Toward double affine flag varieties and Grassmannians

Dinakar Muthiah
Kavli IPMU (University of Tokyo)

May 24, 2019

Finite v. single affine v. double affine settings

	Finite	Single affine	Double affine
Groups	$\mathbf{G}(\mathbb{k})$	$\widehat{\mathbf{G}}(\mathbb{k})$ $\mathbf{G}(\mathbb{k}((\pi)))$	$\widehat{\mathbf{G}}(\mathbb{k}((\pi)))$
Hecke algebras	$\mathbb{C}[\mathbf{B} \backslash \mathbf{G} / \mathbf{B}]$	$\mathbb{C}_{\mathcal{C}}[\widehat{\mathbf{B}} \backslash \widehat{\mathbf{G}} / \widehat{\mathbf{B}}]$ or $\mathbb{C}_{\mathcal{C}}[I \backslash \mathbf{G}(\mathbb{k}((\pi))) / \mathrm{I}]$	$?$
Weyl groups	W	$W_{\text {aff }}$ or $W \times Q^{\vee}$	$?$
Schubert varieties	$\overline{\mathrm{B} w \mathbf{B} / \mathbf{B}}$	$\overline{\mathbf{B} w \mathbf{B} / \mathrm{B}}$ or $\overline{\mathrm{I} w \mathrm{I} / \mathrm{I}}$	$?$

Here $\mathbb{k}=\mathbb{F}_{\mathbf{q}}, \mathbf{G}$ is a finite-type Kac-Moody group (think $\mathbf{S L}_{n}$), and $\widehat{\mathbf{G}}$ is the affinization of \mathbf{G}, an affine Kac-Moody group, (think $\widehat{\mathbf{S L}_{n}}$).

Notation

We will shift notation slightly and drop hats.

- An (affine) Kac-Moody group G.
- Positive and negative Borels \mathbf{B} and \mathbf{B}^{-}. Torus $\mathbf{A}=\mathbf{B} \cap \mathbf{B}^{-}$.
- Weyl group W, coweight lattice $\Lambda=\operatorname{Hom}\left(\mathbb{G}_{\mathfrak{m}}, \boldsymbol{A}\right)$, dominant cone Λ^{++}, Tits cone $\mathcal{T}=W \cdot \Lambda^{++}$.
- Local field $\mathcal{K}=\mathbb{k}((\pi))$ and ring of integers $\mathcal{O}=\mathbb{k}[[\pi]]$. $\left(\mathcal{K}=\mathbb{Q}_{\mathrm{p}}\right.$ okay when it makes sense)
- Groups of \mathcal{K}-points: $\mathbf{G}=\mathbf{G}(\mathcal{K}), \mathrm{A}=\mathrm{A}(\mathcal{X})$, etc.
- "Maximal compact" $\mathrm{K}=\mathrm{G}(\mathrm{O})$ and Iwahori subgroup $I=\{g \in K \mid g \in B(\mathbb{k}) \bmod \pi\}$.
- For $\mu \in \Lambda$, we can consider $\mu: \mathcal{K}^{\times} \rightarrow A \hookrightarrow G$. Write π^{μ} for the image of $\pi \in \mathcal{K}^{\times}$. We get an embedding $\Lambda \hookrightarrow \mathrm{G}$.

We will shift notation slightly and drop hats.

- An (affine) Kac-Moody group G.
- Positive and negative Borels \mathbf{B} and \mathbf{B}^{-}. Torus $\mathbf{A}=\mathbf{B} \cap \mathbf{B}^{-}$.
- Weyl group W, coweight lattice $\Lambda=\operatorname{Hom}\left(\mathbb{G}_{m}, \boldsymbol{A}\right)$, dominant cone Λ^{++}, Tits cone $\mathcal{T}=W \cdot \Lambda^{++}$.
- Local field $\mathcal{K}=\mathbb{k}((\pi))$ and ring of integers $\mathcal{O}=\mathbb{k}[[\pi]]$. $\left(\mathcal{K}=\mathbb{Q}_{p}\right.$ okay when it makes sense)
- Groups of \mathcal{K}-points: $\mathbf{G}=\mathbf{G}(\mathcal{K}), \mathcal{A}=\mathbf{A}(\mathcal{K})$, etc.
- "Maximal compact" $\mathrm{K}=\mathbf{G}(\mathcal{O})$ and Iwahori subgroup

$$
I=\{g \in K \mid g \in \mathbf{B}(\mathbb{k}) \bmod \pi\} .
$$

- For $\mu \in \Lambda$, we can consider $\mu: \mathcal{K}^{\times} \rightarrow A \hookrightarrow G$. Write π^{μ} for the image of $\pi \in \mathcal{K}^{\times}$. We get an embedding $\Lambda \hookrightarrow \mathrm{G}$.

We will shift notation slightly and drop hats.

- An (affine) Kac-Moody group G.
- Positive and negative Borels \mathbf{B} and \mathbf{B}^{-}. Torus $\mathbf{A}=\mathbf{B} \cap \mathbf{B}^{-}$.
- Weyl group W, coweight lattice $\Lambda=\operatorname{Hom}\left(\mathbb{G}_{m}, \boldsymbol{A}\right)$, dominant cone Λ^{++}, Tits cone $\mathcal{T}=W \cdot \Lambda^{++}$.
- Local field $\mathcal{K}=\mathbb{k}((\pi))$ and ring of integers $\mathcal{O}=\mathbb{k}[[\pi]]$. $\left(\mathcal{K}=\mathbb{Q}_{p}\right.$ okay when it makes sense)
- Groups of \mathcal{K}-points: $\mathbf{G}=\mathbf{G}(\mathcal{K}), \mathcal{A}=\mathbf{A}(\mathcal{K})$, etc.
- "Maximal compact" $\mathrm{K}=\mathbf{G}(\mathcal{O})$ and Iwahori subgroup

$$
I=\{g \in K \mid g \in \mathbf{B}(\mathbb{k}) \bmod \pi\} .
$$

- For $\mu \in \Lambda$, we can consider $\mu: \mathcal{K}^{\times} \rightarrow A \hookrightarrow G$. Write π^{μ} for the image of $\pi \in \mathcal{K}^{\times}$. We get an embedding $\Lambda \hookrightarrow \mathrm{G}$.

The Cartan semigroup

- The Cartan decomposition fails [Garland]:

$$
\bigsqcup_{\lambda \in \Lambda^{++}} K \pi^{\lambda} \mathrm{K} \subsetneq G
$$

- Let $\mathrm{G}^{+}=\bigsqcup_{\lambda \in \Lambda^{++}} \mathrm{K} \pi^{\lambda} \mathrm{K}$.
- The set G^{+}is a semigroup, so we can multiply, which is all we need to do convolution.

The Cartan semigroup

- The Cartan decomposition fails [Garland]:

$$
\bigsqcup_{\lambda \in \Lambda^{++}} K \pi^{\lambda} \mathrm{K} \subsetneq G
$$

- Let $\mathrm{G}^{+}=\bigsqcup_{\lambda \in \Lambda^{+}} K \pi^{\lambda}$.
- The set G^{+}is a semigroup, so we can multiply, which is all we need to do convolution.

Spherical Hecke algebras and Satake isomorphism

Theorem (Braverman-Kazhdan, Gaussent-Rousseau)

There is a completion $\widehat{\mathcal{H}_{\mathrm{K}}}$ of $\mathbb{C}_{\mathrm{c}}\left[\mathrm{K} \backslash \mathrm{G}^{+} / \mathrm{K}\right]$ that is an algebra under convolution. Furthermore, there is an isomorphism:

$$
\text { Sat }: \widehat{\mathcal{F}_{K}} \rightarrow \operatorname{Rep}\left(\mathbf{G}^{\vee}\right)
$$

[^0]
Spherical Hecke algebras and Satake isomorphism

Theorem (Braverman-Kazhdan, Gaussent-Rousseau)

There is a completion $\widehat{\mathcal{H}_{\mathrm{K}}}$ of $\mathbb{C}_{\mathrm{c}}\left[\mathrm{K} \backslash \mathrm{G}^{+} / \mathrm{K}\right]$ that is an algebra under convolution. Furthermore, there is an isomorphism:

$$
\text { Sat }: \widehat{\mathcal{F}_{\mathrm{K}}} \rightarrow \operatorname{Rep}\left(\mathbf{G}^{\vee}\right)
$$

- The completion is natural because $\mathrm{V}(\mu) \otimes \mathrm{V}(\lambda)$ is an infinite sum of irreps.
- Braverman-Kazhdan proof: an interpretation of the problem via bundles on algebraic surfaces.
- Gaussent-Rousseau proof: via the theory of masures (a.k.a hovels, a.k.a. double affine buildings)
- One needs to understand the structure coefficients $\mathbb{1}_{K \pi^{\lambda} K} \star \mathbb{1}_{K \pi^{\mu} K}=\sum$
- They later (with Patnaik and Bardy-Panse resp.) show that $\operatorname{Sat}\left(\mathbb{1}_{K \pi^{\lambda} K}\right)$ is an affine Hall-Littlewood function (up to an important correction factor)

Spherical Hecke algebras and Satake isomorphism

Theorem (Braverman-Kazhdan, Gaussent-Rousseau)

There is a completion $\widehat{\mathcal{H}_{\mathrm{K}}}$ of $\mathbb{C}_{\mathrm{c}}\left[\mathrm{K} \backslash \mathrm{G}^{+} / \mathrm{K}\right]$ that is an algebra under convolution. Furthermore, there is an isomorphism:

$$
\text { Sat }: \widehat{\mathcal{F}_{K}} \rightarrow \operatorname{Rep}\left(\mathbf{G}^{\vee}\right)
$$

- The completion is natural because $\mathrm{V}(\mu) \otimes \mathrm{V}(\lambda)$ is an infinite sum of irreps.
- Braverman-Kazhdan proof: an interpretation of the problem via bundles on algebraic surfaces.
- Gaussent-Rousseau proof: via the theory of masures (a.k.a hovels, a.k.a. double affine buildings).
- One needs to understand the structure coefficients
- They later (with Patnaik and Bardy-Panse resp.) show that $\operatorname{Sat}\left(\mathbb{1}_{K \pi^{\lambda} K}\right)$ is an affine Hall-Littlewood function (up to an important correction factor).

Spherical Hecke algebras and Satake isomorphism

Theorem (Braverman-Kazhdan, Gaussent-Rousseau)

There is a completion $\widehat{\mathcal{H}_{\mathrm{K}}}$ of $\mathbb{C}_{\mathrm{c}}\left[\mathrm{K} \backslash \mathrm{G}^{+} / \mathrm{K}\right]$ that is an algebra under convolution. Furthermore, there is an isomorphism:

$$
\text { Sat }: \widehat{\mathcal{F}_{K}} \rightarrow \operatorname{Rep}\left(\mathbf{G}^{\vee}\right)
$$

- The completion is natural because $\mathrm{V}(\mu) \otimes \mathrm{V}(\lambda)$ is an infinite sum of irreps.
- Braverman-Kazhdan proof: an interpretation of the problem via bundles on algebraic surfaces.
- Gaussent-Rousseau proof: via the theory of masures (a.k.a hovels, a.k.a. double affine buildings).
- One needs to understand the structure coefficients $\mathbb{1}_{K \pi^{\lambda} K} \star \mathbb{1}_{K \pi^{\mu} K}=\sum_{v} a_{\lambda, \mu}^{v} \mathbb{1}_{K \pi^{\nu} K}$.
- They later (with Patnaik and Bardy-Panse resp.) show that $\operatorname{Sat}\left(\mathbb{1}_{K \pi^{\lambda} K}\right)$ is an affine Hall-Littlewood function (up to an important correction factor).

Work of Braverman-Kazhdan-Patnaik

Theorem (BKP)

There is an Iwahori decomposition

$$
\mathrm{G}^{+}=\bigsqcup_{\pi^{\mu} w \in W \ltimes \mathcal{T}} \mathrm{I} w \pi^{\mu} \mathrm{I}
$$

The vector space $\mathbb{C}_{\mathrm{c}}\left[\mathrm{I} \backslash \mathrm{G}^{+} / \mathrm{I}\right]$ is an algebra under convolution.

Theorem (BKP)

The algebra $\mathbb{C}_{\mathrm{c}}\left[\mathrm{I} \backslash \mathrm{G}^{+} / \mathrm{I}\right]$ has a Bernstein presentation
$\left\langle\Theta_{\mu}, \mathrm{T}_{w} \mid \mu \in \mathcal{T}, w \in W\right\rangle$, so it is almost equal to Cherednik's DAHA.

- There are two bases, the Bernstein basis and the basis consisting of vectors $\mathrm{T}_{w \pi^{\mu}}=\mathbb{1}_{\mathrm{I} w \pi^{\mu} \mathrm{I}}$.
- A question raised by BKP is to understand the $\left\{T_{w \pi^{\mu}}\right\}$ basis combinatorially and the dependence of this basis on the local field

Work of Braverman-Kazhdan-Patnaik

Theorem (BKP)

There is an Iwahori decomposition

$$
\mathrm{G}^{+}=\bigsqcup_{\pi^{\mu} w \in W \ltimes \mathcal{T}} \mathrm{I} w \pi^{\mu} \mathrm{I}
$$

The vector space $\mathbb{C}_{\mathrm{c}}\left[\mathrm{I} \backslash \mathrm{G}^{+} / \mathrm{I}\right]$ is an algebra under convolution.

Theorem (BKP)

The algebra $\mathbb{C}_{\mathrm{c}}\left[\mathrm{I} \backslash \mathrm{G}^{+} / \mathrm{I}\right]$ has a Bernstein presentation
$\left\langle\Theta_{\mu}, T_{w} \mid \mu \in \mathcal{T}, w \in W\right\rangle$, so it is almost equal to Cherednik's DAHA.

- There are two bases, the Bernstein basis and the basis consisting of vectors $T_{w \pi^{\mu}}=\mathbb{1}_{\mathrm{I} w \pi^{\mu} \mathrm{I}}$.
- A question raised by BKP is to understand the $\left\{\mathrm{T}_{w \pi^{\mu}}\right\}$ basis combinatorially and the dependence of this basis on the local field \mathcal{K}.

The double coset basis and Iwahori-Matsumoto formula (1)

Theorem (M-,Gaussent-Rousseau-Bardy-Panse)

Let $\pi^{\mu} \mathcal{w} \in \mathrm{W} \ltimes \mathcal{T}$. Let s_{i} be a simple reflection in W . Then we have:

$$
\begin{aligned}
& T_{\pi^{\mu} w s_{i}}= \\
& \left\{\begin{array}{l}
T_{\pi^{\mu} w} T_{s_{i}} \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle>0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)>0 \\
T_{\pi^{\mu} w} T_{s_{i}}^{-1} \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle<0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)<0
\end{array}\right.
\end{aligned}
$$

Let $\mu \in \mathcal{T}$. Write $\mu=v\left(\mu_{+}\right)$for $\mu_{+} \in \Lambda^{++}$and $v \in W$. Then we have:

$$
\mathrm{T}_{\pi^{\mu}}=\mathrm{T}_{v^{-1}}^{-1} \mathrm{~T}_{\pi^{\mu}+} \mathrm{T}_{v^{-1}}
$$

The double coset basis and Iwahori-Matsumoto formula (2)

Corollary

The structure coefficients of the basis $\left\{\mathrm{T}_{\pi^{\mu} w} \mid \pi^{\mu} w \in W \ltimes \mathcal{T}\right\}$ are specialization of universal polynomials (independent of \mathbb{k}) at $\mathrm{q}=\# \mathrm{k}$.

Perspective on the double affine flag variety

- We consider $\mathrm{G}^{+} / \mathrm{I}$ as if it were the \mathbb{k}-points of the "double affine flag variety".
- The Schubert cells IxI/I are indexed by $x \in W \ltimes \mathcal{T}$.
- Our goal is to probe the geometry of $\mathrm{G}^{+} / \mathrm{I}$ indirectly.
- For example, we would like to compute Kazhdan-Lusztig polynomials.

Double affine roots and Bruhat order [BKP] (1)

- Let Φ_{re} denote the roots of \mathbf{G}, and let Φ_{re}^{+}denote the subset of positive real roots.
- We define the double affine (real) roots to be formal linear combinations of the form
where $\beta \in \Phi_{\text {re }}$ and $n \in \mathbb{Z}$.
- Define $\beta+n \pi>0$ if $n>0$, or $n=0$ and $\beta \in \Phi_{\text {re }}$.
- Given $\beta \in \Phi_{\text {re }}^{+}$and $n \in \mathbb{Z}$, we define

- Associated to $\beta[n]$, we define a reflection (we drop the \vee):

Double affine roots and Bruhat order [BKP] (1)

- Let Φ_{re} denote the roots of \mathbf{G}, and let Φ_{re}^{+}denote the subset of positive real roots.
- We define the double affine (real) roots to be formal linear combinations of the form

$$
\beta+n \pi
$$

where $\beta \in \Phi_{\text {re }}$ and $n \in \mathbb{Z}$.

- Define $\beta+n \pi>0$ if $n>0$, or $n=0$ and $\beta \in \Phi_{\text {re }}^{+}$.
- Given $\beta \in \Phi_{\text {re }}^{+}$and $n \in \mathbb{Z}$, we define

- Associated to $\beta[n]$, we define a reflection (we drop the \vee):

Double affine roots and Bruhat order [BKP] (1)

- Let Φ_{re} denote the roots of \mathbf{G}, and let Φ_{re}^{+}denote the subset of positive real roots.
- We define the double affine (real) roots to be formal linear combinations of the form

$$
\beta+n \pi
$$

where $\beta \in \Phi_{\text {re }}$ and $n \in \mathbb{Z}$.

- Define $\beta+n \pi>0$ if $n>0$, or $n=0$ and $\beta \in \Phi_{\mathrm{re}}^{+}$.
- Given $\beta \in \Phi_{\mathrm{re}}^{+}$and $n \in \mathbb{Z}$, we define

$$
\beta[n]= \begin{cases}\beta+n \pi & \text { if } \beta+n \pi>0 \\ -(\beta+n \pi) & \text { if } \beta+n \pi<0\end{cases}
$$

- Associated to $\beta[n]$, we define a reflection (we drop the \vee):

$$
s_{\beta[n]}=\pi^{n \beta^{\vee}} s_{\beta}=\pi^{n \beta} s_{\beta}
$$

Double affine roots and Bruhat order [BKP] (2)

- Given $\pi^{\mu} \mathcal{w} \in W \ltimes \mathcal{T}$ and a double affine root $\beta+\mathfrak{n} \pi$, we define

$$
\left.\pi^{\mu} w(\beta+n \pi)=w(\beta)+(n+\langle\mu, \beta\rangle)\right) \pi
$$

- BKP define a preorder (the double affine Bruhat order) on $W \ltimes \mathcal{T}$ by declaring

$$
\begin{aligned}
& \pi^{\mu} \mathcal{w}<\pi^{\mu} w s_{\beta[n]} \\
& \text { if } \pi^{\mu} w(\beta[n])>0
\end{aligned}
$$

- They conjecture it to be partial order.

The function $\ell_{\varepsilon}(1)$

Let ε be a formal symbol, and consider $\mathbb{Z} \oplus \mathbb{Z} \varepsilon$ ordered lexicographically. So, for example, $1+10 \varepsilon<2+1 \varepsilon$.

Theorem (M—)

There is a function $\ell_{\varepsilon}: W \ltimes \mathcal{T} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \varepsilon$ that is strictly compatible with the Bruhat order and the lexicographic order on $\mathbb{Z} \oplus \mathbb{Z}$.

Corollary

The Bruhat preorder on $W \ltimes \mathcal{T}$ is a partial order.

The function $\ell_{\varepsilon}(2)$

The function ℓ_{ε} is characterized by

$$
\begin{aligned}
& \ell_{\varepsilon}\left(\pi^{\mu} w s_{i}\right)= \\
& \left\{\begin{array}{l}
\ell_{\varepsilon}\left(\pi^{\mu} w\right)+1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle>0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)>0 \\
\ell_{\varepsilon}\left(\pi^{\mu} w\right)-1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle<0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)<0
\end{array}\right.
\end{aligned}
$$

and:

$$
\ell_{\varepsilon}\left(\pi^{\mu}\right)=\ell_{\varepsilon}\left(\pi^{\mu_{+}}\right)=\left\langle 2 \rho, \mu_{+}\right\rangle
$$

Compare: the conditions in the Iwahori-Matsumoto formula.

- Deciding whether $\beta+n \pi>0$ is a "lexicographic" procedure.
- Deciding whether $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$ is also a "lexicographic" procedure.
- The proof involves matching them up.
- Even for usual affine Weyl groups this is a new and useful result.

The function $\ell_{\varepsilon}(2)$

The function ℓ_{ε} is characterized by

$$
\begin{aligned}
& \ell_{\varepsilon}\left(\pi^{\mu} w s_{i}\right)= \\
& \left\{\begin{array}{l}
\ell_{\varepsilon}\left(\pi^{\mu} w\right)+1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle>0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)>0 \\
\ell_{\varepsilon}\left(\pi^{\mu} w\right)-1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle<0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)<0
\end{array}\right.
\end{aligned}
$$

and:

$$
\ell_{\varepsilon}\left(\pi^{\mu}\right)=\ell_{\varepsilon}\left(\pi^{\mu_{+}}\right)=\left\langle 2 \rho, \mu_{+}\right\rangle
$$

Compare: the conditions in the Iwahori-Matsumoto formula.

- Deciding whether $\beta+\mathfrak{n} \pi>0$ is a "lexicographic" procedure.
- Deciding whether $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$ is also a "lexicographic" procedure.
- The proof involves matching them up.
- Even for usual affine Weyl groups this is a new and useful result.

The function $\ell_{\varepsilon}(2)$

The function ℓ_{ε} is characterized by

$$
\begin{aligned}
& \ell_{\varepsilon}\left(\pi^{\mu} w s_{i}\right)= \\
& \left\{\begin{array}{l}
\ell_{\varepsilon}\left(\pi^{\mu} w\right)+1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle>0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)>0 \\
\ell_{\varepsilon}\left(\pi^{\mu} w\right)-1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle<0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)<0
\end{array}\right.
\end{aligned}
$$

and:

$$
\ell_{\varepsilon}\left(\pi^{\mu}\right)=\ell_{\varepsilon}\left(\pi^{\mu_{+}}\right)=\left\langle 2 \rho, \mu_{+}\right\rangle
$$

Compare: the conditions in the Iwahori-Matsumoto formula.

- Deciding whether $\beta+\mathfrak{n} \pi>0$ is a "lexicographic" procedure.
- Deciding whether $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$ is also a "lexicographic" procedure.
- The proof involves matching them up.
- Even for usual affine Weyl groups this is a new and useful result.

The function $\ell_{\varepsilon}(2)$

The function ℓ_{ε} is characterized by

$$
\begin{aligned}
& \ell_{\varepsilon}\left(\pi^{\mu} w s_{i}\right)= \\
& \left\{\begin{array}{l}
\ell_{\varepsilon}\left(\pi^{\mu} w\right)+1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle>0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)>0 \\
\ell_{\varepsilon}\left(\pi^{\mu} w\right)-1 \text { if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle<0 \text { or if }\left\langle\mu, w\left(\alpha_{i}\right)\right\rangle=0 \text { and } w\left(\alpha_{i}\right)<0
\end{array}\right.
\end{aligned}
$$

and:

$$
\ell_{\varepsilon}\left(\pi^{\mu}\right)=\ell_{\varepsilon}\left(\pi^{\mu_{+}}\right)=\left\langle 2 \rho, \mu_{+}\right\rangle
$$

Compare: the conditions in the Iwahori-Matsumoto formula.

- Deciding whether $\beta+n \pi>0$ is a "lexicographic" procedure.
- Deciding whether $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$ is also a "lexicographic" procedure.
- The proof involves matching them up.
- Even for usual affine Weyl groups this is a new and useful result.

Specializing $\varepsilon=1$

Define $\ell: W \ltimes \mathcal{T} \rightarrow \mathbb{Z}$ to be the composition of:

$$
W \ltimes \mathcal{T} \xrightarrow{\ell_{\xi}} \mathbb{Z} \oplus \mathbb{Z} \varepsilon \xrightarrow{\varepsilon} \xrightarrow{1} \mathbb{Z}
$$

Theorem (M-Orr)

The function $\ell: W \ltimes \mathcal{T} \rightarrow \mathbb{Z}$ is strictly compatible with the Bruhat order and the usual order on \mathbb{Z}.

Corollary

Let $x, y \in W \ltimes \mathcal{T}$ with $x<y$. The chains from x to y are no longer than $\ell(y)-\ell(x)$.

A sample application (even for usual affine Weyl groups)

Consider $\mathbf{G}=\widehat{\mathbf{S L}_{2}}, x=\pi^{\Lambda_{0}+\delta}$, and $y=\pi^{\Lambda_{0}} \mathbf{t}^{3 \alpha}$. We compute

$$
\ell_{\varepsilon}(x)=4 \text { and } \ell_{\varepsilon}(y)=6 \varepsilon
$$

so $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$, and
$\ell(x)=4$ and $\ell(y)=6$
so $\ell(x)<\ell(y)$. Therefore: x and y are not comparable.

A sample application (even for usual affine Weyl groups)

Consider $\mathbf{G}=\widehat{\mathbf{S L}_{2}}, x=\pi^{\wedge_{0}+\delta}$, and $y=\pi^{\wedge_{0}} t^{3 \alpha}$. We compute

$$
\ell_{\varepsilon}(x)=4 \text { and } \ell_{\varepsilon}(y)=6 \varepsilon
$$

so $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$, and
so $\ell(x)<\ell(y)$. Therefore: x and y are not comparable.

A sample application (even for usual affine Weyl groups)

Consider $\mathbf{G}=\widehat{\mathbf{S L}_{2}}, x=\pi^{\wedge_{0}+\delta}$, and $y=\pi^{\wedge_{0}} t^{3 \alpha}$. We compute

$$
\ell_{\varepsilon}(x)=4 \text { and } \ell_{\varepsilon}(y)=6 \varepsilon
$$

so $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$, and

$$
\ell(x)=4 \text { and } \ell(y)=6
$$

so $\ell(x)<\ell(y)$. Therefore: x and y are not comparable.

A sample application (even for usual affine Weyl groups)

Consider $\mathbf{G}=\widehat{\mathbf{S L}_{2}}, x=\pi^{\wedge_{0}+\delta}$, and $y=\pi^{\wedge_{0}} t^{3 \alpha}$. We compute

$$
\ell_{\varepsilon}(x)=4 \text { and } \ell_{\varepsilon}(y)=6 \varepsilon
$$

so $\ell_{\varepsilon}(x)>\ell_{\varepsilon}(y)$, and

$$
\ell(x)=4 \text { and } \ell(y)=6
$$

so $\ell(x)<\ell(y)$. Therefore: x and y are not comparable.

A toy theorem

Toy Theorem

Let $w \in \mathcal{W}, \beta \in \Phi_{\mathrm{re}}^{+}$. If $\mathcal{w}(\beta)>0$, then:

$$
\ell\left(w s_{\beta}\right)>\ell(w)
$$

The usual proof is closely related to the Strong Exchange Condition for Coxeter groups. Instead, we will proceed differently.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution \mathfrak{l} defined by $\mathrm{t}(\gamma)=-\mathrm{s}_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, $\operatorname{implies} \operatorname{Inv}\left(s_{\beta}\right)$ has odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(\iota(\gamma))>0$ for all $\gamma \in \operatorname{Inv}\left(s_{\beta}\right)$.
Therefore:

$$
\ell\left(w s_{\beta}\right)=\ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0 \text { and } w(\iota(\gamma))>0\right\}
$$

The set on the right has at least one element, namely β, so we are done.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution $\mathfrak{\iota}$ defined by $\mathfrak{l}(\gamma)=-s_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, implies $\operatorname{Inv}\left(s_{\beta}\right)$ has
odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(\iota(\gamma))>0$ for all
$\gamma \in \operatorname{Inv}\left(s_{\beta}\right)$.
Therefore:
$\ell\left(w s_{\beta}\right)=\ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right.$ and $\left.w(\iota(\gamma))>0\right\}$
The set on the right has at least one element, namely β, so we are done.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution $\mathfrak{\iota}$ defined by $\mathfrak{l}(\gamma)=-s_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, $\operatorname{implies} \operatorname{Inv}\left(s_{\beta}\right)$ has odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(L(\gamma))>0$ for all
\square
Therefore:
$\ell\left(w s_{\beta}\right)=\ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right.$ and $\left.w(\iota(\gamma))>0\right\}$
The set on the right has at least one element, namely β, so we are done.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution $\mathfrak{\iota}$ defined by $\mathfrak{l}(\gamma)=-s_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, $\operatorname{implies} \operatorname{Inv}\left(s_{\beta}\right)$ has odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(\mathfrak{l}(\gamma))>0$ for all $\gamma \in \operatorname{Inv}\left(s_{\beta}\right)$.
Therefore:

The set on the right has at least one element, namely β, so we are done.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution $\mathfrak{\iota}$ defined by $\mathfrak{l}(\gamma)=-s_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, $\operatorname{implies} \operatorname{Inv}\left(s_{\beta}\right)$ has odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(\mathrm{l}(\gamma))>0$ for all
$\gamma \in \operatorname{Inv}\left(s_{\beta}\right)$.
Therefore:

$$
\ell\left(w s_{\beta}\right)=\ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0 \text { and } w(\iota(\gamma))>0\right\}
$$

The set on the right has at least one element, namely β, so we are done.

Proof.

We can check that:

$$
\begin{aligned}
\ell\left(w s_{\beta}\right)= & \ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0\right\} \\
& -\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)<0\right\}
\end{aligned}
$$

Notice that $\operatorname{Inv}\left(s_{\beta}\right)$ has an involution $\mathfrak{\iota}$ defined by $\mathfrak{l}(\gamma)=-s_{\beta}(\gamma) ; \beta$ is the unique fixed point of ι (which, by the way, $\operatorname{implies} \operatorname{Inv}\left(s_{\beta}\right)$ has odd cardinality).
Moreover, $w(\beta)>0$ implies $w(\gamma)>0$ or $w(\mathfrak{l}(\gamma))>0$ for all
$\gamma \in \operatorname{Inv}\left(s_{\beta}\right)$.
Therefore:

$$
\ell\left(w s_{\beta}\right)=\ell(w)+\#\left\{\gamma \in \operatorname{Inv}\left(s_{\beta}\right) \mid w(\gamma)>0 \text { and } w(\iota(\gamma))>0\right\}
$$

The set on the right has at least one element, namely β, so we are done.

Idea of our proof

- Let $x \in W \ltimes \mathcal{T}$ and $s_{\beta[n]}=\pi^{n \beta} s_{\beta}$, such that $x s_{\beta[n]}>x$.
- Write

$$
\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)=\left\{\gamma[m] \in \operatorname{Inv}\left(s_{\beta[n]}\right) \mid x(\gamma[m])>0 \text { and } x(\mathfrak{l}(\gamma[m]))>0\right\}
$$

- We show

$$
\ell\left(x s_{\beta}\right)=\ell(x)+\# \operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)
$$

- Heuristically

$$
" \# \operatorname{Inv}\left(\left(x s_{\beta}[n \mid)^{-1}\right)=\# \operatorname{Inv}\left(x^{-1}\right)+\# \operatorname{Inv}_{x}^{+}\left(s_{\beta}[n]\right)\right.
$$

- Both $\operatorname{Inv}\left(\left(x_{\beta[n]}\right)^{-1}\right)$ and $\operatorname{Inv}\left(x^{-1}\right)$ are infinite sets.
- The set $\operatorname{Inv}_{x}^{++}\left(s_{\beta|n|}\right)$ is finite, which is quite subtle.
- We construct an injection $\operatorname{Inv}\left(\chi^{-1}\right) \hookrightarrow \operatorname{Inv}\left(\left(x_{\beta[n]}\right)^{-1}\right)$ and identify the complement of the image with $\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)$.

Idea of our proof

- Let $x \in W \ltimes \mathcal{T}$ and $s_{\beta[n]}=\pi^{n \beta} s_{\beta}$, such that $x s_{\beta[n]}>x$.
- Write

$$
\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)=\left\{\gamma[m] \in \operatorname{Inv}\left(s_{\beta[n]}\right) \mid x(\gamma[m])>0 \text { and } x(\mathfrak{l}(\gamma[m]))>0\right\}
$$

- We show

$$
\ell\left(x s_{\beta}\right)=\ell(x)+\# \operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)
$$

- Heuristically

$$
" \# \operatorname{Inv}\left(\left(x s_{\beta[n]}\right)^{-1}\right)=\# \operatorname{Inv}\left(x^{-1}\right)+\# \operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)
$$

- Both $\operatorname{Inv}\left(\left(x_{\beta[n]}\right)^{-1}\right)$ and $\operatorname{Inv}\left(x^{-1}\right)$ are infinite sets.
- The set $\operatorname{Inv}_{x}^{++}\left(s_{\beta[n]}\right)$ is finite, which is quite subtle.
- We construct an injection $\operatorname{Inv}\left(x^{-1}\right) \hookrightarrow \operatorname{Inv}\left(\left(x s_{\beta[n]}\right)^{-1}\right)$ and identify the complement of the image with $\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)$

Idea of our proof

- Let $x \in W \ltimes \mathcal{T}$ and $s_{\beta[n]}=\pi^{n \beta} s_{\beta}$, such that $x s_{\beta[n]}>x$.
- Write

$$
\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)=\left\{\gamma[m] \in \operatorname{Inv}\left(s_{\beta[n]}\right) \mid x(\gamma[m])>0 \text { and } x(\mathfrak{l}(\gamma[m]))>0\right\}
$$

- We show

$$
\ell\left(x s_{\beta}\right)=\ell(x)+\# \operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)
$$

- Heuristically

$$
" \# \operatorname{Inv}\left(\left(x s_{\beta[n]}\right)^{-1}\right)=\# \operatorname{Inv}\left(x^{-1}\right)+\# \operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)
$$

- Both $\operatorname{Inv}\left(\left(x s_{\beta[n]}\right)^{-1}\right)$ and $\operatorname{Inv}\left(x^{-1}\right)$ are infinite sets.
- The set $\operatorname{Inv}_{x}^{++}\left(s_{\beta[n]}\right)$ is finite, which is quite subtle.
- We construct an injection $\operatorname{Inv}\left(x^{-1}\right) \hookrightarrow \operatorname{Inv}\left(\left(x s_{\beta[n]}\right)^{-1}\right)$ and identify the complement of the image with $\operatorname{Inv}_{\chi}^{++}\left(s_{\beta[n]}\right)$.

A subtlety about inversion sets

- Consider $\mathbf{G}=\widehat{\mathbf{S L}_{2}}$. Then we have $\operatorname{Inv}\left(\pi^{\wedge_{0}}\right)=\operatorname{Inv}\left(\pi^{\wedge_{0}+\delta}\right)$.
- But $\ell\left(\pi^{\Lambda_{0}}\right)=0$, and $\ell\left(\pi^{\Lambda_{0}+\delta}\right)=4$.
- In fact, $\pi^{\wedge_{0}}<\pi^{\Lambda_{0}+\delta}$.
- Our proof constructs a injection

$$
\operatorname{Inv}\left(\pi^{\wedge_{0}}\right) \hookrightarrow \operatorname{Inv}\left(\pi^{\wedge_{0}+\delta}\right)
$$

whose image omits exactly 4 elements.

Classification of covers

Conjecture
Let $\mathrm{x}, \mathrm{y} \in \mathrm{W} \ltimes \mathcal{T}$. Then x covers y if and only if

$$
x>y \text { and } \ell(x)=\ell(y)+1
$$

Theorem (M-Orr)

The above conjecture is true in affine ADE type. Additionally, each $x \in W \ltimes \mathcal{T}$ is covered by finitely many elements.

Corollary

Intervals in the Bruhat order are finite.

A Bruhat interval for affinized SL_{2}

- Let $I_{\infty}=\left\{g \in \mathbf{G}\left(\mathbb{k}\left[\pi^{-1}\right]\right) \mid g \in B^{-}(\mathbb{k}) \bmod \pi^{-1}\right\}$
- The group I_{∞} serves as the "opposite" double affine Borel.
- Let $x, y \in W \ltimes \mathcal{T}$, then we consider the open Kazhdan-Lusztig variety:

$$
\left(\mathrm{I}_{\infty} \mathrm{y} \mathrm{I} \cap \mathrm{IxI}\right) / \mathrm{I} \subset \mathrm{G}^{+} / \mathrm{I}
$$

Schubert slices (a.k.a Kazhdan-Lusztig varieties) (2)

Conjecture

The set $\left(\mathrm{I}_{\infty} \mathrm{yI} \cap \mathrm{I} \mathrm{II}\right) / \mathrm{I} \neq \varnothing$ if and only if $\mathrm{y} \leqslant x$.

Conjecture

We have $\operatorname{dim}\left(\mathrm{I}_{\infty} \mathrm{y} \mathrm{I} \cap \mathrm{I} x \mathrm{I}\right) / \mathrm{I}=\ell(\mathrm{x})-\ell(\mathrm{y})$ (counting dimension).

Conjecture

There exists a universal polynomial $R_{y, x} \in \mathbb{Z}[v]$ (independent of \mathbb{k}), such that:

$$
\#\left(I_{\infty} y I \cap I x I\right) / I=R_{y, x}(q)
$$

The polynomials $R_{y, x}$, if they exist, are the Kazhdan-Lusztig R-polynomials. Combined with the Bruhat order, we can get the usual Kazhdan-Lusztig polynomials.

Aside: (double) affine Grassmannian slices (1)

Fix $\mu, \lambda \in \Lambda^{++}$. Four perspectives on affine Grassmannian slices $\operatorname{Gr}_{\mu}^{\lambda}$:
© Bundle theoretic: Go-bundles on curves/surfaces (Braverman-Finkelberg in double affine case).

© Quantization: shifted truncated Yangians.

- Symplectic duality: the Braverman-Finkelberg-Nakajima "Coulomb branch".
- $1=2$: classical in single affine setting (e.g. Beauville-Laszlo theorem). Unknown in double affine.
- $2=3$: by Kamnitzer-Webster-Weekes-Yacobi modulo reducedness. Unknown in double affine.
- 3 = 4: B-F-K-Kodera-N-W-W. Unknown in double affine.

Aside: (double) affine Grassmannian slices (1)

Fix $\mu, \lambda \in \Lambda^{++}$. Four perspectives on affine Grassmannian slices $\operatorname{Gr}_{\mu}^{\lambda}$:
(1) Bundle theoretic: \mathbf{G}_{\circ}-bundles on curves/surfaces (Braverman-Finkelberg in double affine case).
(2) Group theoretic: $\mathrm{I}_{\infty} \pi^{\mu} \mathrm{K} \cap \overline{\mathrm{K} \pi^{\lambda} \mathrm{K}} / \mathrm{K}$.
(3) Quantization: shifted truncated Yangians.
(4) Symplectic duality: the Braverman-Finkelberg-Nakajima "Coulomb branch".

- $1=2$: classical in single affine setting (e.g. Beauville-Laszlo theorem). Unknown in double affine.
- $2=3$: by Kamnitzer-Webster-Weekes-Yacobi modulo reducedness. Unknown in double affine.
e 3 - 1. B-F-Kodera-N-NTM. Tnknown in double affine.

Aside: (double) affine Grassmannian slices (1)

Fix $\mu, \lambda \in \Lambda^{++}$. Four perspectives on affine Grassmannian slices $\operatorname{Gr}_{\mu}^{\lambda}$:
(1) Bundle theoretic: \mathbf{G}_{\circ}-bundles on curves/surfaces (Braverman-Finkelberg in double affine case).
(2) Group theoretic: $\mathrm{I}_{\infty} \pi^{\mu} \mathrm{K} \cap \overline{\mathrm{K} \pi^{\lambda} \mathrm{K}} / \mathrm{K}$.
(3) Quantization: shifted truncated Yangians.
(4) Symplectic duality: the Braverman-Finkelberg-Nakajima "Coulomb branch".

- $1=2$: classical in single affine setting (e.g. Beauville-Laszlo theorem). Unknown in double affine.
- $2=3$: by Kamnitzer-Webster-Weekes-Yacobi modulo
reducedness. Unknown in double affine.
e 3 - 1. B-F K-Kodera-N-NTV. Tnlenown in double affine.

Aside: (double) affine Grassmannian slices (1)

Fix $\mu, \lambda \in \Lambda^{++}$. Four perspectives on affine Grassmannian slices $\operatorname{Gr}_{\mu}^{\lambda}$:
(1) Bundle theoretic: \mathbf{G}_{\circ}-bundles on curves/surfaces (Braverman-Finkelberg in double affine case).
(2) Group theoretic: $\mathrm{I}_{\infty} \pi^{\mu} \mathrm{K} \cap \overline{\mathrm{K} \pi^{\lambda} \mathrm{K}} / \mathrm{K}$.
(3) Quantization: shifted truncated Yangians.
(4) Symplectic duality: the Braverman-Finkelberg-Nakajima "Coulomb branch".

- $1=2$: classical in single affine setting (e.g. Beauville-Laszlo theorem). Unknown in double affine.
- $2=3$: by Kamnitzer-Webster-Weekes-Yacobi modulo reducedness. Unknown in double affine.
- $3=4$: B-F-K-Kodera-N-W-W. Unknown in double affine.

Aside: (double) affine Grassmannian slices (1)

Fix $\mu, \lambda \in \Lambda^{++}$. Four perspectives on affine Grassmannian slices $\operatorname{Gr}_{\mu}^{\lambda}$:
(1) Bundle theoretic: \mathbf{G}_{\circ}-bundles on curves/surfaces (Braverman-Finkelberg in double affine case).
(2) Group theoretic: $\mathrm{I}_{\infty} \pi^{\mu} \mathrm{K} \cap \overline{\mathrm{K} \pi^{\lambda} \mathrm{K}} / \mathrm{K}$.
(3) Quantization: shifted truncated Yangians.
(4) Symplectic duality: the Braverman-Finkelberg-Nakajima "Coulomb branch".

- $1=2$: classical in single affine setting (e.g. Beauville-Laszlo theorem). Unknown in double affine.
- $2=3$: by Kamnitzer-Webster-Weekes-Yacobi modulo reducedness. Unknown in double affine.
- $3=4$: B-F-K-Kodera-N-W-W. Unknown in double affine.

Aside: (double) affine Grassmannian slices (2)

Conjecture (Braverman-Finkelberg)

Intesection cohomology stalks (i.e. KL polynomials) of double affine Grassmannian slices are q-analogues of $\operatorname{dim} V(\lambda)_{\mu}$

- In the single affine case, this is usual called the Kato-Lusztig formula.
- This is a concrete manifestation of geometric Satake correspondence.
- For the rest of the talk we will work with $\mathrm{G}^{+} / \mathrm{K}$ for simplicity of exposition.
- We will study $I_{\infty} \pi^{\mu} K \cap K \pi^{\lambda} K / K$. Replacing K by I is no more difficult, but the exposition gets more complicated.

Aside: (double) affine Grassmannian slices (2)

Conjecture (Braverman-Finkelberg)

Intesection cohomology stalks (i.e. KL polynomials) of double affine Grassmannian slices are q-analogues of $\operatorname{dim} \mathrm{V}(\lambda)_{\mu}$

- In the single affine case, this is usual called the Kato-Lusztig formula.
- This is a concrete manifestation of geometric Satake correspondence.
- For the rest of the talk we will work with $\mathrm{G}^{+} / \mathrm{K}$ for simplicity of exposition.
- We will study $I_{\infty} \pi^{\mu} K \cap K \pi^{\lambda} K / K$. Replacing K by I is no more difficult, but the exposition gets more complicated.

Brief recollection of affine buildings (1)

A portion of the $\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$ affine building:

Two perspectives:

- Glue facets: -
- Glue apartments \mathbb{A} :

Brief recollection of affine buildings (2)

The standard apartment \mathbb{A} for $\mathrm{SL}_{3}(\mathbb{k})$:

Masures (1)

- Gaussent and Rousseau have developed a theory of affine buildings for Kac-Moody group, which they call the theory of masures (a.k.a. hovels).
- Affine buildings \mathcal{J} contains a distinguished copy of $\mathbb{A}=\Lambda \otimes \mathbb{R}$, the "standard apartment".
- The group G will act on \mathcal{J}.
- For each $x \in \mathbb{A}$, let P_{x} be the fixator of x.
- Then $\mathcal{J} \cong G \times \mathbb{A} / \sim$
- We have $(p, x) \sim(1, x)$ for all $x \in \mathbb{A}$ and $p \in P_{x}$.
- We have $\left(\pi^{\mu} \mathcal{w}, x\right) \sim\left(1, \pi^{\mu} \mathcal{w} . x\right)$ for all $\pi^{\mu} \mathcal{w} \in \mathrm{W} \times \mathcal{T}$ and $x \in \mathbb{A}$.

Idea: start from P_{χ} and define \mathcal{J} by the above recipe.

Masures (2)

- Roughly, P_{x} is the group generated by $e_{\beta}(f)$ for real roots β, where $\operatorname{val}(f) \geqslant\langle\beta, x\rangle$.
- Here $e_{\beta}: \mathcal{K} \rightarrow G$ is the one-parameter subgroup.
- In the single-affine case, P_{x} is always conjugate to a standard parahoric.
- Not so in the double-affine case.

Affine $\mathbf{S L}_{2}$ fundamental apartment

Affine $\mathbf{S L}_{2}$ fundamental apartment

Dinakar Muthiah

Retractions (1)

Retraction ρ_{I} centered at the fundamental alcove for $\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$:

Retractions (2)

Retraction ρ_{u} - centered at $-\infty$ (anti-dominant chamber) $\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$:

Retractions (3)

- Let $\mathcal{J}^{+}=\mathrm{G}^{+} \times \mathcal{T}_{\mathbb{R}} / \sim \subseteq \mathcal{J}$ denote the "positive part" of the masure.
- The map $\rho_{\mathrm{I}}: \mathcal{J}^{+} \rightarrow \mathcal{T}_{\mathbb{R}}$ is characterized by
- ρ_{I} is a retraction.
- ρ_{I} is I-invariant.
- The map $\rho_{\mathrm{u}^{-}}: \mathcal{J} \rightarrow \mathbb{A}$ is characterized by
- $\rho_{\mathrm{u}}-$ is a retraction.
- ρ_{u} - is U^{-}-invariant.
- Both exist for general masures by work of Gaussent and Rousseau.

Retractions along I_{∞}

[^1]
I_{∞}-Hecke paths (1)

- Fix $\lambda \in \Lambda^{++}$and $v \in \mathcal{T}$.
- Let $\varphi_{\circ}:[0,1] \rightarrow \mathbb{A}$ be the straight path starting at 0 and ending at λ.
- We can identify $\mathrm{K} \cdot \varphi_{\circ}=\mathrm{K} \pi^{\lambda} \mathrm{K} / \mathrm{K}$.
- Let $\varphi \in \mathrm{I} \cdot \varphi_{\circ}$, which we think of as a straight line in the masure that starts at 0 and ends at a point in $K \pi^{\lambda} \mathrm{K} / \mathrm{K}$.
- The retraction $\rho_{I_{\infty}}(\varphi)$ is a piecewise linear path.
- We call such piecewise linear paths I_{∞}-Hecke paths. (Replacing I_{∞} with U^{-}, we get the usual notion of Hecke path)
- If the endpoint $\rho_{\mathrm{I}_{\infty}}(\varphi)(1)=\nu$, then we have $\varphi \in \mathrm{I}_{\infty} \pi^{\nu} \mathrm{K} / \mathrm{K}$.

I_{∞}-Hecke paths (2)

Denote the set of I_{∞}-Hecke paths ending at v by:

$$
\mathrm{I}_{\infty} \mathcal{H}_{v}^{\lambda}=\left\{\rho_{\mathrm{I}_{\infty}}(\varphi) \mid \varphi \in K \pi^{\lambda} K / K \text { and } \varphi(1)=v\right\}
$$

Let $\tau \in{ }^{\mathrm{I}_{\infty}} \mathcal{H}_{v}$. Then there is a sequence of folding times

and folding directions
such that for all $i \in\{0,1, \ldots, N\}$
$\tau(t)=x_{k}(t \lambda)$ for $t \in\left[t_{k}, t_{k+1}\right]$

I_{∞}-Hecke paths (2)

Denote the set of I_{∞}-Hecke paths ending at v by:

$$
\mathrm{I}_{\infty} \mathcal{H}_{v}^{\lambda}=\left\{\rho_{\mathrm{I}_{\infty}}(\varphi) \mid \varphi \in K \pi^{\lambda} K / K \text { and } \varphi(1)=v\right\}
$$

Let $\tau \in{ }^{\mathrm{I}_{\infty}} \mathcal{H}_{v}{ }_{v}$. Then there is a sequence of folding times

$$
0=t_{0}<t_{1}<\cdots t_{N}<t_{N+1}=1
$$

and folding directions

$$
x_{0}, \ldots, x_{N} \in W \ltimes Q
$$

such that for all $i \in\{0,1, \ldots, N\}$

$$
\tau(t)=x_{k}(t \lambda) \text { for } t \in\left[t_{k}, t_{k+1}\right]
$$

Counting points in Schubert slices (1)

Theorem (M)

The set $\left\{\varphi \in K \pi^{\lambda} K / K \mid \rho_{\mathrm{I}_{\infty}}(\varphi)=\tau\right\}$ is in bijection with:

$$
\begin{aligned}
\prod_{k=0}^{N}\left(\left(\left(x_{k-1}^{-1} I_{\infty} x_{k-1}\right) \cap\right.\right. & \left.P_{t_{k} \lambda}\right) x_{k} P_{\left.\left[t_{k}, t_{k}+\varepsilon\right) \lambda\right)} \cap \\
& \left.P_{\left(t_{k}-\varepsilon, t_{k}\right] \lambda} P_{\left.\left[t_{k}, t_{k}+\varepsilon\right) \lambda\right)}\right) / P_{\left[t_{k}, t_{k}+\varepsilon\right) \lambda}
\end{aligned}
$$

- The k-th factor above is a subset of $P_{t_{k} \lambda} / P_{\left[t_{k}, t_{k}+\varepsilon\right] \lambda}$, which is in canonical bijection with the \mathbb{k}-points of a Kac-Moody partial flag variety.
- The set we are looking at is an intersection of (translates of) opposite Schubert cells.
- Following Deodhar, there is an explicit combinatorial formula for the cardinality of this set (which is given by specializing a universal polynomial at q)

Counting points in Schubert slices (1)

Theorem (M)

The set $\left\{\varphi \in K \pi^{\lambda} K / K \mid \rho_{\mathrm{I}_{\infty}}(\varphi)=\tau\right\}$ is in bijection with:

$$
\begin{aligned}
& \prod_{k=0}^{N}\left(\left(\left(x_{k-1}^{-1} I_{\infty} x_{k-1}\right) \cap P_{t_{k} \lambda}\right) x_{k} P_{\left.\left[t_{k}, t_{k}+\varepsilon\right) \lambda\right)} \cap\right. \\
& \left.\quad P_{\left(t_{k}-\varepsilon, t_{k}\right] \lambda} P_{\left.\left[t_{k}, t_{k}+\varepsilon\right) \lambda\right]}\right) / P_{\left[t_{k}, t_{k}+\varepsilon\right) \lambda}
\end{aligned}
$$

- The k-th factor above is a subset of $\mathrm{P}_{\mathrm{t}_{k} \lambda} / \mathrm{P}_{\left[\mathrm{t}_{k}, \mathrm{t}_{k}+\varepsilon\right) \lambda}$, which is in canonical bijection with the \mathbb{k}-points of a Kac-Moody partial flag variety.
- The set we are looking at is an intersection of (translates of) opposite Schubert cells.
- Following Deodhar, there is an explicit combinatorial formula for the cardinality of this set (which is given by specializing a universal polynomial at q).

Counting points in Schubert slices (2)

- The above set is non empty only if (for some $w \in W$):

$$
\pi^{\lambda} \geqslant W_{\mathrm{t}_{0}} \pi^{\lambda} x_{0}>_{W_{\mathrm{t}_{1}}}>\cdots>_{W_{\mathrm{t}_{\mathrm{N}}}} \pi^{\lambda} x_{\mathrm{N}}=\pi^{\nu} w
$$

- Here W_{t} is the group generated by double affine reflections that fix $t \cdot \lambda \in \mathbb{A}$. The notation $x>_{W_{t}} y$ means $x>y$ and $x y^{-1} \in W_{t}$.
- This implies $\ell\left(\pi^{\lambda}\right) \geqslant \ell\left(\pi^{\nu} w\right)$, which only allows finitely many possible w. Therefore, in affine ADE, there are only finitely many possible ($\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{N}}$).
- Both conclusions are by my work with Orr on double affine Bruhat order.

> Theorem (M)
> In affine $A D E$, the set ${ }^{\mathrm{I}_{\infty}} \mathcal{H}_{v}^{\lambda}$ is finite, and can be explicitly described in terms of chains in the double affine Bruhat order.

Counting points in Schubert slices (2)

- The above set is non empty only if (for some $w \in W$):

$$
\pi^{\lambda} \geqslant{W_{t_{0}}} \pi^{\lambda} x_{0}>_{W_{t_{1}}}>\cdots>_{W_{t_{N}}} \pi^{\lambda} x_{N}=\pi^{v} \mathcal{W}
$$

- Here W_{t} is the group generated by double affine reflections that fix $t \cdot \lambda \in \mathbb{A}$. The notation $x>_{W_{t}} y$ means $x>y$ and $x y^{-1} \in W_{t}$.
- This implies $\ell\left(\pi^{\lambda}\right) \geqslant \ell\left(\pi^{\nu} w\right)$, which only allows finitely many possible w. Therefore, in affine ADE, there are only finitely many possible ($\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{N}}$).
- Both conclusions are by my work with Orr on double affine Bruhat order.

Theorem (M)

In affine $A D E$, the set $\mathrm{I}_{\infty} \mathcal{H}_{v}^{\lambda}$ is finite, and can be explicitly described in terms of chains in the double affine Bruhat order.

Kazhdan-Lusztig R-polynomials

- This gives us a combinatorial (if complicated) definition of Kazhdan-Lusztig R-polynomials.
- For $\mathrm{G}^{+} / \mathrm{I}$, I believe this should give us the Kazhdan-Lusztig P-polynomials.
- For $\mathrm{G}^{+} / \mathrm{K}$ the situation is more subtle (the subtlety is related to the Uhlenbeck compactification of instanton spaces and the non-trivial stratification of affine Coulomb branches).

Corollary

Modulo the assumption about the existence of pI_{∞}, we have
$\left(\mathrm{I}_{\infty} \mathrm{yI} \cap \mathrm{IxI}\right) / \mathrm{I} \neq \varnothing$ implies $\mathrm{y} \leqslant \mathrm{x}$,
and:
$\operatorname{dim}\left(I_{\infty} y I \cap I x I\right) / I \leqslant \ell(x)-\ell(y)$

Kazhdan-Lusztig R-polynomials

- This gives us a combinatorial (if complicated) definition of Kazhdan-Lusztig R-polynomials.
- For $\mathrm{G}^{+} / \mathrm{I}$, I believe this should give us the Kazhdan-Lusztig P-polynomials.
- For $\mathrm{G}^{+} / \mathrm{K}$ the situation is more subtle (the subtlety is related to the Uhlenbeck compactification of instanton spaces and the non-trivial stratification of affine Coulomb branches).

Corollary

Modulo the assumption about the existence of $\rho_{\mathrm{I}_{\infty}}$, we have

$$
\left(\mathrm{I}_{\infty} \mathrm{yI} \cap \mathrm{IxI}\right) / \mathrm{I} \neq \varnothing \text { implies } y \leqslant x
$$

and:

$$
\operatorname{dim}\left(I_{\infty} y I \cap I x I\right) / I \leqslant \ell(x)-\ell(y)
$$

References (1)

My work:

- D. Muthiah, "On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order." Amer. J. Math. 140 (2018), no. 1, 221-244.
- D. Muthiah and D. Orr, "On the double-affine Bruhat order: the $\epsilon=1$ conjecture and classification of covers in ADE type." Algebr. Comb. 2 (2019), no. 2, 197-216.

Masures:

- S. Gaussent and G. Rousseau, "Kac-Moody groups, hovels and Littelmann paths." Ann. Inst. Fourier 58 (2008), no. 7, 2605-2657.
Iwahori-Hecke algebras:
- A. Braverman, D. Kazhdan, and M. Patnaik, "Iwahori-Hecke algebras for p-adic loop groups." Invent. Math. 204 (2016), no. 2, 347-442.
- N. Bardy-Panse, S. Gaussent, and G. Rousseau, "Iwahori-Hecke algebras for Kac-Moody groups over local fields." Pacific J. Math, 285 (2016), no. 1, 1-61.

Spherical Hecke algebras and Satake isomorphism:

- A. Braverman and D. Kazhdan, "The spherical Hecke algebra for affine Kac-Moody groups I." Ann. of Math. (2) 174 (2011), no. 3, 1603-1642.
- S. Gaussent and G. Rousseau, "Spherical Hecke algebras for Kac-Moody groups over local fields." Ann. of Math. (2) 180 (2014), no. 3, 1051-1087.

References (2)

Double affine Grassmannians:

- A. Braverman, M. Finkelberg, and D. Gaitsgory, "Uhlenbeck spaces via affine Lie algebras." The unity of mathematics, Progr. Math. 244 (2006) 17-135.
- A. Braverman and M. Finkelberg, "Pursuing the double affine Grassmannian. I. Transversal slices via instantons on A_{k}-singularities." Duke Math. J. 152 (2010), no. 2, 175-206.
- M. Finkelberg, "Double affine Grassmannians and Coulomb branches of 3d $\mathrm{N}=4$ quiver gauge theories." arXiv:1712.03039
Coulomb branches:
- H. Nakajima, "Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathrm{N}=4$ gauge theories, I." arXiv:1503.03676
- A. Braverman, M. Finkelberg, and H. Nakajima, "Towards a mathematical definition of Coulomb branches of 3 -dimensional $N=4$ gauge theories, II." arXiv:1601.03586
- A. Braverman, M. Finkelberg, and H. Nakajima, "Coulomb branches of 3d $\mathrm{N}=4$ quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes)." arXiv:1604.03625
- H. Nakajima, "Geometric Satake correspondence for affine Kac-Moody Lie algebras of type A." arXiv:1812.11710

Thank you!

[^0]: - The completion is natural because $\mathrm{V}(\mu) \otimes \mathrm{V}(\lambda)$ is an infinite sum of irreps.
 - Braverman-Kazhdan proof: an interpretation of the problem via bundles on algebraic surfaces.
 - Gaussent-Rousseau proof: via the theory of masures (a.k.a hovels, a.k.a. double affine buildings).
 - One needs to understand the structure coefficients
 - They later (with Patnaik and Bardy-Panse resp.) show that $\operatorname{Sat}\left(\mathbb{1}_{K \pi^{\lambda} K}\right)$ is an affine Hall-Littlewood function (up to an important correction factor)

[^1]: Assumption (Work in progress with Patnaik)
 There exists a retraction $\rho_{\mathrm{I}_{\infty}}: \mathcal{J}^{+} \rightarrow \mathcal{T}_{\mathbb{R}}$ along I_{∞}.
 This is closely related to Birkhoff decomposition and the theory of twin buildings.

