +o(1
o —agF  Tor g+ 40 + offaf —5P) )
ai(ar + ag)
1+40&10&2

In order to see (iii) we calculate:

(v, oy — i)  (vy,py —pi) x5 — 77 L vy — divy')

ds g — 27| ds ds
1 dr  d¥ul vl — vl
:o(l)-—+1——;+1<2—31>
a9 d2 d2
L1
Q2



Finally we prove (iv):

(@h —ap,af —af)  |af — 3P+ Qdpl,af — o)
oy — 2P Jay - 2P+ 4dPdy + o(jay — 2 )
lap - ap e 2dp (o, dyvy — divR + oljay — af )
a5 — 2P 2 + 4dPdg + o(jay — 27
14201 (e — ay)

1+ 40&10&2
O
We also need the following equality:
0= (0, (H(@") = An®(z")) ,17) + (O, (H(2") = An®(z")) , v5)
2 2
= (1= M) 5 + 5o — 201 Ta (B G, ), vp') — 2Ta T4 (D G (e 2, o)
2rd}  2mdy
(3.6)
- LTl (01 Gaf ). 4) — 2Tl 01 o), 03
+2(1+ X)) D3 (A1 G (2, 25), v1') + (01 G (25, 27), v5))
Lemma 3.7. 25 — p andz} — p wherep € 9§ is from(3.4).
Proof. Supposérs —z7| > ¢ > 0and|z} —z7| > ¢ > 0 along a subsequence, hedgé: (], 27}) = O(1)
fori € {1,3},7 € {2,4}. Multiplying (3.6) by 1= 27”1 ,and using Lemma 3.2, (3.4) angd — —1, we obtain
the contradiction:
dt 14X, 1 1
=17 4+T1% 2—— T Dady (df + dy 1
0=Ti+ TG+, 3d1(d1+d3)(|f?x§l2+la‘c3x1|2)+0()
— 7 +T5.

Therefore we may assume the# — p. Supposdz} — z%| > c > 0 along a subsequence, hence
01G(x?, z7) = O(1) fori € {1,3}. As above we multiply (3.6) by= L and obtain:

$25V1> <$?"Z‘7217V?>>

vy |? |27 — 752

2di (z7
0=T24T1% 2| Ty |d?
+ 3d”+ |71 ( 7 =

— x5, vy Ty — Ih, vy
|$3* zy| |z — z5]

Passing to the limit now implies:

+
(3.7) 2 4+ T2 + 20| (|T1| + |Ts))eu <a1a2 a1 T >

1+4aqa9

We used Lemma 3.6 for this computation. Observe that (3.@lé&®c;, as > 0.
We also have

0= (B, (H(z™) — A\n® (™)), v)

FQ
= (1= ) (g — 2T @G at). ) 2T 016 ), 05

+ 2(1 + >\n)r2r4<alG(zga :EZ)a V;>

9



Since we knowr?, %, % — p and since we are assumingy — z}| > ¢ > 0 we haved, G(2§,z}) =
O(1). Therefore multiplying the above equation ég'd— we obtain as before

s — xl, vy xy — ZT, vy
0F§+2|F1F2|d§<<|;n 1 2>7< 2 1 2>)
n_

Pl P
m < :E35V2> <$gfjg7y§>
+2|F2F3|d | n_ n|2 — | — |2 —|—O(1)
Ty — X3 Ty — Ty
Again we pass to the limit and deduce:
041+042
3.8 I3+ 2|[0s|(ITq] + [T —ap——— | =
@9) 24 200al(0 4 Tl (02 - e - (%)

As before we used Lemma 3.6 for this computation. We need awe eguation which comes from
0= (O, (H(z") = An®(z")) , 5 — aT)

T2(vp, ol — v
=) (P o0, at).af -
2

= ATaT O ), 1)) + 2014 ATLAOUGh ), )

Sinced, G(ak, z}) = O(1) we get

0=l ?8 =) op b < (¢ —a},af —af) | (2§ — &}, af — 1'71’>>
-2

d; |y —at]? |y — 27 [?
_2|1"21"3| (_ <l’g _fga$%;$?> + <x§ _f&{%zx?)) +0(1).
|2g — x| |z — 23|
Passing to the limit yields
a1 + a2
3.9 F 1-— 4|0o| (T r 11— =0
@9) (1= %) + airal(ral + Irapon 1222

The system (3.7), (3.8), (3.9) has no solutions becays€3.7)+ a; - (3.8)+ a2 - (3.9) leads tdT'? +T'3 +
I'?)as = 0 which contradict®’; # 0, s > 0. O

Now we use (3.6) again. The same arguments as in the deraft{8.7) lead to

+
I% + T3+ 2|To (T2 | + s (a1 —ap — 2
1+4aqa9
(3.10) s
21T, 1(IT T B S S N S
+ 2|IT4|(|T1 | + Ts]) 1 (51 Bo 1+45152>

The additional term involving, 52 comes from the fact thaf; — p. In the derivation of (3.7) we assumed
|a — x| > ¢ > 0. Thisimpliesg; = 0, hence (3.7) is a special case of (3.10). We need to disshduio
cases:

CaSE 1: liminf 22il — o

CASE 2: lim inf ‘zz—nz“' >0

In CASE 1, after passmg to a subsequence we may assuméathat 2| = o(dy). This implies

dy _, 1, f1 = a1 andf,; = as. Therefore (3.10) reduces to

dz

+ o
3.11 T2 4 T2 4 2(|0s| + [Ta)(IT1] + |T g -T2 ) g,
3.11) 4T3 2(00a] 4 D0+ Faln (o = 0o - (20
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Moreover, in QsE 1 (3.3) is also satisfied far = {2,4}. Thus we obtain

+ o
12 T2+ T2 4+ 2(|Ty| + [T3))(|Ts| + |T e
(3.12) 5+ T3+ 2(|01] + [Ts)) (T2 + [Tal) a2 (0@ ™ 1+ 4dajan

in the same way as (3.11). We need one more equation whichscivome
0= (0u, (H(z") = An®(z")) ,v5) + (O, (H(2") = An®(z")) , 11')
Similar computations as before lead to

aq

(3.13) (T3 +T3) <1 -=

041+042

) 200l + 0 (Tl + T 2o 5

2

Now s - (3.11)+ ag - (3.12)+ as - (3.13) leads tqI'? + I'Z + I'Z + ') s = 0 which contradictd™; # 0,
ag > 0.
In CASE 2 we havga — 7| > edf and|zh — 2| > cdy. This implies

(01G (g, z), 25 — =) = O(1) = (G (2], x3), 25 — a7).

Then the equation
(Oz, (H(2") = An®(2™)) 25 —27) =0

leads to

(5] @1 + a2
3.14 r(ii—-— 2|5 (T Is)20————=- =0
(3.14) 2( a2)+ T2/ (|11 + [T3)) R —

Analogously, the equation
(Ouy (H(2") = An®(2™)) 2] —27) =0

leads to
51) p1+ B2
3.15 I3 (1— =) +2I04|(|T1| +|T3])28i ———— = 0.
3.15) (1) 2m(n + )2 2R
Finally the equations
(Ops (H(z") = An®(2")) ,v4) =0
and
(On, (H(z") = An®(2")) ,vy) =0
lead, respectively, to
o] + o
(316) Fg +2|F2|(|F1| + |F3|)C¥2 (ag — ] — HlTal(zQ) =0.
and
B1 + B2 >
3.17 I3+ 2|Ty|(JT r B —— =
317) 24 20+ T (5 - -

Now the sumasfs - (3.10) + asfs - (3.14)+ a1 B2 - (3.15)+ asfy - (3.16)+ asf: - (3.17) leads to
(I'? + T3 +TI'3 + I'})asB2 = 0 which as before contradicty # 0, s, B2 > 0. This concludes the proof
of Proposition 3.1.
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4 Proof of Theorems 2.1-2.3

Proof of Theoren2.1. There exists a compact subsgt C 7,2 such that cdt<,) = caf( F»(?). Observe
that
H(z) = T2h(z1) + T3h(x2) + T1T9G(x1, 29) + f(x) = —00  asx — 020

becausd 1 I'; < 0, f(z) = O(1), and assumption (A2). Therefofg=* = {x € FQ : H(z) > a} is
compact for any: € R. Now we choose < min H(K), setd := % (min H(Ky) — a), and considef” on
the compact manifold{ = H=¢ with boundaryB = H~'(a). Sincemin F(K) > max F'(B) standard
critical point theory yields that a functioR € C!(FyQ) with |[F|x — H|k|| < § has at least caF»(2)
critical points inK. This proves a).
Part b) follows similarly upon passing to the quotiéa(Q?) /(x1, z2) ~ (x2,x1). Finally, c) is obvious.
O

The proof of Theorem 2.2 and of Theorem 2.3 will be based onlarlg argument. In the sequ&l
will be either3 or 4. Suppose there exists a (sequentially) compact topolbgpeaeS, a continuous map
Y : S —= FnQ, and a subsef C Fy§2 such that

4.2) sup H(z) < o0,
zeL
and
(4.2) ~ is homotopic toyg — v(S)N L # 0.

As usual;y being homotopic te, means that there exists a continuous deformationS x [0, 1] — Fy (2
with H(¢,0) = 0(¢) andH (¢, 1) = v(¢) forall ¢ € S. We shall prove that if a functiofl € C'(Fy, R)

is close toH on compact sets then it has a critical point. In order to esgpthe closeness we choose
a < minees H(v0(¢)) andb > sup,c . H(x). Let My be as in Proposition 3.1 for these values b. By
Sard’s theorem we may assume thal/, is a regular values @b. SinceS is sequentially compact we may
also assume that M, < infeecg ©((). Setting

VH(x),V®(x))
Ve (z)[?

Va(z) := VH(z) — < Vo(x)

Proposition 3.1 implies
a < H(z) <b, &(x) = —My, (VH(z),VP(z)) <0 = Va(z) # 0.

Observe thaD := {z € FyQ : ®(x) > —M,} is a compact manifold with smooth boundahp =
®~1(—M,). We also define

D) :={z€D:a<H(x)<b}={z € FyQ: d(x) > —Mo, a < H(x) < b}.
Now we choose > 0 satisfying

a+2e <min H(y(¢)) <sup H(z) <b—2¢
ces zeLl

and

4.3) e < %min{|VQ(x)| ca < H(z) <b, ®(x) = =My, (VH(z),VP(z)) <O0}.
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Proposition 4.1. Supposé” € C!(Fn, R) satisfies

(4.4) |F(z) —H(z)| <e ifzeK:=D?,
and
(4.5) |\VF(z) — VH(z)| <e ifxe D’naD.

ThenF has a critical pointinK = D®.

Clearly (4.4) require$’ to beC°-close toH on the compact séb®, and (4.5) requires’ to beC!-close
to H on the compact sed’ N dD.

Proof. We assume thaf has no critical value irD?. First we define a continuous mép : D N dD —
RN by setting:
Vo(a) = 4 VE@) = S RamE V(@) if (VF(2), Vo(x)) < 0;
VF(x) else.

Clearly we have

(4.6) (Vo(z), V®(x)) >0 forallz € D2 NaD,

hencel, (z) is either tangent t& D atz or points insideD. Using (4.3) and (4.5) it is easy to check that
(4.7) (VF(z),Vo(z)) >0 if x € DL NOD.

Next we extend this vector field to all Gixy 2. In order to do this we first choose a relatively open tubular
neighborhoodD C O c D of 9D and a diffeomorphisny = (x1,x2) : O — 9D x [0,1) such that
x(x) = (x,0) for x € dD. Then we define fob < § < 1 a mapV; : D® — R2V by setting

@y (g (2) + 2BV F(@) ifee DENO, xa(x) <6
Vl(x) =

VF(z) if x € DPNO, x2(z) >4, orx € Db\ O.

Observe that; is continuous and coincides witfy on D2 N9 D. Therefore, if§ > 0 is small (4.7) implies
that

(4.8) (VF(z),Vi(z)) >0 if x € DP.

Here we also used th&t has no critical point inD?. We fix such & > 0. Then we replace the continuous
vector fieldV; : D% — R2N by a Lipschitz continuous vector fieldr : D2 — R2Y such that (4.6) and
(4.8) continue to hold fol/r instead ofl;, V. Finally we extend the vector fieldr : D? — R2N to

a Lipschitz continuous vector fieldr : FxQ — R2Y such thatVr(z) = 0 outside a neighborhood of
D!, and such thatVF (z), Vr(z)) > 0 for all z € FyQ. As a consequencé defines a global flow
@ FNQ x R — FnQ which satisfies:

(4.9) x €D, a< H(p(x,t) <bfor0<t<T = o(x,T) € D
and

€D, a<H ,t)) <bforallt > 0,
4.10) {x a < Hg(z,1))

= o(x,t,)) — = for some sequendg — oo, VF(Z) = 0.
Now we argue as follows. By (4.2) for eaehe N there exists,, € S such thato(vy(¢,),n) € L, hence
a < H(y0(¢n),n) < b. SincesS is sequentially compact we hagg — ¢ € S along a subsequence. It

follows thatz := ~¢(¢) € D? satifiesp(z,t) € Db forall ¢ > 0. Now the existence of a critical point &f
in D? follows from (4.10). O
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In the proof of Theorems 2.2 and 2.3 the gawill be
L3(Q) :={z € F3Q: 21 — z2 + r(x3 — 22) = 0 for somer > 0},
in caseN = 3, and the set
L4(Q) ={z € FaQ: 21 — 22 +r(xs —x2) =0, 2 — 23 + s(x4 — xz3) = 0 for somer, s > 0}.
in caseN = 4, as in [6]. So we need to bouridl on these sets.

Lemma 4.2. a) SupposéV = 3 and(2.3)holds. Thersup,  H < oco.
b) SupposéV = 4 and(2.3)and(2.4)hold. Thersup,, o H < oco.

Proof. We shall prove that ift™ € Ly is such that”™ — JLNS, thenH(z") — —oco. Setd} :=
dist(2], 9€2). As in Section 3 we drop the notatien— oo from all limits, in particular for the term®&(1)
ando(1). Without loss of generality we may assume that= (—1)k; with k; > 0.

a) The Hamiltonian has the form

3
H(ac) = Z kfh(xz) — 2k1k2G($1, $2) + 2/€1/€3G($1, $3) — 2/€2/€3G($2, $3) + f(l’),
=1
and assumption (2.3) reads as
(411) kiko + koks — k1ks > 0.
Observe that ifc € £3£2 then

(4.12) |z1 — 23] > max{|z1 — 22|, |x2 — z3]}.

If d} > ¢ > 0 for everyi thenh(z}), g(z}', z7})
Then (4.11) and (4.12) imply

O(1), and|z} — 27| — O for at least oné # j.

3
Z E2h(z!) — 2kikag(2, 2) + 2k1ksg(2, 25) — 2koksg(ahy, 24)

=1

2§ — af|Frhe]af — ot

o} — g [

1
+ o T fm)
L ] e o B
= log [T — a [FFs +0(1) - —o0

Thus we may assume from now on thigt— 0 for somei. If in addition|z} — 27| > ¢ > 0 for every
j # £thenH (2™) — —oo by (A2) and becausg(z™) = O(1). It follows that we only need to consider the
case whergzr”! — z7'| — 0 for somej and/. Observe that if only one d&} — 25| — 0 or |25 — 25| — 0
hold then (A1) and (A2) immediately impl§f (z™) — —oo. Therefore we may assume thaf — 25| — 0
andd? — 0 for somei, henced? — 0 for every: because of (4.12). Thus we are left with the following
case:
|z} — 25| — 0, d — 0 forall 4.

If W—d’f:;—' > ¢ > 0 Lemma 3.2 (iv) implies7 (2}, z%) = O(1), and the claim follows. Therefore it
remains to consider the cagg’ — «%| = o(d}), hence als¢z} — z%| = o(d}). By (4.12) we also have
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|z} — 23| = o(d}), anddy’ /d} — 1 forall i, j. Furthermore we can deduce tha} — 25|, [z} — 25| >
dy =di (14 o(1)), and|z} — 25| < cdy. Now (i) and (iii) of Lemma 3.2 yield

K2 k2 k2 21 = @B PR o — gy PRk g — g [Phaks
27TH($”) = log ((d?) 1 (dg) 2(dg) 3 |:c1‘ — f721|2k1k2|:c71‘ — :c§|2k1k3|:f72’ — :c§|2k2k3 + O(l)

X2 X2 X2 |x’iz _ $§L|2k1k2+2k2k3—2k1k3|x’i} _ .’fg|2k1k3

< log ((d?) (@) () T +oq)

k1 ko+2ka ks —2k1 k-
<1 dnk% dnkg dnkg |.’L’?—.’L’g| e o e O(1 _
<log | c(d})" (d3)™ (d3) — +O(1) = —o0,
1

for some constant > 0. For the convergence we used assumption (4.11}&he x%| = o(d}).
b) Here the Hamiltonian has the form

4
H($) = Z k?h(l‘z) — 2[€1]€2G(1‘1,$2) + 2[€1]€3G(1‘1,$3) — 2[€1]€4G(1‘1,$4)
=1

— 2koksG(x2, x3) 4 2kokaG (22, x4) — 2ksksG a3, x4) + f(2).
Assumption (2.3) implies
(4.13) kiko + koks — k1ks > 0,  koks + ksky — kakg > 0,
and assumption (2.4) implies
(4.14) ki(ko + ks — k3) >0,  ka(ky + ks — ko) > 0.
Forz € £, there holds

(4.15) |x1 — 23] > max{|z1 — xal, |2 — x3]}, |2 — 24| > max{|za — 23|, |23 — 24|}
' |x1 — 24| > max{|x1 — 23], |22 — 24|}

If |27 — 27| > ¢ > 0 for everyj # ¢ thend] — 0 for somei andH (z") — —oo as a consequence of
(A1) and (A2). If|z? —z}'| — 0 for somej # ¢ then the only case we have to check is wheh— 7| — 0
because all the other cases can be treated as in the prooflofth)s case, itZ] > ¢ > 0 for everyi we
have

1l —ahBRejaf — af R ol — af|ReRe|af — afteks

H(z") = =1
(1) = 7 loe [ — g [FrFa o — oy [Faks

+0(1) = —o0,

because for some> 0

|2f — af*ke et — af|*1R |l — af|Fke el — ap]teke

o} — af [iFs[a — afoF

o1 = wp1iejas — o ajag — g
|z} — af[Frks ol — aif (ko
x§|k1k2+k1k4*k1k3|x3 _ x2|k2k3+k3k4*k2k4

< e (jaf — a4 [of — g k)

< |z} —

+ C|:L'711 _ zg|k1k2+k2k3*k1k3|zg _ z2|k1k4+k3k4*k2k4

— 0.

Here we used (4.13), (4.14), and (4.15).
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It remains to consider the case whefi — z}| — 0 andd? — 0 for somei which impliesd? — 0 for
everyi by (4.15). If

|27 — 23]

(4.16) >c>0
dy

and

(4.17) 27 — il d;“' >c>0

2

Lemma 3.2 (iv) implies7(z7, z%) = O(1) andG(z%, z}) = O(1) and the claim follows. If only one of
(4.16), (4.17) is true we argue as in a).

Finally, we are left with the case} — «%| = o(d}) and|zy — x| = o(d}). In this case, it is easy to
check that

dm
(4.18) |2 — af| = o(d}) and d—; — 1.
J
Settingqy; := r—=k, Lemma 3.2 (i), (i) yields
2 2 2 2 41 297495 395
2mH (2™) = log(d)* (d )*= (d )5 (dff ¥+ + log ——22222 4 O(1).

n n
41,342 4

From (4.14), (4.15), (4.18), we deduég < |z} — 27| < 3d}, henceyy', < % for somec > 0, and
similarly for the othew;’ ;. Using this andz} — z}| < |27 — %[ + |25 — 2| we obtain

n n n n 2k1ko—2k1ks+2k1 kg 2koks+2kskys—2koky
Nolla%23950 _ <|5E71’ - $§’|) <|$3 - $Z|>

q{l,3qg,4 dy dy
( |x»i7l _ xg| ) 2k1ko+2koks—2k1 ko ( |J}§ _ x2| ) 2k1ka+2kskys—2koky
Y e T 22— Tl
dy dy
—0
Thus also in this casH (z™) — —oc. O

Proof of Theoren2.2. We recall the linking from [6]. We assume without losgeherality that € © and
fix p > 0 such that the closed bali(0,2p) C Q2. Using complex notation for the elementsdf- R? = C,
we set

(4.19) 7St ={CeC: (| =1} = FQ, (¢) = (p(,0,2p).

Then (4.2) holds folS = S*, 4o from (4.19), andC = £3(Q2). This has been proved in [6, Lemma 6.2].
It follows that aC!-function ' : 30 — R which isC!-close toH in the sense of Proposition 4.1 has a
critical point. This proves part a) of Theorem 2.2, part if)rieved easily. O

Proof of Theoren2.3. ForN = 4 vortices we set

(4.20) Y0 : St x St = FuQ,  40(Cr, G) = (p€1,0,3p,3p + pla).

It has been proved in [6, Lemma 7.2] that (4.2) holdsSoe S x S*, 4o from (4.20), andZ = £4(9).
As above it follows that &' -function F : 7,0 — R which isC'-close toH in the sense of Proposition 4.1
has a critical point. O
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5 Proof of Theorem 2.4

Following [7] we prove Theorem 2.4 by constructing streametionsy. as solutions of the ellipic problem
N T

—2Ay) = ;f (1/1 + % hw) inQ;

=1 onon.

(5.1)

with fi(t) = ¢4 if T; > 0, and fi(t) = —t” if I; < 0; herety = max{+t,0} and1 < p < T3

(p=1)/2
Settingu = 2 (¢ — ) and§ = ¢ (2_7r) »

[Ine|
I: H}(Q) — R defined by

(5.2) I(u) = 5—22/Q|W|2 - i/g E <“ —heo QTK)S))

with F;(¢) = f(f fi(s)ds. ChooseR > 0 such that) CcC Br(0). Fora > 0 letW; , be the unique positive
solution of

these are obtained as critical points of the functional

—0°Aw = (w —a)f. in Br(0);
w=0 ondBg(0),
and definéVs . o (y) :== W5 o(y—x) forz,y € Q. Finally, letP : H} (Br(0)) — HJ () be the orthogonal
projection, hencev = PW; , , solves
—82Aw = Ws g0 —a)h inQ;
w=0 onofl.

Now in order to obtain a solution of (5.1), fare Fx 2 anda; > 0 one makes the ansatz

N
u = Z(Signri)PWzs,zi,ai + ws

i=1

with ws a small perturbation. Then a Lyapunov-Schmidt procedwelelgivs . € HE (Q) with [|ws 2]|co =
O(4|In 6|®*=1/2) anda; s(z) > 0 such that the following holds: t € Fx is a critical point of

N
Fs(z):=1 (Z(signFi)PWmi,ai’é(z) + mm)

=1
then

N
(5.3) us = (ST PWs 1, . 5(a) + W

=1

is a critical point off; see [7, Section 3].
By [7, (4.2), (4.3)] there holds

F5(z) = a(d) + B(0) Hr r(z) + xs()

wherea(§) and3(d) are independent af, andys converges té) asd — 0 uniformly in theC!-norm on
compact sets af 5 (2.
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Now Theorems 2.1-2.3 yield fér> 0 small critical pointscs € Fy 2 of Fs such thates — =* along
a subsequence, wheté ¢ Fy () is a critical point of Hxr. As a consequence we obtain corresponding
critical pointsu;s of I as in (5.3), hence solutiong of the Euler equation (1.3). That the scalar vorticity
ws = V x vs = —Aug concentrates near* follows as in [7] from the fact thaA PWs ., o, ;o) = O if
WJ,xi,aiwg(a:) < aj;.
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