

European Research Council Established by the European Commission

Development, characterization and beam tests of a small-scale TORCH prototype module

Lucía Castillo García

On behalf of the TORCH Collaboration (CERN, Bristol and Oxford Universities, UCL) Industrial Partner: Photek

Fast Cherenkov Detectors session – 12th November 2015

- Photon detector characterization and performance
- NINO-32 chip calibrations
- Spatial resolution
- CERN SPS beam test
- Conclusions and perspectives

Photon detectors

- TORCH requirement:
 - Asymmetric anode segmentation 8x128 channels for ~2" sq. tube
- Customized MCP (Phase2 tube prototype, Photek):
 - Quarter-size customized circular-shape MCP with finely segmented anode (32x32 channels in 26.5x26.5 mm² area)
- Backplane anode: metallic pads connected to an interface PCB and merging channels by groups of 8 in horizontal direction
 - Asymmetric segmentation 4x32 readout channels
- Charge-sharing technique:
 - Reduce the number of channels
 - Achieve the spatial resolution required by TORCH $\frac{53 mm}{128 channels} = 0.414 mm \rightarrow \frac{0.414 mm}{\sqrt{12}} = 0.12 mm$

Photek interface PCB

Charge estimate with oscilloscope

Timing performance with single-channel commercial electronics

Timing performance with NINO-32 and oscilloscope

Timing performance with NINO-32 and oscilloscope

Timing performance with multi-channel electronics

- Using custom multi-channel front-end electronics, mechanically mounted on light-tight box:
 - fast amplifier and Time-Over-Threshold (TOT) discriminator (NINO-32 ASIC)
 - time digitization converter (HPTDC ASIC @100 ps resolution mode)

TOT calibration with multi-channel electronics

- Vertical scan with laser for a single column
- Colour plot is cumulative data from all laser alignments

Time Over Threshold

- Slices of 1ns in y axis (width), fitting the projection on x axis (timing distribution)
- Spline fit of above set of points → TOT calibration curve
- TOT correction is applied to all channels using this calibration curve

Timing performance with multi-channel electronics

INL correction from HPTDC: ±1 time bin of 100 ps Occupancy TDC

NINO-32: Charge-to-width curves

Position resolution with laser

Spatial resolution contribution to $\sigma_{\theta z}$

TORCH prototype module

- Radiator plate (10x120x350mm³) and focusing prism → Fused Silica
- High polished surfaces: ~1 nm
- Cylindrical mirror reflectivity over photon wavelength range: 85-90%
- Optical quality of various glued glass samples investigated
 - Measure and optimize transmission in UV region for radiator/optics coupled with different glues
- Quality of focusing optics is verified by simulation

TORCH prototype coupled to customized MCP + readout electronics

 MCP + electronics mounted on a micrometric transportable "chariot"

Customized MCP

CERN SPS beam test

- Beam test periods:
 - May 2015 → TORCH prototype module + Customized MCP and electronics performance
 - July 2015 \rightarrow Time reference jitter calibration
- Beam conditions:
 - $p = 180 \ GeV/c$ charged hadrons (essentially p's)
 - Low intensity rate $(1 1.2 \cdot 10^5 \text{ tracks/spill})$
- Pixel telescope from the VELO group of the LHCb experiment to provide particle track information
- Coincidence signal from scintillators of the VELO telescope used as trigger
- A trigger logic unit synchronized the telescope with the TORCH electronics

Schematic view of beam test configuration

CERN SPS beam test area

Time reference station and TORCH prototype module

- TORCH module:
 - tilted 5° and beam centred on radiator plate
- Time reference:
 - Single-channel MCP (Photonis)
 - Blackened borosilicate bar as Cherenkov radiator

Pattern at photon detector plane

Beam crossing at"0" nominal position

Timing performance (preliminary results)

Electronics jitter from time reference signal

Measured electronics contribution from the time reference signal

$$\sigma = \frac{84ps}{\sqrt{2}} = 59.4ps$$

Dominated by the HPTDC binning

MCP stations

Jitter from time reference signal

- 2 Cherenkov radiator configurations:
 - Borosilicate blackened bar
 - Borosilicate non-blackened bar
- Scintillator coincidence from VELO telescope signal used as trigger
- Runs independently from telescope at low intensity rate
- Single-channel MCP stations \rightarrow XY and θ alignment
- Measurements:
 - 2 charge preamplifiers \rightarrow charge spectrum and photon yield
 - 2 CFDs (one delayed) input to a TAC module → time jitter

Time jitter estimate (blackened bars)

- "beam" tube + CFD as START time
 - Photon yield: 1.7 photo-electrons on average
- "lab" tube + CFD + 16ns as STOP time
 - Photon yield: 1.6 photo-electrons on average

Time jitter estimate (non-blackened bars)

- "beam" tube + CFD as START time
 - Photon yield: 8.5 photo-electrons on average
- "lab" tube + CFD + 16ns + 3x(16ns) as STOP time
 - Photon yield: 8.7 photo-electrons on average

CERN PS beam test on-going

CERN PS beam test on-going

Timing/scintillator stations

Commercial 32x32ch Planacon (Photonis)

- Development of an interface board grouping by 4 channels horizontally (4 samtec connectors)
- Gold plating anode pads
- Used silk-screen technique depositing conductive glue

- Data only from third connector
- Reference signal is well transmitted ¹⁰
- Good response

Conclusions and perspectives

- Timing resolution achieved from lab data of ~80 ps after INL and TOT corrections \rightarrow Not too far from the required resolution (limited by the HPTDC binning)
- An excellent spatial resolution is achieved
- TORCH prototype module has been developed and its performance is being assessed in beam tests
- Time resolution per single channel of 220 ps includes all effects: chromatic dispersion, photon time of propagation, emission point error, etc. \rightarrow Still work in progress
- Time jitter from time reference station is not dominant to the overall resolution from TORCH prototype system
- Current PS beam test aims to perform real particle identification at low momentum below 10 GeV/c
- PS beam tests foreseen for next year

The support of the European Research Council in funding this work is gratefully acknowledged

 ERC-2011-AdG, 291175-TORCH (http://cordis.europa.eu/projects/rcn/103813_en.html)

European Research Council Established by the European Commission

Thank you for your attention

Spare slides

How to determine the TOF?

• Why do we measure θ_C ? $\cos \theta_C = 1/n\beta$

$$TOF = t_{TORCH} - t_{PV} = \frac{|x_{TORCH} - x_{PV}|}{\beta c} \qquad t_{TORCH} = t_{photon arrival} - TOP$$

- Correct for the chromatic dispersion of quartz: n(λ)
 - Cherenkov angle \rightarrow phase velocity: $\cos \theta_C = 1/\beta n_{phase}$
 - Time of Propagation (TOP) \rightarrow group velocity: $TOP = path \ length \ \frac{n_{group}}{c}$

•
$$\theta_C \rightarrow n_{phase} \rightarrow \lambda \rightarrow n_{group} \rightarrow \text{TOP} \rightarrow t_{TORCH}$$
 (crossing time)

- To obtain the TOF, we need the start time t_{PV}
 - Use other tracks from PV, most of them are pions $\rightarrow t_{PV}$: average time assuming they are all pions

Single-channel MCP tube (Photonis)

- Photon detector:
 - single channel MCP-PMT (Photonis NL)
- PP0365G specifications:
 - MCP-PMT tube
 - single channel (SMA connector)
 - 6µm pore diameter, chevron type (2), ~55% open-area ratio
 - low MCP gain typ. <10⁵
 - Small gaps:
 - PC-MCPin: 120µm
 - MCPout-anode:1mm
 - S20 photocathode on quartz
 - 18mm active diameter
 - 6pF anode capacitance
 - Rise time 20-80% >700ps
 - HV applied 2.93kV (1.95 kV across the MCP) filter and bleeder chain 1+(1-10-3)

Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: single photon regime
- Single-channel ORTEC electronics

where σ_{1phe} is the 1-photoelectron peak width

Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: single photon regime
- Single-channel ORTEC electronics
- Light calibration setup:
 - Pulse height spectrum (PHS)
 - Standard Poisson distribution to fit data
 - Average number of photoelectrons per pulse (µ) inferred from P(0)

Timing setup:

- Time jitter distribution
- Exponentially-modified Gaussian distribution to fit prompt peak → time resolution (σ)

Discriminator behaviour

- For a given discriminator threshold:
 - The noise induces a **jitter** \rightarrow signal is detected earlier or later in time
 - The signal height variation induces a walk:
 - Large signals are detected earlier
 - Small signals are detected later
- **Constant Fraction discriminator:**
 - Based on zero-crossing techniques

 - Large amplitudes: +walk → earlier / -walk → later
 Smaller amplitudes: +walk → later / -walk → earlier

- Produce accurate timing information from analog signals of varying heights but the same rise time
- Principle: splitting the input signal, attenuating half of it and delaying the other half, then feeding the two halves into a fast comparator with the delayed input inverted
- Effect: to trigger a timing signal at a constant fraction of the input amplitude, usually around 20%

CFD.

Single-channel timing fitting model

- Single-channel MCP investigated at several light intensities and laser tune setting [L. Castillo García, LHCb-INT-2013-042]
- Main peak of timing distributions represents the MCP intrinsic time response → fitted with an exponentially-modified Gaussian distribution [I. G. McWilliam, H. C. Bolton, Analytical Chemistry, Vol. 41, No. 13, November (1969) 1755-1762]

$$f(t, A, t_c, \sigma_g, \tau) = \frac{A}{\tau} \exp\left(\frac{1}{2} \left(\frac{\sigma_g}{\tau}\right)^2 - \frac{t - t_c}{\tau}\right) \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\frac{t - t_c}{\sigma_g} - \frac{\sigma_g}{\tau}}{\sqrt{2}}\right)\right)$$

t: time, *A*: amplitude, *t_c*: centroid at maximum height of the unmodified Gaussian, σ_g : standard deviation of the unmodified Gaussian, τ : time constant of exponential decay used to modify the Gaussian and $erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$.

- Model chosen given the asymmetry in the MCP time response for large values of μ.
- **Time jitter** value defined as the standard deviation σ_g of the Gaussian.
- Use to extract the timing resolution for Planacon MCP

Commercial MCP devices (DEP-Photonis)

- Single-channel MCP device coupled to ORTEC CFD used as time reference for TORCH
- Standard Poisson distribution to fit data
- Photon yield: 4.5 photo-electrons on average
- Main peak of timing distributions represents the MCP

intrinsic time response \rightarrow fitted with an **exponentially-modified Gaussian distribution**

Lucía Castillo García

Results

tresolution = tnino - tref

• Jitter pulser-scope: $11.51 \text{ ps}/\sqrt{2} = 8.14 \text{ ps}$

Jitter NINO:

- Chip 1 channel 31: 16.64ps → 14.51ps
- Chip 2 channel 0: 18.27ps → 16.36ps

- Jitter ref-scope:
 - Laser wrt laser: $40.14 / \sqrt{2} = 28.38$ ps (Nim wrt laser: 39.3ps $\rightarrow 27.19$ ps)

Jitter NINO:

- Chip 1 channel 31: 40.6ps → 29.03ps
- Chip 2 channel 0: 41.2ps → 29.87ps

Optica3: optimal position MCPs windows

Varying air gap (d) between
 focusing block and MCP window

- 1mm-thick sapphire window (32x32ch Planacon)
- 9mm-thick quartz window (32x32ch Photek MCP)

Decided position: ~0.5 mm

Transmission curves for Spectrosil + glues

DIRC2015 Workshop - 12/11/2015

Lucía Castillo García

DAQ, monitoring and data taking

- LabVIEW interface
- Single-channel MCP station
 And XY alignment
 - Find optimal position with hits on test channel (TDC B ch1)
- Used various NINO threshold
 - Optimized settings for odd and even channels
- Runs with telescope and independently
- TORCH module translations using a DESY table:
 - Vertical translation and fine scan (5 mm step)

CERN PS beam test on-going

- From Wednesday 28th October to Monday 16th November
- TORCH main and only user in T9
- Beam conditions:
 - ~5 GeV/c electron-rich beam
 - Low intensity rate: 100's Hz
- 2 single-channel MCP tubes mounted on two independent micrometric stages and read out with single-channel ORTEC electronics
- Cherenkov radiator configuration:
 - Borosilicate non-blackened bars → Higher photon yield and better time resolution
- Coincidence signal from 3 scintillators + 3 PMTs used as trigger
- Test MCP tubes:
 - customized device fully instrumented with customized electronics
 - commercial device (32x32ch Planacon) half instrumented with customized electronics