Lifetime of MCP-PMTs

Albert Lehmann,

Merlin Böhm, Alexander Britting, Wolfgang Eyrich, Markus Pfaffinger, Fred Uhlig (Universität Erlangen-Nürnberg)

Motivation

- Approaches to increase lifetime
- Results of aging tests
- Outlook and summary

panda

FAIR and HESR/PANDA at GSI

protons (up to 30 GeV/c) antiprotons (up to 15 GeV/c)

Facility for Antiproton and Ion Research

CR/RESR

p-Target

HESR and PANDA

- stored antiprotons: ~ 10¹¹
- momentum resolution: ~ 10⁻⁵
- Iuminosity: ~ 2·10³² cm⁻²s⁻¹

Albert Lenmann

PANDA

HESR

PANDA Detector at FAIR

Challenges to Photon Sensors

Good geometrical resolution over a large surface

- multi-pixel sensors with ~5x5 mm² anodes (0.5x16 mm² for Disk DIRC)
- Single photon detection inside B-field
 - high gain (> $5*10^5$) in up to 2 Tesla
- Time resolution for ToP and/or dispersion correction
 - very good time resolution of <100 ps for single photons

Few photons per track

- high detection efficiency η = QE * CE * GE
 [QE = quantum efficiency; CE = collection efficiency; GE = geometrical efficiency]
- low dark count rate
- Photon rates in the MHz regime
 - high rate capability with rates up to MHz/cm²
 - long lifetime with integrated anode charge of 0.5 to 2 C/cm²/y

Rate Estimates for PANDA

rate capability and lifetime are the most critical issues for the application of MCP-PMTs in any high-rate experiment

expected rates and anode charges of the PANDA DIRCs:

		anode rate (after	integrated anode	integrated anode	
	total rate	Q.E.)	charge / year	charge / 10 years	
			[C/cm ² /year] at 10 ⁶	[C/cm ²] at 10 ⁶ gain	
	[MHz/cm ²]	[MHz/cm ²]	gain (at 100% dc)	(at 50% duty cycle)	
Barrel DIRC					
at end of radiator	60	5.6	28		
at readout plane	1.7	0.2	1	5	
Endcap DIRC					
at rim of radiator	19	2	10		
focussing	7.5	0.8	4	20	

Endcap DIRC with much higher photon rate than Barrel DIRC → wavelength band filter to reduce photon rate

most MCP-PMTs show stable operation to ~200-300 kHz/cm² single photons (at gain 10⁶)

many recent MCP-PMT models stable up to >1 MHz/cm²

Albert Lehmann

Lifetime of former MCP-PMTs

Status ~4 years ago

- BINP with Al₂O₃ film at MCP entrance to stop feedback ions
- PHOTONIS with improved vacuum and electron scrubbing of surfaces

Quantum efficiency reduced by 50% or more at <200 mC/cm²

By far not sufficient for PANDA

Possible Cause of MCP Aging

Ion feedback

- Amplification process causes
 - Ionization of residual gas atoms
 - Desorption of atoms from MCP material (especially H and Pb)
 - Damaging of MCP surfaces \rightarrow gain may change
- Ions accelerated towards photo cathode
 - Production of secondary pulse
 - Ions may react with PC
 - PC gets damaged and work function may gradually change
 - Degradation of Quantum efficiency (QE)

Neutral molecules from residual gas

- Passing between MCPs and walls
- CO_2 , O_2 and H_2O react with PC

Albert Lehmann

First Approaches to Reduce Aging

Stop feedback ions by thin Al₂O₃ film (5-10 nm)

- In front of first MCP layer (older BINP and first Hamamatsu tubes)
 - disadvantage: another reduction of collection efficiency (CE) by about 1/3
- Later between MCP layers (second generation Hamamatsu tubes)
 - no CE reduction but higher HV needed

- Improve vacuum quality
- Improved cleaning of MCP surfaces
 - Electron scrubbing (older PHOTONIS and latest BINP tubes)
- Prevent neutral molecules in anode region from reaching the PC
 - Anode region is hermetically sealed from PC region (2nd gen. Hamamatsu)
 - [NIM A629 (2011) 111]

Albert Lehmann

Production of more Robust PC

MCP-PMTs developed at BINP for FARICH

- without protection layer
- with heavy electron scrubbing
- New photo cathode
 - Na₂KSb:
 - $Na_2KSb(Cs)$:
 - $Na_2KSb(Cs) + Cs$:
 - $Na_2KSb(Cs) + Cs_3Sb$:
- Gain recoverable
- **Exponential reduction** of dark count rate (DCR)

[JINST 6 C12026 (2011)]

- $DCR < 0.5 \text{ kHz/cm}^2$
- $DCR = 0.5 \text{ kHz/cm}^2$
- $DCR = 5 \text{ kHz/cm}^2$

Gain, ×10⁶

0.6

0.4

0.2

DCR = 50-100 kHz/cm²

Quantum Efficiency,

10

10

Na₂KSb(Cs,Sb)+Cs

Na KSb(Cs)+Cs

Na₂KSb(Cs)

Albert Lehmann

DIRC 2015

Atomic Layer Deposition (ALD)

- Deposition of ultra-thin atomic layer (MgO, Al₂O₃) on MCP substrate
 - Arradiance Inc. \rightarrow LAPPD, Photonis, ...
 - MCP pores are coated in three steps
 - resistive layer
 - secondary electron emission (SEE) layer
 - electrode layer
 - Optimisation of MCP resistance and SEE
 - for each film independently
 - higher gain at given HV
- Possibility to use MCP substrates other than lead glass
 - e.g., borosilicate glass
 - higher bake-out temperature possible
 - fewer outgassing during MCP operation

Albert Lehmann

DIRC 2015 -- Rauischholzhausen -- November 11, 2015

[NIM A639 (2011) 148]

New Development with Grid

Grid between MCP and PC to prevent ions from reaching and damaging PC

- parallel development at PHOTONIS
- For full ion suppression grid bias needs to be higher than bias at MCP-out

Additional effect: Tail in TTS distribution can be suppressed

 Tail is shifted and separated from main peak due to delay of backscattered electrons

Albert Lehmann

Simultaneous Aging of MCP-PMTs

- **Problem in 2011:** The few aging tests existing were done in rather different environments \rightarrow results are difficult to compare
- <u>Goal</u>: measure aging behavior for all available lifetime-enhanced MCP-PMTs in same environment
- Simultaneous illumination with common light source \rightarrow same rate
- MCP-PMTs included in aging tests of last 4 years:
 - 2x BINP
 - improved vacuum and scrubbed surfaces + new photo cathode (both finished)
 - 4x Hamamatsu R10754X (1x1 inch²)
 - L4 and M16: protection layer (film) between 1st and 2nd MCP (both finished)
 - 2x M16M: ALD technique applied (+ film between MCPs) (started end 2013)
 - 3x PHOTONIS XP85112 (2x2 inch²)
 - 1-layer ALD surfaces (2x) and 2-layer ALD surfaces (1x, started Jan. 2014)
 - surface half covered during illumination (except 2-layer ALD tube)
 - 4x Hamamatsu R13266 (2x2 inch²) with ALD and film (starting soon)

Albert Lehmann

Measurement of MCP Lifetime

Continuous illumination

460 nm LED at 0.25 to
 1 MHz rate attenuated to single photon level
 → 3 to 20 mC/cm²/day

Permanent monitoring

 MCP pulse heights and LED light intensity

Q.E. measurements

- 250–700 nm wavelength band with monochromator $\Delta \lambda = 1$ nm
- Every 2-3 weeks (at beginning days): wavelength scan
- Every 3-4 months (at beginning weeks): complete surface scan

Lifetime-Investigated MCP-PMTs

	BINP		PHOTONIS			Hamamatsu	
			XP85012	XP85112	XP85112	R10754X-01-M16	R10754X-07-M16M
pore size (µm)	6	7	25	10	10	10	10
number of pixels	1	1	8x8	8x8	8x8	4x4	4x4
active area (mm ²)	9² π	9² π	53x53	53x53	53x53	22x22	22x22
total area (mm²)	15.5² π	15.5² π	59x59	59x59	59x59	27.5x27.5	27.5x27.5
geom. efficiency (%)	36	36	81	81	81	61	61
photo cathode	multi-alkali		bi-alkali			multi-alkali	
peak Q.E.	21% @ 495 nm	21% @ 495 nm	20% @ 380 nm	23% @ 380 nm	22% @ 380 nm	21% @ 375 nm	22% @ 415 nm
comments		better vacuum, new cathode	better vacuum, polished surfaces	better vacuum, polished surfaces	better vacuum, ALD surfaces	film between MCPs	further improved lifetime (ALD)
# of tubes measured	1	2	1	1	3	1 (+1 L4)	2

- Tubes first measured with no significant lifetime improvements
- Lifetime improved tubes measurement started ~4 years ago
- Hamamatsu 1 inch ALD tubes measurement started ~2 year ago
- Hamamatsu 2 inch ALD tubes will be starting soon

Albert Lehmann

	Sensor ID	Integral charge (Nov. 9, 2015) [mC/cm ²]	QE start [%]	QE latest [%]	QE latest / QE start [%]	Comments
Photonis XP85112	9001223	9234	22.11	5.29	24%	Start: 23 Aug. 11 Stop: 22 Sep. 15
	9001332	9264	22.62	22.71	100%	Start: 12 Dec. 12 ongoing
	9001393	5441	19.05	19.89	104%	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X	JT0117 (M16)	2086	19.97	9.32	47%	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	10035	21.71	15.33	71%	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	5868	21.14	14.8	70%	Start: 21 Oct. 13 ongoing
BINP	1359	3616	12.27	9.06	74%	Start: 21 Oct. 11 Stop: 06 May 13
	3548	6698	12.23	4.58	37%	Start: 21 Oct. 11 Stop: 08 Jul. 15

Gain vs. Integrated Anode Charge

Only moderate gain changes

This was quite different in the former MCP-PMTs !

Albert Lehmann

🗾 Darkcount vs. Anode Charge

Darkcount rate of PHOTONIS XP85112 (ALD) almost constant

Big exponential reduction in BINP and Hamamatsu R10754X

Albert Lehmann

Q.E.(λ) vs. Integral Anode Charge

BINP 3548

Photonis XP85112 (9001223)

Albert Lehmann

Relative Q.E.(λ) vs. Anode Charge

BINP new PC: signature not easy to interpret
 Hamamatsu film and Photonis ALD: once Q.E. starts degrading red light drops faster than blue (→ work function changes)

Albert Lehmann

Q.E.(λ) vs. Anode Charge

Albert L All ALD coated MCP-PMTs with >5 C/cm² integrated anode charge !

Lifetime of MCP-PMTs (Nov. 2015)

- Hamamatsu film MCP-PMT: Q.E. drops beyond 1 C/cm²
- Photonis 9001332: no Q.E degrading observed yet up to >9 C/cm²
- MCP-PMTs with ALD layers: very good performance to >5 C/cm²

Albert Lehmann

- Hamamatsu 1 inch MCP-PMTs with film good to ~2 C/cm²
- Big improvement with ALD technique, but first results were not reproduced
- Moderate gain drop
- No changes in time resolution

Albert Lehmann

DIRC 2015 -- Rauischholzhausen -- Novemt

Relative Gain 1.0 0.8 0.6 ch16 0.4 2 3 Output charge (C / cm²) σ_{TTS} (ps) 30 2 3 1 Output charge (C / cm²)

Q.E. Scans (Hamamatsu & BINP)

Q.E. measured at 372 nm

Hamamatsu R10754X-M16 film

BINP 3548

new PC

Q.E. Scans (PHOTONIS ALD)

Q.E. measured at 372 nm

Q.E. Scan Projection (PHOTONIS ALD)

Q.E. measured at 372 nm

ALD PHOTONIS XP85112 (9001332)

27

Summary and Outlook

Aging symptoms

- PC work function changes (darkcount, wavelength dependence)
- PC damage starts from rims and corners
- Ion feedback dominant reason for aging
- Spectacular lifetime increase of latest MCP-PMTs due to recent design improvements
 - application of ALD technique (x50 lifetime improvement)
 - huge step forward !
- Equipping the PANDA DIRCs and other high rate detectors with MCP-PMTs appears feasible

Accelarate Aging Measurements

At 2nd MCP output QE degradation rate depends on count rate

At 1st MCP no correlation between QE degradation and count rate

Albert Lehmann

Microchannel-Plate PMT

electron multiplication in glass capillaries (\varnothing \approx 10-25 μ m)

- usable in high magnetic fields
- high gain
 - >10⁶ with 2 MCP stages
 - single photon sensitivity
- very fast time response:
 - signal rise time = 0.3 1.0 ns
 - TTS < 50 ps
- Iow dark count rate
- quantum efficiency comparable to that of standard vacuum PMTs
- multi-anode PMTs available
- caveats:
 - lifetime (QE drops)
 - price