
Toward double affine flag varieties and
Grassmannians

Dinakar Muthiah

Kavli IPMU (University of Tokyo)

May 24, 2019

Dinakar Muthiah Double affine flag varieties



Finite v. single affine v. double affine settings

Finite Single affine Double affine

Groups G (k) Ĝ(k)
G(k((π))) Ĝ(k((π)))

Hecke C[B\G/B] Cc[B̂\Ĝ/B̂] or
algebras Cc[I\G(k((π)))/I] ?
Weyl W Waff or
groups WnQ∨ ?

Schubert BwB/B BwB/B or
varieties IwI/I ?

Here k = Fq, G is a finite-type Kac-Moody group (think SLn), and Ĝ

is the affinization of G, an affine Kac-Moody group, (think ŜLn).
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Notation

We will shift notation slightly and drop hats.

An (affine) Kac-Moody group G.

Positive and negative Borels B and B−. Torus A = B ∩ B−.

Weyl group W, coweight lattice Λ = Hom(Gm,A), dominant
cone Λ++, Tits cone T =W ·Λ++.

Local field K = k((π)) and ring of integers O = k[[π]]. (K = Qp
okay when it makes sense)

Groups of K-points: G = G(K), A = A(K), etc.

“Maximal compact” K = G(O) and Iwahori subgroup
I = {g ∈ K | g ∈ B(k) mod π}.

For µ ∈ Λ, we can consider µ : K× → A ↪→ G. Write πµ for the
image of π ∈ K×. We get an embedding Λ ↪→ G.
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The Cartan semigroup

The Cartan decomposition fails [Garland]:

⊔
λ∈Λ++

KπλK ( G

Let G+ =
⊔
λ∈Λ++ KπλK.

The set G+ is a semigroup, so we can multiply, which is all we
need to do convolution.
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Spherical Hecke algebras and Satake isomorphism

Theorem (Braverman-Kazhdan, Gaussent-Rousseau)

There is a completion ĤK of Cc[K\G+/K] that is an algebra under
convolution. Furthermore, there is an isomorphism:

Sat : ĤK → Rep(G∨)

The completion is natural because V(µ)⊗ V(λ) is an infinite sum
of irreps.
Braverman-Kazhdan proof: an interpretation of the problem via
bundles on algebraic surfaces.
Gaussent-Rousseau proof: via the theory of masures (a.k.a
hovels, a.k.a. double affine buildings).
One needs to understand the structure coefficients
1KπλK ? 1KπµK =

∑
ν a

ν
λ,µ1KπνK.

They later (with Patnaik and Bardy-Panse resp.) show that
Sat(1KπλK) is an affine Hall-Littlewood function (up to an
important correction factor).
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Work of Braverman-Kazhdan-Patnaik

Theorem (BKP)

There is an Iwahori decomposition

G+ =
⊔

πµw∈WnT

IwπµI

The vector space Cc[I\G+/I] is an algebra under convolution.

Theorem (BKP)

The algebra Cc[I\G+/I] has a Bernstein presentation
〈Θµ, Tw | µ ∈ T,w ∈W〉, so it is almost equal to Cherednik’s
DAHA.

There are two bases, the Bernstein basis and the basis consisting
of vectors Twπµ = 1IwπµI.
A question raised by BKP is to understand the {Twπµ } basis
combinatorially and the dependence of this basis on the local
field K.
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The double coset basis and Iwahori-Matsumoto
formula (1)

Theorem (M—,Gaussent–Rousseau–Bardy-Panse)

Let πµw ∈W n T. Let si be a simple reflection in W. Then we
have:

Tπµwsi ={
TπµwTsi if 〈µ,w(αi)〉 > 0 or if 〈µ,w(αi)〉 = 0 andw(αi) > 0

TπµwT
−1
si

if 〈µ,w(αi)〉 < 0 or if 〈µ,w(αi)〉 = 0 andw(αi) < 0

Let µ ∈ T. Write µ = v(µ+) for µ+ ∈ Λ++ and v ∈W. Then we
have:

Tπµ = T−1
v−1Tπµ+ Tv−1
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The double coset basis and Iwahori-Matsumoto
formula (2)

Corollary

The structure coefficients of the basis {Tπµw | πµw ∈W n T} are
specialization of universal polynomials (independent of k) at
q = #k.
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Perspective on the double affine flag variety

We consider G+/I as if it were the k-points of the “double affine
flag variety”.

The Schubert cells IxI/I are indexed by x ∈W n T.

Our goal is to probe the geometry of G+/I indirectly.

For example, we would like to compute Kazhdan-Lusztig
polynomials.
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Double affine roots and Bruhat order [BKP] (1)

Let Φre denote the roots of G, and let Φ+
re denote the subset of

positive real roots.

We define the double affine (real) roots to be formal linear
combinations of the form

β+ nπ

where β ∈ Φre and n ∈ Z.
Define β+ nπ > 0 if n > 0, or n = 0 and β ∈ Φ+

re.

Given β ∈ Φ+
re and n ∈ Z, we define

β[n] =

{
β+ nπ if β+ nπ > 0

−(β+ nπ) if β+ nπ < 0

Associated to β[n], we define a reflection (we drop the ∨):

sβ[n] = π
nβ∨

sβ = πnβsβ
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Double affine roots and Bruhat order [BKP] (2)

Given πµw ∈W n T and a double affine root β+ nπ, we define

πµw(β+ nπ) = w(β) + (n+ 〈µ,β〉))π

BKP define a preorder (the double affine Bruhat order) on W n T

by declaring

πµw < πµwsβ[n]

if πµw(β[n]) > 0

They conjecture it to be partial order.
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The function `ε (1)

Let ε be a formal symbol, and consider Z⊕ Zε ordered lexico-
graphically. So, for example, 1+ 10ε < 2+ 1ε.

Theorem (M—)

There is a function `ε :W n T → Z⊕ Zε that is strictly compatible
with the Bruhat order and the lexicographic order on Z⊕ Zε.

Corollary

The Bruhat preorder on W n T is a partial order.
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The function `ε (2)

The function `ε is characterized by

`ε(π
µwsi) ={

`ε(π
µw) + 1 if 〈µ,w(αi)〉 > 0 or if 〈µ,w(αi)〉 = 0 andw(αi) > 0

`ε(π
µw) − 1 if 〈µ,w(αi)〉 < 0 or if 〈µ,w(αi)〉 = 0 andw(αi) < 0

and:

`ε(π
µ) = `ε(π

µ+) = 〈2ρ,µ+〉

Compare: the conditions in the Iwahori-Matsumoto formula.

Deciding whether β+ nπ > 0 is a “lexicographic” procedure.

Deciding whether `ε(x) > `ε(y) is also a “lexicographic”
procedure.

The proof involves matching them up.

Even for usual affine Weyl groups this is a new and useful result.
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Specializing ε = 1

Define ` :W n T → Z to be the composition of:

W n T
`ε→ Z⊕ Zε ε 7→1→ Z

Theorem (M-Orr)

The function ` :W n T → Z is strictly compatible with the Bruhat
order and the usual order on Z.

Corollary

Let x,y ∈W n T with x < y. The chains from x to y are no longer
than `(y) − `(x).

Dinakar Muthiah Double affine flag varieties



A sample application (even for usual affine Weyl
groups)

Consider G = ŜL2, x = πΛ0+δ, and y = πΛ0t3α. We compute

`ε(x) = 4 and `ε(y) = 6ε

so `ε(x) > `ε(y), and

`(x) = 4 and `(y) = 6

so `(x) < `(y). Therefore: x and y are not comparable.
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A toy theorem

Toy Theorem

Let w ∈W, β ∈ Φ+
re. If w(β) > 0, then:

`(wsβ) > `(w)

The usual proof is closely related to the Strong Exchange Condition
for Coxeter groups. Instead, we will proceed differently.
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Proof.
We can check that:

`(wsβ) = `(w) +#{γ ∈ Inv(sβ) | w(γ) > 0}

−#{γ ∈ Inv(sβ) | w(γ) < 0}

Notice that Inv(sβ) has an involution ι defined by ι(γ) = −sβ(γ); β is
the unique fixed point of ι (which, by the way, implies Inv(sβ) has
odd cardinality).
Moreover, w(β) > 0 implies w(γ) > 0 or w(ι(γ)) > 0 for all
γ ∈ Inv(sβ).
Therefore:

`(wsβ) = `(w) +#{γ ∈ Inv(sβ) | w(γ) > 0 and w(ι(γ)) > 0}

The set on the right has at least one element, namely β, so we are
done.
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Idea of our proof

Let x ∈W n T and sβ[n] = πnβsβ, such that xsβ[n] > x.

Write

Inv++
x (sβ[n]) =

{
γ[m] ∈ Inv(sβ[n]) | x(γ[m]) > 0 and x(ι(γ[m])) > 0

}
We show

`(xsβ) = `(x) +#Inv++
x (sβ[n])

Heuristically

"#Inv((xsβ[n])−1) = #Inv(x−1) +#Inv++
x (sβ[n])

Both Inv((xsβ[n])−1) and Inv(x−1) are infinite sets.

The set Inv++
x (sβ[n]) is finite, which is quite subtle.

We construct an injection Inv(x−1) ↪→ Inv((xsβ[n])−1) and
identify the complement of the image with Inv++

x (sβ[n]).
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x (sβ[n]).
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A subtlety about inversion sets

Consider G = ŜL2. Then we have Inv(πΛ0) = Inv(πΛ0+δ).

But `(πΛ0) = 0, and `(πΛ0+δ) = 4.

In fact, πΛ0 < πΛ0+δ.

Our proof constructs a injection

Inv(πΛ0) ↪→ Inv(πΛ0+δ)

whose image omits exactly 4 elements.
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Classification of covers

Conjecture

Let x,y ∈W n T. Then x covers y if and only if

x > y and `(x) = `(y) + 1

Theorem (M-Orr)

The above conjecture is true in affine ADE type. Additionally,
each x ∈W n T is covered by finitely many elements.

Corollary
Intervals in the Bruhat order are finite.
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A Bruhat interval for affinized ŜL2

πΛ0+δ

πΛ0+αt−αsα πΛ0−αtαsα

πΛ0tα πΛ0−αtα πΛ0t−α

πΛ0t−αsα πΛ0sα

πΛ0
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Schubert slices (a.k.a Kazhdan-Lusztig varieties) (1)

Let I∞ =
{
g ∈ G(k[π−1]) | g ∈ B−(k) mod π−1

}
The group I∞ serves as the “opposite” double affine Borel.

Let x,y ∈W n T, then we consider the open Kazhdan-Lusztig
variety:

(I∞yI ∩ IxI)/I ⊂ G+/I
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Schubert slices (a.k.a Kazhdan-Lusztig varieties) (2)

Conjecture

The set (I∞yI ∩ IxI)/I 6= ∅ if and only if y 6 x.

Conjecture

We have dim(I∞yI ∩ IxI)/I = `(x) − `(y) (counting dimension).

Conjecture

There exists a universal polynomial Ry,x ∈ Z[v] (independent of
k), such that:

#(I∞yI ∩ IxI)/I = Ry,x(q)
The polynomials Ry,x, if they exist, are the Kazhdan-Lusztig
R-polynomials. Combined with the Bruhat order, we can get the
usual Kazhdan-Lusztig polynomials.
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Aside: (double) affine Grassmannian slices (1)

Fix µ, λ ∈ Λ++. Four perspectives on affine Grassmannian slices Grλµ:

1 Bundle theoretic: G◦-bundles on curves/surfaces
(Braverman-Finkelberg in double affine case).

2 Group theoretic: I∞πµK ∩ KπλK/K.
3 Quantization: shifted truncated Yangians.
4 Symplectic duality: the Braverman-Finkelberg-Nakajima

“Coulomb branch”.

1 = 2: classical in single affine setting (e.g. Beauville-Laszlo
theorem). Unknown in double affine.

2 = 3: by Kamnitzer-Webster-Weekes-Yacobi modulo
reducedness. Unknown in double affine.

3 = 4: B-F-K-Kodera-N-W-W. Unknown in double affine.
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Aside: (double) affine Grassmannian slices (2)

Conjecture (Braverman-Finkelberg)

Intesection cohomology stalks (i.e. KL polynomials) of double
affine Grassmannian slices are q-analogues of dimV(λ)µ

In the single affine case, this is usual called the Kato-Lusztig
formula.

This is a concrete manifestation of geometric Satake
correspondence.

For the rest of the talk we will work with G+/K for simplicity of
exposition.

We will study I∞πµK ∩ KπλK/K. Replacing K by I is no more
difficult, but the exposition gets more complicated.
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Brief recollection of affine buildings (1)

A portion of the SL2(F2) affine building:

...

...

...

...

...

...

Two perspectives:

Glue facets:

Glue apartments A:
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Brief recollection of affine buildings (2)

The standard apartment A for SL3(k):
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Masures (1)

Gaussent and Rousseau have developed a theory of affine
buildings for Kac-Moody group, which they call the theory of
masures (a.k.a. hovels).

Affine buildings J contains a distinguished copy of A = Λ⊗ R,
the “standard apartment”.

The group G will act on J.

For each x ∈ A, let Px be the fixator of x.

Then J ∼= G× A/∼
We have (p, x) ∼ (1, x) for all x ∈ A and p ∈ Px.
We have (πµw, x) ∼ (1,πµw.x) for all πµw ∈W × T and x ∈ A.

Idea: start from Px and define J by the above recipe.
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Masures (2)

Roughly, Px is the group generated by eβ(f) for real roots β,
where val(f) > 〈β, x〉.
Here eβ : K→ G is the one-parameter subgroup.

In the single-affine case, Px is always conjugate to a standard
parahoric.

Not so in the double-affine case.
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Affine ŜL2 fundamental apartment
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Affine ŜL2 fundamental apartment
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Retractions (1)

Retraction ρI centered at the fundamental alcove for SL2(F2):

...

...

...

...

...

...
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Retractions (2)

Retraction ρU− centered at −∞ (anti-dominant chamber) SL2(F2):

...

...

...

...
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Retractions (3)

Let J+ = G+×TR/∼⊆ J denote the “positive part” of the masure.
The map ρI : J+ → TR is characterized by

ρI is a retraction.
ρI is I-invariant.

The map ρU− : J→ A is characterized by
ρU− is a retraction.
ρU− is U−-invariant.

Both exist for general masures by work of Gaussent and
Rousseau.
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Retractions along I∞

Assumption (Work in progress with Patnaik)

There exists a retraction ρI∞ : J+ → TR along I∞.
This is closely related to Birkhoff decomposition and the theory of
twin buildings.
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I∞-Hecke paths (1)

Fix λ ∈ Λ++ and ν ∈ T.

Let ϕ◦ : [0, 1]→ A be the straight path starting at 0 and ending
at λ.

We can identify K ·ϕ◦ = KπλK/K.
Let ϕ ∈ I ·ϕ◦, which we think of as a straight line in the masure
that starts at 0 and ends at a point in KπλK/K.

The retraction ρI∞(ϕ) is a piecewise linear path.

We call such piecewise linear paths I∞-Hecke paths. (Replacing
I∞ with U−, we get the usual notion of Hecke path)

If the endpoint ρI∞(ϕ)(1) = ν, then we have ϕ ∈ I∞πνK/K.
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I∞-Hecke paths (2)

Denote the set of I∞-Hecke paths ending at ν by:

I∞Hλν = {ρI∞(ϕ) | ϕ ∈ KπλK/K and ϕ(1) = ν}

Let τ ∈ I∞Hλν. Then there is a sequence of folding times

0 = t0 < t1 < · · · tN < tN+1 = 1

and folding directions

x0, . . . , xN ∈W nQ

such that for all i ∈ {0, 1, . . . ,N}

τ(t) = xk(tλ) for t ∈ [tk, tk+1]
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Counting points in Schubert slices (1)

Theorem (M)

The set {ϕ ∈ KπλK/K | ρI∞(ϕ) = τ} is in bijection with:

N∏
k=0

(((x−1
k−1I∞xk−1)∩Ptkλ)xkP[tk,tk+ε)λ)∩

P(tk−ε,tk]λP[tk,tk+ε)λ))/P[tk,tk+ε)λ

The k-th factor above is a subset of Ptkλ/P[tk,tk+ε)λ, which is in
canonical bijection with the k-points of a Kac-Moody partial flag
variety.

The set we are looking at is an intersection of (translates of)
opposite Schubert cells.

Following Deodhar, there is an explicit combinatorial formula for
the cardinality of this set (which is given by specializing a
universal polynomial at q).
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Counting points in Schubert slices (2)

The above set is non empty only if (for some w ∈W):

πλ >Wt0 π
λx0 >Wt1> · · · >WtN π

λxN = πνw

Here Wt is the group generated by double affine reflections that
fix t · λ ∈ A. The notation x >Wt y means x > y and xy−1 ∈Wt.
This implies `(πλ) > `(πνw), which only allows finitely many
possible w. Therefore, in affine ADE, there are only finitely
many possible (x0, . . . , xN).

Both conclusions are by my work with Orr on double affine
Bruhat order.

Theorem (M)

In affine ADE, the set I∞Hλν is finite, and can be explicitly
described in terms of chains in the double affine Bruhat order.
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Kazhdan-Lusztig R-polynomials

This gives us a combinatorial (if complicated) definition of
Kazhdan-Lusztig R-polynomials.

For G+/I, I believe this should give us the Kazhdan-Lusztig
P-polynomials.

For G+/K the situation is more subtle (the subtlety is related to
the Uhlenbeck compactification of instanton spaces and the
non-trivial stratification of affine Coulomb branches).

Corollary
Modulo the assumption about the existence of ρI∞ , we have

(I∞yI ∩ IxI)/I 6= ∅ implies y 6 x,

and:

dim(I∞yI ∩ IxI)/I 6 `(x) − `(y)
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Thank you!
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