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Abstract

In this paper, we study local bifurcations of an indefinite elliptic system with multiple compo-
nents:







−∆uj + auj = µju
3

j + β
∑

k 6=j u
2

kuj,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, . . . , n.

Here Ω ⊂ R
N is a smooth and bounded domain, n ≥ 3, a < −Λ1 where Λ1 is the principal

eigenvalue of (−∆, H1

0
(Ω)); µj and β are real constants. Using the positive and non-degenerate

solution of the scalar equation −∆ω − ω = −ω3, ω ∈ H1

0
(Ω), we construct a synchronized solution

branch Tω. Then we find a sequence of local bifurcations with respect to Tω , and we find global
bifurcation branches of partially synchronized solutions.

1 Introduction

In this paper, we study the bifurcations of solutions to the following elliptic system







−∆uj + ajuj = µju
3
j + β

∑

k 6=j u
2
kuj,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, . . . , n,
(1.1)

where Ω ⊂ R
N is a smooth and bounded domain with N ≤ 3. Let Λ1 be the principal eigenvalue of

(−∆,H1
0 (Ω)). We say (1.1) is definite if aj > −Λ1 for all j and indefinite if aj ≤ −Λ1 for at least

one j, 1 ≤ j ≤ n. Without loss of generality, assume µ1 ≤ µ2 ≤ · · · ≤ µn. System (1.1) is called a
focusing system if 0 < µ1 ≤ · · · ≤ µn and a defocusing system if µ1 ≤ · · · ≤ µn < 0. For all the other
possibilities of µj , we call (1.1) a mixed system.

System (1.1) describes the standing wave solutions of coupled nonlinear Schrödinger systems, which
have many applications in physics, see [9, 16, 17] for examples. Mathematically, extensive research has
been done regarding, for instance, the existence and multiplicity of solutions to these systems. One
can refer to [1, 2, 5, 6, 8, 10, 11, 12, 13, 14, 19, 20, 23] for various types of results using variational
methods. A different approach based on bifurcation methods has been applied in [4, 21, 22]. In [4] the
definite case of (1.1) has been considered with n = 2, a1 = a2, and 0 < µ1 ≤ µ2. There the authors
first found a continuous branch of synchronized solutions in (β, u1, u2) ∈ R × H1

0 (Ω) × H1
0 (Ω), that

is with two linearly dependent components uj = αjω being constant multiples of a single function
ω ∈ H1

0 (Ω) which is a solution to the scalar equation −∆ω + ω = ω3. This solution branch exists for

http://arxiv.org/abs/1408.4613v1
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β ∈ (−√
µ1µ2, µ1) ∪ (µ2,∞). Then the existence of infinitely many local bifurcations with respect to

this branch has been obtained in [4]. If Ω is radially symmetric and u1, u2 are restricted to a radial
function space, every local bifurcation gives rise to a global bifurcation branch in R×H1

0 (Ω)×H1
0 (Ω).

In [21, 22], the indefinite cases of (1.1) were considered for n = 2 and µ1, µ2 ∈ R. According to the
values of µ1 and µ2, bifurcation diagrams were also obtained for β in certain intervals.

A natural generalization of the results in [4, 21, 22] would be to extend them to a system that
consists of more components, that is n ≥ 3. Note that the increase of the number of components
brings new difficulties in analyzing the linearized system of (1.1), which is important in determining
the bifurcation parameters and describing global bifurcations. When n = 2, the linearized system can
be reduced to one scalar equation that is related to a Sturm-Liouville type eigenvalue problem. Then
the bifurcation parameters can be determined, and global bifurcations are obtained, since the kernel
space of the linearized system generically only has dimension 1. In the case n ≥ 3, these processes
become more complicated and higher dimensional kernels appear due to the structure of the system.

Recently, the bifurcation of n-component systems has been investigated in [3] when aj ≡ a and
µj > 0, that is in the focusing case. Similar to the two equation system, a synchronized solution
branch exists (all components being synchronized), and a sequence of local bifurcations with respect
to this branch was found. The structure of the system however forces the kernels of the linearization
to be high-dimensional at the bifurcation points; more precisely, the dimensions are positive multiples
of n− 1, hence they can never be 1 and are even if n is odd. Using a hidden symmetry, the existence
of global bifurcation branches was proved in [3], consisting of solutions (β, u1, . . . , un) ∈ R × H,
H = [H1

0 (Ω)]
n, where some but not all components are synchronized.

In this paper, we are interested in the bifurcation phenomena of solutions to (1.1) when n ≥ 3 and
with the additional symmetric requirement: aj ≡ a for j = 1, . . . , n. Without of loss of generality we
may assume Λ1 < 1 and take a = −1, thus we consider the system







−∆uj − uj = µju
3
j + β

∑

k 6=j u
2
kuj ,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, . . . , n.
(1.2)

We also have some non-existence results for the general system (1.1) complementing the main existence
theorems.

In order to state our results we need some notation. We fix the parameters µ1 ≤ · · · ≤ µn. The
scalar equation

−∆ω − ω = −ω3, ω ∈ H1
0 (Ω). (1.3)

has a unique, non-degenerate solution ω > 0, see [18] for details. A solution (u1, . . . , un) of (1.2) is
said to be synchronized if all components are positive multiples of ω, that is uj = αjω with αj > 0,
all j = 1, . . . , n. We consider the function

g(β) = 1 + β

n
∑

j=1

1

µj − β
, (1.4)

which is defined for β ∈ R \ {µ1, . . . , µn} and has the derivative

g′(β) =

n
∑

j=1

µj

(µj − β)2
. (1.5)

It has vertical asymptotes β = µj, j = 1, . . . , n, and satisfies limβ→±∞ g(β) = 1 − n < 0. In the
focusing case, g satisfies g′ > 0 and g(0) = 1. Consequently it has a unique zero β̄ in (−∞, 0). In the
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µ1 µ2 µn−1
µn

β̄
β

g

(a) 0 < µ1 < · · · < µn

µ1 µ2 µn−1
µn

β̄
β

g

(b) µ1 < µ2 < · · · < µn < 0

Figure 1: Graphs of g in the focusing case and defocusing case.

defocusing case, g satisfies g′ < 0 and limβ→µ+
n
g(β) = ∞, hence it has a unique zero β̄ in the interval

(µn,∞).
Now we can state our existence results.

Theorem 1.1. System (1.2) has a synchronized solution branch

Tω = {(β, u1, . . . , un) : uj = αj(β)ω, β ∈ I}, (1.6)

which exists on the interval

I =



















(−∞, β̄) in the focusing case;

(−∞, µ1) ∪ (µn, β̄) in the defocusing case;

(−∞, µ1), in all the mixed cases.

For β ∈ I the synchronized solution u(β) = (u1, . . . , un) ∈ [H1
0 (Ω)]

n is uniquely determined.

Remark 1.2. a) If n = 2, the parameter interval I given above is the same as for the indefinite
2-equation system, see [21, 22] for details.

b) There exist more synchronized solutions if µj ≡ µ = β; see [3, Proposition 2.1] in the focusing
case. There are also more synchronized solutions when one allows some components to be negative
multiples of ω.

Next we state our result about bifurcation points on Tω. For this the function

f(β) = −1− 2

g(β)

and the scalar eigenvalue problem

−∆ψ − ψ = λω2ψ in Ω, ψ = 0 on ∂Ω, (1.7)

play an important role. Recall that the eigenvalue problem (1.7) has an infinite sequence of eigenvalues:
−1 = λ1 < λ2 < · · · < λk0 < 0 < λk0+1 < · · · and λk → ∞ as k → ∞.
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Theorem 1.3. If βk is a solution of the equation f(β) = λk then (βk,u(βk)) ∈ Tω is a bifurcation
point of (1.2). In the focusing case of system (1.2), the equation f(β) = λk has a unique solution for
all but finitely many k ∈ N, hence there are infinitely many bifurcation points on Tω. In the defocusing
or mixed cases of (1.2), the equation f(β) = λk has a solution for at most finitely many k ∈ N.
The solution is unique in the defocusing case, whereas in the mixed cases it may have finitely many
solutions; hence there are at most finitely many bifurcation points in both cases.

Remark 1.4. The values of µj and the number of components determine the parameter interval of Tω
and affect the quantity of bifurcations along Tω. In particular, in the defocusing or mixed cases there
may be no bifurcation points on Tω depending on n and Ω. In fact, fixing Ω we shall see that there
will be no solutions for n large.

For two-component systems, there is a global bifurcation branch emanating at every bifurcation
point in the case N = 1 or Ω is radially symmetric, see [4, 21, 22]. But for the multicomponent
system, we do not have global bifurcation results in general, in particular for bifurcation solutions
with all independent components. But, restricted to subspaces of R × H that possess the hidden
symmetry as defined in [3, Section 5], global bifurcations may be found. Let P = {P1, · · · , Pm} be
a partition of {1, . . . , n}, 1 ≤ m ≤ n. If for any 1 ≤ j, k ≤ n satisfying j, k ∈ Pi, 1 ≤ i ≤ m, the
solution components uj and uk are synchronized, then the corresponding solution u is called a partially
synchronized solution subject to partition P, or a P-synchronized solution for short.

About P-synchronized solutions we have the following theorem. Denote by |P| the cardinality of
P.

Theorem 1.5. Let βk be a solution of f(β) = λk, so (βk,u(βk)) ∈ Tω is a bifurcation point of (1.2).

(i) For every partition P of {1, . . . , n} with |P| ≥ 2, (βk,u(βk)) ∈ Tω is a bifurcation point of
P-synchronized solutions of (1.2).

(ii) Let nk denote the multiplicity of λk. If (|P| − 1)nk is odd, then (βk,u(βk)) ∈ Tω is a global
bifurcation point of P-synchronized solutions.

(iii) Suppose nk is odd. Let A be a nonempty proper subset of {1, . . . , n} and set PA = {A,Ac}.
Then there exists a global branch SA

k of PA-synchronized solutions of (1.2) bifurcating from Tω
at (βk,u(βk)). Moreover, if B is another nonempty subset of {1, . . . , n}, then the branches SA

k

and SB
k are disjoint unless A = B or A = Bc. In particular, there exist at least 2nk−1 − 1 such

global branches which are different.

(iv) Let A be a nonempty proper subset of {1, . . . , n}. If N = 1 or Ω is radial, then SA
k ∩ SA

l = ∅ for
k 6= l.

We also have some nonexistence results for solutions of the general system (1.1).

Theorem 1.6. System (1.1) does not have positive solutions in the following cases:

(i) if aj ≤ −Λ1, µj > 0 for some j = 1, . . . , n and β ≥ 0;

(ii) if aj ≤ ai, µi ≤ β ≤ µj for some i < j and at least one inequality holds strictly;

(iii) in the focusing case, if aj ≤ −Λ1 for all j = 1, . . . , n, β ≥ β̄ and at least one inequality holds
strictly;

(iv) in the mixed cases, if an ≤ a1 ≤ −Λ1, β ≥ µ1 and at least one inequality holds strictly.
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To close this section, we illustrate the local bifurcation results and the nonexistence results for
the symmetric system with a few figures. In Figure 2, the solid dots on Tω are local bifurcation
points and the shaded regions correspond to nonexistence intervals of β for positive solutions of
(1.2). The horizontal line Ti represents the semi-trivial solution branch with only the i-th component
being nontrivial. There are also semi-trivial solution branches with more nontrivial components. For
example, all global bifurcation branches found in [21, 22] are semi-trivial solution branches with 2
nontrivial components of (1.2). We omit them in Figure 2 to keep the diagrams clean.

H norm

β

Tω

β̄ µNµ1

(a) Focusing

µNµ1

β

T2

T1

TN

β̄

H norm

Tω

(b) Defocusing

µNµ1 µk0
µk0+1

β

T1

Tk0

H norm

Tω

(c) Focusing-defocusing mixed

Figure 2: Nonexistence of positive solutions and local bifurcations of (1.2).

2 The synchronized solution branch

In this section, we prove Theorem 1.1. We make the ansatz

uj = αjω, (2.1)
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where the αj’s are positive constants. Substituting this into (1.2), we obtain the following system of
equations for the coefficients αj:

αj(−∆ω − ω) = αj



µjα
2
j + β

∑

k 6=j

α2
k



ω3.

Comparing with the scalar equation (1.3), we deduce µjα
2
j + β

∑

k 6=j α
2
k = −1, which implies

(µj − β)α2
j = −1− β

n
∑

k=1

α2
k.

Note that the right-hand side of the above equation does not change in j, therefore

(µj − β)α2
j = (µk − β)α2

k, for j, k = 1, . . . , n.

Substituting this and (2.1) in the right-hand side of (1.2) and combining like terms, we have

−1 = µjα
2
j + β

∑

k 6=j

α2
k = (µj − β)α2

j + β

n
∑

k=1

α2
k = (µj − β)α2

j + β

n
∑

k=1

µj − β

µk − β
α2
j

= (µj − β)

(

1 + β

n
∑

k=1

1

µk − β

)

α2
j = (µj − β)g(β)α2

j .

Consequently the system (1.2) has a synchronized solution branch in the product space R×H provided

(β − µj)g(β) > 0 for all j = 1, . . . , n. (2.2)

Moreover, this branch is uniquely determined by setting αj =
(

(β − µj)g(β)
)−1/2

in (2.1).
Now we discuss (2.2) case by case. In the focusing case condition (2.2) is satisfied precisely for

β ∈ (−∞, β̄). In the defocusing case (2.2) holds if, and only if, β ∈ (−∞, µ1) ∪ (µn, β̄). In the mixed
cases µ1 ≤ · · · ≤ µk < 0 < µk+1 ≤ · · · ≤ µn with 1 ≤ k ≤ n− 1, we consider the sign of (β − µj)g(β)
by studying the auxiliary functions:

cj(β) :=
β − µj

∏n
k=1(µk − β)

and G(β) :=

n
∏

k=1

(µk − β) + β

n
∑

l=1

∏

k 6=l

(µk − β).

With these notations there holds (β − µj)g(β) = cj(β)G(β). For β ∈ (−∞, µ1) one has cj(β) < 0,
G(µ1) = µ1

∏n
k=2(µk − µ1) < 0, and

G′(β) = −
n
∑

j=1

∏

k 6=j

(µk − β) +

n
∑

j=1

∏

k 6=j

(µk − β)− β

n
∑

j=1





∑

i 6=j

∏

k 6=i,j

(µk − β)





= −β
n
∑

j=1





∑

i 6=j

∏

k 6=i,j

(µk − β)



 > 0.

Thus cj(β)G(β) > 0 for all j = 1, . . . , n. For β ∈ (µn,∞) we distinguish between the cases n being
odd or even. If n is odd then cj(β) < 0 for all j = 1, . . . , n. Moreover, G(µn) = µn

∏n−1
k=1(µk −µn) > 0

and

G′(β) = −β
n
∑

l=1





∑

i 6=l

∏

k 6=i,l

(µk − β)



 > 0.
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This implies cj(β)G(β) < 0 for all j = 1, . . . , n. In the case n even we have cj(β) > 0 for all
j = 1, . . . , n. Since G(µn) = µn

∏n−1
k=1(µk − µn) < 0 and

G′(β) = −β
n
∑

l=1





∑

i 6=l

∏

k 6=i,l

(µk − β)



 < 0

there holds cj(β)G(β) < 0 for all j = 1, . . . , n. Finally, for β ∈ (µ1, µn) \ {µ2, . . . , µn−1} we have that
β−µj is always positive for some j and negative for the others. Therefore, for any fixed β, there exist
at least one 1 ≤ j ≤ n such that (β − µj)g(β) < 0. In conclusion, in all mixed cases (2.2) holds only
for β ∈ (−∞, µ1). This finishes the proof of Theorem 1.1.

3 The linearized system and possible bifurcation points

In this section, we find all possible bifurcation parameters with respect to Tω, that is the values of β
such that system (1.2) has nontrivial kernel space. We consider the relaxed system







−∆uj − uj = µju
3
j + β

∑

k 6=j u
2
kuj ,

uj = 0 on ∂Ω,
(3.1)

where we dropped the sign condition on the uj ’s. Local bifurcations of solution to (3.1) will be studied
first, then using the Maximum Principle we will show that the bifurcating solutions are indeed positive,
therefore they are also bifurcating solutions to (1.2).

We need to linearize system (3.1) at a solution u = (α1ω, . . . , αnω) with αj = [(β − µj)g(β)]
−1/2,

in the direction φ = (φ1, φ2, . . . , φn) ∈ H. Setting γj = γj(β) = (µj − β)−1/2 we compute:

−∆φj − φj = 3µjα
2
jω

2φj + β
∑

k 6=j

α2
kω

2φj + 2β
∑

k 6=j

αjαkω
2φk

=





3µj
β − µj

+ β
∑

k 6=j

1

β − µk





ω2

g(β)
φj + 2β

∑

k 6=j

γjγk

g(β)
φkω

2

=

(

2µj
β − µj

− 1− β

n
∑

k=1

1

µk − β

)

ω2

g(β)
φj +

2βω2

g(β)

∑

k 6=j

γjγkφk

=
(

2µjγ
2
j − g(β)

) ω2

g(β)
φj +

2βω2

g(β)

∑

k 6=j

γjγkφk

=
2ω2

g(β)



µjγ
2
j φj + β

∑

k 6=j

γjγkφk



− ω2φj.

Denote C(β) = 2
g(β)D(β)− En, where En is the n× n identity matrix and

D(β) =

















µ1γ
2
1 βγ1γ2 · · · βγ1γn

βγ2γ1 µ2γ
2
2 · · · βγ2γn

...
...

. . .
...

βγnγ1 βγnγ2 · · · µnγ
2
n

















.
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Then the linearized system becomes

−∆φ− φ = ω2C(β)φ. (3.2)

System (3.2) must have a nontrivial solution φ in order that β is a bifurcation parameter. It is more
convenient to rewrite system (3.2) in terms of the eigenvectors of C(β) and then determine the possible
bifurcation parameters by comparing with the scalar eigenvalue problem (1.7).

Lemma 3.1. C(β) has the eigenvalue −3 and corresponding eigenvector b1(β) = (γ1(β), . . . , γn(β))
⊤.

Proof. A direct calculation shows

D(β)b1(β) =

















µ1γ
2
1 βγ1γ2 · · · βγ1γn

βγ2γ1 µ2γ
2
2 · · · βγ2γn

...
...

. . .
...

βγnγ1 βγnγ2 · · · µnγ
2
n

































γ1

γ2
...

γn

















=

















γ1(µ1γ
2
1 + β

∑

k 6=1 γ
2
k)

γ2(µ2γ
2
2 + β

∑

k 6=2 γ
2
k)

...

γn(µnγ
2
n + β

∑

k 6=n γ
2
k)

















=

















γ1[(µ1 − β)γ21 + β
∑n

k=1 γ
2
k)]

γ2[(µ2 − β)γ22 + β
∑n

k=1 γ
2
k)]

...

γ1[(µn − β)γ2n + β
∑n

k=1 γ
2
k)]

















=

















γ1[−1− β
∑n

k=1(µk − β)−1]

γ2[−1− β
∑n

k=1(µk − β)−1]
...

γn[−1− β
∑n

k=1(µk − β)−1]

















= −g(β)

















γ1

γ2
...

γn

















= −g(β)b1(β).

Therefore C(β)b1(β) = −2b1(β)− b1(β) = −3b1(β).

Lemma 3.2. The number f(β) = − 2
g(β) − 1 is an eigenvalue of C(β) with multiplicity n− 1.

Proof. We define n− 1 linearly independent vectors bj(β) = (bj1, . . . , bjn)
⊤, j = 2, . . . , n, as follows:

bj1 = γj, bjj = −γ1 and bjk = 0 for k 6= 1 and k 6= j.

Clearly bj(β) is orthogonal to b1(β) for j = 2, . . . , n. Applying D(β) to bj(β) for j ≥ 2 yields

D(β)bj(β) =

















µ1γ
2
1 βγ1γ2 · · · βγ1γn

βγ2γ1 µ2γ
2
2 · · · βγ2γn

...
...

. . .
...

βγnγ1 βγnγ2 · · · µnγ
2
n









































γj
...

−γ1
...

0

























=

























(µ1 − β)γ21γj
...

(β − µj)γ
2
j γ1

...

0

























= −bj(β).
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Consequently,

C(β)bj(β) =

(

2

g(β)
D(β)− En

)

bj(β) =

(

− 2

g(β)
− 1

)

bj(β) = f(β)bj(β),

hence f(β) is an eigenvalue of C(β) with n− 1 eigenvectors bj(β), 2 ≤ j ≤ n.

Since C(β) is a real symmetric matrix, we can use its eigenvectors to construct an orthogonal
matrix T (β) which diagonalizes C(β), that is T−1(β)C(β)T (β) = diag(−3, f(β), . . . , f(β)). Moreover,
since bj(β) depends smoothly on β we may assume that T (β) also depends smoothly on β. The
linearized system of (3.1) now is equivalent to







−∆ψ1 − ψ1 = −3ω2ψ1,

−∆ψj − ψj = f(β)ω2ψj , j = 2, . . . , n.
(3.3)

The principal eigenvalue of (1.7) is −1, thus the first equation of (3.3) only has the zero solution. As a
result, a nontrivial solution component of (3.3) must come from the remaining n− 1 equations. Thus
we need to find all solutions of the equations f(β) = λk, k ≥ 1. Since the number and the location of
the bifurcation parameters depend on the µj’s, we will find the local bifurcations case by case.

Lemma 3.3. In the focusing case 0 < µ1 ≤ · · · ≤ µn there are infinitely many possible bifurcation
parameters. More precisely, these parameters are determined by the equations f(β) = λk which has a
(unique) solution for all but a finite number of k ∈ N.

Proof. In this case, Tω exists on the interval (−∞, β̄), where β̄ is the unique value of g(β) = 0
in (−∞, µ1). As proved above the equation f(β) = −1 − 2

g(β) = λk on (−∞, β̄) determines the
bifurcation parameters.

Note that f is a rational function and is smooth on (−∞, β̄) with vertical asymptote β = β̄. Recall
that

lim
β→−∞

g(β) = 1− n < 0, g(β̄) = 0, g′(β) =

n
∑

k=1

µk

(µk − β)2
> 0,

therefore

lim
β→−∞

f(β) = −1− 2

1− n
, lim

β→β̄−

f(β) = ∞, f ′(β) =
2g′(β)

[g(β)]2
> 0.

According to the behavior of f , f(β) = λk has a unique solution for all λk satisfying

λk > −1− 2

1− n
=

3− n

n− 1
.

Since λk → ∞, this inequality is satisfied for all but finitely many values of k ∈ N.

Lemma 3.4. In the defocusing case µ1 ≤ · · · ≤ µn < 0 there are at most finitely many possible
bifurcation parameters.

Proof. In this case, the synchronized solution branch Tω exists for β ∈ (−∞, µ1) ∪ (µn, β̄), where β̄ is
the unique number in (µn,∞) such that g(β̄) = 0. In the interval (−∞, µ1), we have

lim
β→−∞

g(β) = 1− n, lim
β→µ−

1

g(β) = −∞, g′(β) =

n
∑

k=1

µk

(µk − β)2
< 0.
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According to the relation f(β) = −1− 2
g(β) , there holds

lim
β→−∞

f(β) = −1 +
2

n− 1
, lim

β→µ−

1

f(β) = −1, f ′(β) =
2g′(β)

[g(β)]2
< 0.

Therefore the equation f(β) = λk can only be solved if

− 1 < λk < −1 +
2

n− 1
. (3.4)

The monotonicity of f also implies that f(β) = λk has at most one solution for each k.
In the interval (µn, β̄) we have

lim
β→µ+

n

g(β) = ∞, lim
β→β̄−

g(β) = 0, g′(β) =
n
∑

k=1

µk

(µk − β)2
< 0.

Accordingly, we obtain

lim
β→µ+

n

f(β) = −1, lim
β→β̄−

f(β) = −∞, f ′(β) =
2g′(β)

[g(β)]2
< 0.

Since all eigenvalues of (1.7) are greater than or equal to −1, there is no bifurcation parameter in the
interval (µn, β̄).

Remark 3.5. Equation (3.4) may have no solution at all. If n→ ∞ the range for the eigenvalues λk
of (1.7) to satisfy (3.4) becomes smaller and, for n large no eigenvalue satisfies (3.4).

Lemma 3.6. In all mixed cases there are at most finitely many possible bifurcation parameters.

Proof. In all mixed cases Tω exists for β ∈ (−∞, µ1). Here we have

lim
β→−∞

f(β) = −1 +
2

n− 1
, lim

β→µ−

1

f(β) = −1.

Similar to the defocusing case, the equation f(β) = λk has solutions only if −1 < λk < −1 + 2
n−1 ,

hence for at most finitely many k.
Observe that f is not a monotone function in the mixed cases. If f has a maximum value fmax >

−1 + 2
n−1 , then for a fixed λk satisfying −1 + 2

n−1 < λk < fmax, the continuity of f implies that the
graph of f(β) will cross the horizontal line λ = λk more than once, that is f(β) = λk has more than
one solutions.

Remark 3.7. In the focusing case and in the defocusing case, f ′(β) has a fixed sign and is never zero
in I. In the mixed cases, if

∑n
k=1 µk < 0, then it is easy to see that f ′(β) 6= 0 for β ∈ (−∞, µ1). But

if the sum
∑n

k=1 µk > 0, then there may exist β ∈ (−∞, µ1) such that f ′(β) = 0. As we shall see in
the next section, these facts are important in verifying local bifurcations.

4 The verification of local bifurcations

Let βk denote a solution of f(β) = λk. Recall that βk is uniquely defined in the focusing or defocusing
case but not in the mixed cases. The fact that (3.1) has a nonempty kernel at β = βk is not sufficient
to claim a bifurcation point. In this section, we use [15, Theorem 8.9] to verify that these βk’s are
indeed bifurcation parameters.
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We denote the eigenspace of the linear eigenvalue problem (1.7) by

Vk = {φ ∈ H1
0 (Ω) | −∆φ− φ = λkω

2φ}, k = 1, 2, . . .

and set nk = dimVk. The following lemma can be established with similar arguments as [3, Lemma 4.1].
We include the proof here for the convenience of the reader.

Lemma 4.1. βk is a bifurcation parameter if f ′(βk) 6= 0.

Proof. Let Jβ : H → R be the energy functional associated with (3.1), that is

Jβ(u1, . . . , un) =
1

2

n
∑

k=1

∫

Ω
(|∇uk|2 − u2k)−

1

4

n
∑

k=1

∫

Ω
µku

4
k −

β

2

∑

i<k

∫

Ω
u2i u

2
k. (4.1)

By Sobolev embedding, Jβ is well-defined and of class C2. We can calculate the Morse index m(β) of
Jβ at (β,u(β)) ∈ Tω, in particular near the possible bifurcation points (βk,u(βk)) found in Section 3.
According to [15, Theorem 8.9], if the Morse index changes as β passes βk, then (βk,u(βk)) is a
bifurcation point. More precisely, we claim:

|m(βk − ε)−m(βk + ε)| = (n− 1)nk, (4.2)

provided f ′(βk) 6= 0 and ε > 0 small. If (4.2) is established, then the lemma is proved.
Denote the Hessian of Jβ at u(β) by

Qβ(v) := 〈J ′′
β (u(β))v,v〉 =

n
∑

k=1

∫

Ω
(|∇vk|2 − v2k)−

∫

Ω
ω2〈C(β)v,v〉.

The Morse index m(β) is the dimension of the negative eigenspace of Qβ. We decompose the space
H = V −

βk
⊕ V 0

βk
⊕ V +

βk
, where V −

βk
, V +

βk
and V 0

βk
are the negative eigenspace, positive eigenspace and

kernel of Qβk
respectively. In particular,

V 0
βk

=







v ∈ H : vj ∈ Vk for j = 1, . . . , n,

n
∑

j=1

γj(β)vj = 0







,

hence dimV 0
βk

= (n− 1)nk. Since C(β) is a smooth function of β, we have the expansion

Qβ = Qβk
+ (β − βk)Q

′
βk

+ o(|β − βk|) as β → βk.

This implies that Qβ > 0 on V +
βk

and Qβ < 0 on V −
βk
, provided β is close to βk. Thus the claim is true

if

Q′
βk
(v) = −

∫

Ω
ω2〈C ′(βk)v,v〉,

is positive, or negative, definite on V 0
βk
.

Since C(β) is a real symmetric matrix, there exists an orthogonal matrix T (β), depending smoothly
on β, such that

T−1(β)C(β)T (β) = diag(−3, f(β), · · · , f(β)) =: CT (β),

which is equivalent to C(β)T (β) = T (β)CT (β). Differentiating both sides with respect to β and then
rearranging terms leads to

C ′(β) = T ′(β)CT (β)T
−1(β) + T (β)C ′

T (β)T
−1(β)− C(β)T ′(β)T−1(β).
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For any v ∈ V 0
βk
,

〈C ′(β)v,v〉 = 〈T ′(β)CT (β)T
−1(β)v,v〉 + 〈T (β)C ′

T (β)T
−1(β)v,v〉 − 〈C(β)T ′(β)T−1(β)v,v〉

= 〈T ′(β)T−1(β)C(β)v,v〉 + f ′(β)〈T (β)T−1(β)v,v〉 − 〈T ′(β)T−1(β)v, C(β)v〉
= f(β)〈T ′(β)T−1(β)v,v〉 + f ′(β)|v|2 − f(β)〈T ′(β)T−1(β)v,v〉
= f ′(β)|v|2.

Therefore, Q′
βk
(v) is positive definite on V 0

βk
if f ′(βk) > 0, or negative definite on V 0

βk
if f ′(βk) < 0.

The claim (4.2) follows and the lemma is proved.

Proof of Theorem 1.3. For the relaxed system (3.1) in the focusing, defocusing or mixed cases, the
lemmas 3.3, 3.4 and 3.6, respectively, yield an infinite sequence of possible bifurcation points in the
focusing case, and finitely many bifurcation points in the other cases. According to Lemma 4.1, local
bifurcation for the relaxed system (3.1) occurs at each βk, provided f

′(βk) 6= 0. By Remark 3.7, this
inequality is always satisfied in the focusing case and defocusing case. It may fail in some mixed cases.

At last, we need to show that the bifurcating solutions of (3.1) are positive. Notice that

ω > 0 in Ω and
∂ω

∂ν
< 0 on ∂Ω, (4.3)

where ν is the unit outward normal vector on ∂Ω. According to Sobolev embeddings and elliptic
regularity theory, the bifurcating solutions that are close enough to a solution on Tω in the H1

0 -norm
are also close to the same solution on Tω in the C1-norm. Then (4.3) implies that the bifurcating
solutions are positive in Ω. �

Remark 4.2. According to the bifurcation theory, (βk, u1(βk), . . . , un(βk)) is a global bifurcation point
if (n−1)nk is odd. If n = 2 and nk = 1, which holds for N = 1 or a radially symmetric domain Ω, the
Crandall-Rabinowitz theorem applies and yields locally a smooth curve of bifurcating solutions. In the
other cases, the change of Morse index is greater than one, so we cannot obtain further information
about the global bifurcation branches by the arguments used in [4, 21, 22]. Some general information
on the bifurcating branches can be deduced from Dancer’s analytic bifurcation theory [7].

Remark 4.3. Using the results of [21, 22], system (1.2) always has semi-trivial solution branches with
two nonzero components, provided n ≥ 3. But semi-trivial solution branch with exactly one nonzero
component do not exist in the focusing case.

5 Partially synchronized solutions and global bifurcations

In this section, we study the global bifurcation phenomena of partially synchronized solutions of (1.2),
and prove Theorem 1.5.

In contrast with [4, 21, 22], we cannot claim the existence of global bifurcation at βk even when
nk is odd, since (4.2) shows that the Crandall-Rabinowitz condition for global bifurcation now also
depends n. In particular, if n is odd, then (n − 1)nk is even and no global bifurcation at βk can
be claimed. Using the hidden symmetry observed in [3], we may find global bifurcations in some
subspaces of R×H.
Proof of Theorem 1.5. It is straightforward to check that the following results cited from [3] can be
applied to the system (1.2) with no substantial changes.
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(i) On one hand, the |P|-synchronized solutions of system (1.2) satisfy a reduced system of (1.2)
with |P| components, see [3, Lemma 5.1]. On the other hand, using the solution of this reduced
|P|-component system, we can construct a |P|-synchronized solution of system (1.2), see [3,
Lemma 5.2 and Proposition 5.3]. Next, bifurcations of |P|-synchronized solutions can be verified
at bifurcation points of general solutions, see [3, Lemma 5.4]. Thus (i) is proved.

(ii) If (|P| − 1)nk is odd, then by Crandall-Rabinowitz’s bifurcation theorem, global bifurcations of
P-synchronized solutions occur at each bifurcation point (βk,u(βk)).

(iii) If nk is odd and A is a nonempty proper subset of {1, . . . , n}, then the existence of a global
bifurcation branch SA

k with PA-synchronized solutions can be easily seen for PA = {A,Ac}.
Let B be another nonempty proper subset of {1, . . . , n} satisfying B 6= A and B 6= Ac. If
SA
k ∩ SB

k 6= ∅, then there exists (β,u) ∈ SA
k ∩ SB

k . By the definition of partially synchronized
solution and simple set operations, we obtain that all components of u are synchronized. This
contradicts with the fact that A and B are both nonempty proper subsets of {1, . . . , n}.

(iv) Let P = {A,Ac}. In the case N = 1 or Ω is radially symmetric, nk = 1 for every eigenvalue λk of
(1.7). Thus there is a global bifurcation branch of P-synchronized solutions at each bifurcation
point (βk,u(βk)). The conclusion follows from the the bifurcation results for indefinite two-
component systems, see [21, 22].

�

6 Nonexistence results

In this section we prove Theorem 1.6. We argue by contradiction and assume that u is a solution of
(1.1).
Proof of Theorem 1.6(i). We multiply the j-th equation in (1.2) with the principal eigenfunction φ1
of −∆ in H1

0 (Ω) and obtain:

0 ≥ (Λ1 + aj)

∫

Ω
ujφ1 =

∫

Ω
(−∆uj + ajuj)φ1 =

∫

Ω



µju
3
j + β

∑

k 6=j

u2k



φ1 > 0

�

Proof of Theorem 1.6(ii). Here we multiply the i-th equation by uj , the j-th equation by ui, and
obtain:

0 ≥ (aj − ai)

∫

uiujdx = (µj − β)

∫

uiu
3
j + (β − µi)

∫

u3iuj ≥ 0.

This gives a contradiction if one of the inequalities aj ≤ ai, µi ≤ β ≤ µj is strict. �

Proof of Theorem 1.6(iii). By Theorem 1.6(i) we only need to consider the case β̄ < β ≤ 0. The
following argument works for β̄ < β < µ1. Multiplying both sides of the k-th equation by αkφ1, where
αk = (

√
µk − β)−1, we obtain:

0 ≥
n
∑

k=1

∫

(Λ1 + ak)αkukφ1 =

∫





n
∑

k=1

µkαku
3
k + β

n
∑

k=1

αkuk

n
∑

l 6=k

u2l



φ1
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=

∫

(

n
∑

k=1

(µk − β)αku
3
k + β

n
∑

k=1

αkuk

n
∑

k=1

u2k

)

φ1

=

(

n
∑

k=1

1

µk − β

)−1
∫

(

n
∑

k=1

1

µk − β

n
∑

k=1

(µk − β)αku
3
k +

n
∑

k=1

β

µk − β

n
∑

k=1

αkuk

n
∑

k=1

u2k

)

φ1

We only need to make sure that the summation inside the parentheses is positive. Using the definition
of g(β) and of αk we obtain:

n
∑

k=1

1

µk − β

n
∑

k=1

(µk − β)αku
3
k +

n
∑

k=1

β

µk − β

n
∑

k=1

αkuk

n
∑

k=1

u2k

= g(β)

n
∑

k=1

αku
3
k +

∑

i<j

(

µj − β

µi − β
αju

3
j +

µi − β

µj − β
αiu

3
i +

n
∑

k=1

β

µk − β
(αiuiu

2
j + αju

2
iuj)

)

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)





+
∑

i<j

(

µj − β

µi − β
αju

3
j +

µi − β

µj − β
αiu

3
i − (αiuiu

2
j + αju

2
iuj)

)

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)





+
∑

i<j

[

u2j

(

µj − β

µi − β
αjuj − αiui

)

+ u2i

(

µi − β

µj − β
αiui − αjuj

)]

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)





+
∑

i<j

[

µj − β

µi − β
u2j

(

αjuj −
µi − β

µj − β
αiui

)

+ u2i

(

µi − β

µj − β
αiui − αjuj

)]

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)



+
∑

i<j

(

µj − β

µi − β
u2j − u2i

)(

αjuj −
µi − β

µj − β
αiui

)

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)





+
∑

i<j

(
√

µj − β

µi − β
uj + ui

)(
√

µj − β

µi − β
uj − ui

)

(

(µj − β)αj

(µi − β)αi
uj − ui

)

µi − β

µj − β
αi

= g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)





+
∑

i<j

(

√

µj − βuj +
√

µi − βui

)

(

uj√
µi − β

− ui
√

µj − β

)2
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≥ g(β)





n
∑

k=1

αku
3
k +

∑

i<j

(αiuiu
2
j + αju

2
iuj)



 .

Substituting the above inequality in the previous integral inequality yields a contradiction if aj < Λ1

for some j or g(β) > 0. �

Proof of Theorem 1.6(iv). The case µ1 ≤ β < µn has been treated in (ii), the case β ≥ µn > 0 in (i).
�
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