

The Forward Rich Project at PANDA

Konstantin Beloborodov Budker Institute of Nuclear Physics SB RAS Novosibirsk State University FRRC - SSC RF ITEP of NRC "Kurchatov Institute"

November 11-13, 2015

PANDA detector

High-Energy Storage Ring:

- Antiprotons P=1.5 15 GeV/c with $\sigma_p/p = 10^{-5} \dots 10^{-4}$
- Luminosity up to 2 · 10³² cm⁻² s⁻¹

PANDA physics program:

- Charmonium spectroscopy
- Search for Gluonic Excitations (glueballs and hybrids)
- Study of Hadrons in Nuclear Matter
- Open Charm Spectroscopy
- Hypernuclear Physics
- Electromagnetic Processes

Requirements to Forward RICH

- PID in the Forward Spectrometer
- $|\theta x| < 10^{\circ}, |\theta y| < 5^{\circ}$
- 1 m space along the beam
- approximately 3 x 1 m transverse active size
- Working momentum range for 3σ separation
 π /K: 3÷10 GeV/c
 - $-\mu/\pi$: 0.5÷2 GeV/c possible
- Physics cases application: processes with high charged hadrons multiplicity in the final states for high beam momenta

Conceptual design proposal

Hamamatsu H12700 MaPMT

- flat panel,
- 8x8 anode pixels of 6mm size
- 87% active area ratio
- Bialkali photocathode
- Gain: 1.5·10⁶
- Good single p.e. amp. resolution
- Relatively cheap (≈€1600 / unit)
- Robust
- Long lifetime

- Focusing aerogel radiator (nonhomegenious)
- No gaseous radiator
- Flat mirrors
- MaPMT readout (other options possible)

Readout options

Production of aerogel in Novosibirsk

- Started in 1986 by the Boreskov Institute of Catalysis SB RAS in cooperation with the Budker Institute of Nuclear Physics SB RAS
- Hydrophilic (absorbs moisture)
- Refraction indices 1.006 1.08 (1.08-1.13 produced by sintering)
- Block dimensions up to 200x200x50 mm³ (for n=1.03)
- Remarkable optical quality has been achieved:

 L_{abs} (400nm) = 5 – 7 m L_{sc} (400nm) = 4 – 6 cm (Clarity = 0.0043 – 0.0064 µm⁴/cm)

- Used in the experiments:
 - KEDR/VEPP-4M: n=1.05 (1000 l)
 - SND/VEPP-2000: n=1.13 (5 l) + n=1.05 (5 l)
 - LHCb RICH: n=1.03 (20 l)
 - AMS-02/ISS RICH: n=1.05 (60 l)
 - DIRAC-II/CERN PS: n=1.015 (26 l) + n=1.008 (13 l)

Absorption length

KEDR ASHIPH counters: 1000 liters of aerogel

SND ASHIPH counters: n=1.13 (n=1.05)

7

FARICH – Focusing Aerogel RICH

FARICH projects and proposals

14 03 2

Belle II ARICH (Belle coll.) Particle ID: π/K up to 4 GeV/c Forward end-cap: ~3m² Two (separate) layers of aerogel: n₁= 1.045, n₂= 1.055 Photon detector: HAPD (Hamamatsu)

PANDA Forward RICH (BINP&BIC) Particle ID: π/K/p up to 10 GeV/c 3m² detector area (MaPMTs or SiPMs)

FARICH PID system for Super c- τ factory (BINP&BIC) Particle ID : μ/π up to 1.7 GeV/c ~21m² detector area (SiPM) ~10⁶ pixels with 4 mm pitch

FARICH R&D at BINP

- 2003: Aerogel RICH R&D started.
- 2004: FARICH idea and first publications.
- 2004-2011: Studies with MC simulation for applications in SuperB, ALICE, PANDA, SCTF.
- 2011: First beam test of FARICH prototype at BINP electron beam facility.
- 2012: Cooperation with Philips started on application of digital SiPMs (DPC) in FARICH.
- June 2012: First beam test of FARICH prototype with DPC at CERN. Proof of concept.
- December 2012-Febrary 2013: Beam tests of focusing aerogels with three prototypes including FARICH with DPC.

Electron and gamma beam test facility at **BINP**

e⁻ **beam** $E_e = 0.06 \div 3 \text{ GeV}$ $\sigma_E / E = 2\% @ 1 \text{ GeV}$ Rate up to 100 s⁻¹

Tagged y beam (to be completed) $E_{\gamma} = 0.05 \div 1.5 \text{ GeV}$ $\sigma_{E}/E = 0.5\% @ 1.5 \text{ GeV}$ Rate up to 10^{3} s^{-1}

Single pixel approach for aerogel characterization

Given a tracking system and enough particle statistics, a single PD pixel is enough to build the distribution of Cherenkov photons on R_{ch} (θ_{ch}). Sum of all pixels w.r.t. track position

Many pixels can be combined to improve accuracy and align the tracking system with the PD pixels

DPC is an Integrated "Intelligent" Sensor by Philips Digital Photon Counting

DPC3200-22-44 – 3200 cells/pixel DPC6400-22-44 – 6396 cells/pixel

<u>FPGA</u>

- Clock distribution
- Data collection/concentration
- TDC linearization
- Saturation correction
- Skew correction

<u>Flash</u>

- FPGA firmware
- Configuration
- Inhibit memory maps

32.6 mm

First test of DPC in RICH: **PDPC**-FARICH prototype @ CERN PS T10, June 2012

Main objective:

Proof of concept: full Cherenkov ring detection with a DPC array

Details:

- Operation temperature is -40°C to suppress dark count rate
 - Dead time is 720 ns.
 - DCR(+25°C) \approx 10 Mcps/sensor single photon detection is not feasible!
 - DCR(-40°C) \approx 100 kcps/sensor inefficiency is 7%.
- 2 stage cooling: LAUDA process thermostat + Peltiers.
- Dry N₂ constant flow to avoid condensation.

PDPC-FARICH setup

4-layer aerogel

- n_{max} = 1.046
- Thickness 37.5 mm
- Focal distance 200 mm

Test conditions

- Beam content: e⁺, μ⁺, π⁺, K⁺, p
- Momentum: 1–6 GeV/c
- Trigger: 2 sc counters 1.5x1.5 cm² in coincidence separated by 3 m
- No external tracking, particle ID, precise timing of trigger

Square DPC array 20x20 cm²

- DPC3200-22 sensors
- 3200 cells per pixel of 3.2x3.9 mm²
- 3x3 modules = 6x6 tiles
 - = 24x24 sensors = 48x48 pixels
- 576 timing channels
- 2304 amplitude channels (pixels)
- 3 levels of FPGA readout: tiles, modules, data collection board.

PDPC-FARICH: timing resolution and number of photoelectrons

PDPC-FARICH: Particle ID evaluation

Aerogel to be optimized DPC PDE lower than expected

Forward RICH (simulation)

RICH	
Main goal	PIDinformation for higherlevel triggers
π/K -separation	up to ~10 GeV/c
Radiator	Focusing aerogel
Refractive indices	~1.05
Radiator thickness	4 cm
Placement	Between FT5 and FT6
Vertical angle	±5°
Horizontal angle	±10°

Geometric requirements

- 1. Placement along beam axis:
- 2. Angular acceptance:
- 3. Aerogel radiator:
- 4. Mirror:
- 5. Geometric efficiency:
- 6. Photon detector:
- 7. Shape of Cherenkov "ring" on the photodetector surface:

8. ...

between forward trackers 5 and 6 dimensions are the same or close to forward trackers dimensions multi-layer

simple shape (flat, round, spheric) all Cherenkov photons should be detected if it possible less sizes as it possible (due to cost optimization) ace: simple (circle, ellipse)

Mirror parameters optimization

Geometric efficiency:

- 1. Lower Č photon hits PhDet
- 2. Upper Č photon hits PhDet
- 3. All other Č photons automatically do the same

Photo detector width: w(z, l₁, l₂, l₃, ...) \rightarrow w_{min}

First segment has major influence on PhDet size!

Optimal mirror configurations

Some features of flat and round mirrors

Aerogel plate size = 60 cm (half height)

Multi-layer aerogel: parameter optimization

Multi-layer aerogel: optimal parameter

Three segments mirror and three layer aerogel were used in further simulations

Events simulation and reconstruction

Refraction on the surface of the aerogel

 $\theta_{c} = f(\phi_{c}; \beta, n, \alpha)$

- φ_c azimuthal angle
- β velocity of the charge particle
- n refraction index of the aerogel
- α polar angle of the charge particle

Fit result

Simulated effects

- 1. Simulation
 - ✓ Geometry description
 - RICH position
 - Aerogel (size, number of layers, refraction index)
 - Mirror geometry (round, flat)
 - ✓ Materials properties for Cherenkov photons
- 2. Digitization
 - \checkmark Pixelation
 - ✓ Quantum efficiency of photodetector
 - ✓ Photodetector noise
 - ✓ Dead time of photodetector
 - ✓ Photodetector time resolution
 - ✓ Crosstalks (not done)
- 3. Reconstruction (simple mode)
 - ✓ Hit preselection
 - ✓ Fit θ(φ) dependence
- 4. PID (not done)
 - ✓ Probability calculation

Hit selection for fit

π /K-separation: first result

Conclusion

- Conceptual design of the Forward RICH is fixed (focusing aerogel, flat mirrors, photodetector)
- Concept of FARICH was proofed in test with beams in CERN
- First steps is PANDARoot simulation was done:
 - Geometry optimization with flat mirrors
 - Optimal aerogel parameters (refraction indexes)
 - Reconstruction of simple events
 - $-\pi/K$ separation is shown

Thank you for your attention!

Use cases of PANDA Forward RICH 2010

- Covered solid angle: $|\theta x| < 10^{\circ}$, $|\theta y| < 5^{\circ}$
- Identification of high momentum (>3GeV/c) kaons in presence of a large pionic background
- Separation of other charged particles: μ/π , e/π , K/p

Example: hybrid $\tilde{\eta}_{c1}(c\bar{c}g)$ search at 15 GeV/c $p\bar{p} \rightarrow \tilde{\eta}_{c1}\eta \rightarrow D^0\bar{D}^{*0}\eta + c.c. \rightarrow 2\text{K }2\pi 6\gamma$

Fast MC simulation shows:

46% of events are reconstructed only due to the RICH. That means 86% statistics gain due to the RICH.

In spite of the small covered solid angle production processes at high beam momentum with a large multiplicity are likely to give particles in the Forward RICH.

SiPM detectors and electronics

+

Custom 16ch amplifier-disc. boards

60 CPTA MRS APDs pixel diam. 1.28 mm

╋

ALICE TOF NINO-based board

CAEN V1190B multihit TDC board

Beam test 2011 results

