TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and

Next Step

Summary

TRB Developments

Michael Traxler for the TRB Collaboration

2015-11-13

Outline

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- TRB Platform
- 2 Experiences and Limits
- Next Step: DiRICH
- Summary

TRB: Features I

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- Versatile and meanwhile technically mature platform for TDC measurements and digital readout
- consists of FPGA-firmware, DAQ- and calibration-software and hardware
- most important ingredient: the TRB team behind all of it for (necessary) support
- many channels (256) on one board and as cheap as possible
- leading edge time precision: 8-12ps RMS
- hitrates <50MHz (burst)
- DAQ: 140MBytes/s via two 1GbE links

TRB: Features II

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

Summary

Hardware

- motivated to be independent from not easy to acquire ASICs from the community
 - based on FPGAs (TDC, DAQ, FEE-Discriminator) and other parts with a second source
 - We misuse digital FPGAs in the asynchronous and analoge domain

TRB Platform: TRB3 module

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- 4 times high speed 208-pin connector for various AddONs
- Addons available:
 - 6 port Hubs
 - NIM/ECL-Input
 - ADC
 - standard 100mil pins
 - Padiwa-Adapter
 - etc.

TRB Platform: Some Hardware II

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Ste DiRICH

Summar

Padiwa

CBM-TOF-FEE

- Padiwa used for CBM-RICH-beamtests
- Padiwa used for Panda-Barrel-DIRC-beamtests
 Summer 2015 at CERN
- CBM-TOF-FEE used for CBM-TOF beamtime November 2015 at CERN

TRB Platform: Some Hardware III

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

DiRICH

Summar

TRBsc

TRB3sc Crate

- 1/4 of TRB3 on a single card
- fits in 19" standard crate system with FPGA-connectivity in backplane
- better DC/DC converters for better time precision
- higher DAQ speed

New Features and Performance

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and

Next Step

Summary

The TDC can now stretch the falling edge of a pulse and reuse the channel to measure the Time over Threshold of an input pulse. The performance is still good.

ToT: alternating channels

ToT: new stretcher

Performance ToT with Stretcher

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step

Summar

The long (~35ns) signal propagation in the **FPGA** results in a strong temperature dependence of the ToT

Performance ToT with Stretcher II

ToT vs. Temperature

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step

Summar

This effect can be corrected later and suppressed to a 65ps shift for a 6K temperature shift.

Plans for TDCs and Current Status

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- using higher clock frequencies for the TDC delay line register will result in shorter delay lines and (most likely) less resource usage
 - more channels can fit into one FPGA
- A 10 weeks large scale intense test at GSI for the upcoming CBM-TOF beamtime has been performed
 - more subtle bugs have been identified and have been removed
 - The famous "dying-channel" bug first encountered during the Barrel-DIRC-CERN beam time has been tracked, reproduced and is now removed.
 - High data rate DAQ-hangups don't occur anymore (actually a solid workaround)
 - We reached a state (since 6 weeks :-)) of no known bugs!

Feature and Problem at the same Time

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platforn

Experiences and Limits

Next Step DiRICH

- The TRB platform is a stable and flexible
- Flexibility has a (high) price
 - Cables everywhere!

Effects of Cables

TRB
Developments

Michael Traxler for the TRB

TRB Platform

Experiences and Limits

Next Step DiRICH

- Mechanically this becomes a problem (densities)
 - Barrel-DIRC-beam-time clearly showed that this is more than a inconvenience
- Long cables damp the signal away

Further Encountered Problems

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- The FEE is stable in the lab in small setups
- In a larger setup a high frequency feedback from the FEE to the MCP-PMTs and back to other channels of the FEE has been observed
- Result: high frequency oscillation forced the use of unreasonable high thresholds
- Only solution available: attenuate high frequency noise at the input of the 3GHz amplifiers
 - disadvantage: slower rise time of the signal + smaller amplitude
 - needs higher amplification and is more affected to lower frequency noise
- Net effect: degradation of timing performance from 30ps RMS to TBD ps RMS (<100ps RMS)

Degradation of Measured Time Precision Due to Attenuation of Input Signal

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step

Summary

PADIWA Input Capacitance Test

Solution

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and Limits

Next Step DiRICH

- Rethink mechanics/cables/connectors
- Improve on noise to the input of the FEE
- Improve on noise immunity of FEE
- Work together in a larger team!
- Some pressure!

RICH700 Project in HADES: to be finished in 2016

TRB Developments

Michael Traxler for the TRB

TRB Platform

Experiences an

Next Step: DiRICH

- Exchange of the HADES RICH Csl photocathode with 420 MA-PMTs
- New FEE + Readout has to be developed
- Cooperation of CBM + HADES experiments

HAL9000: Inspiration

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and

Next Step: DiRICH

Summary

• First you need some sort of epiphany :-)

Backplane Granularity and Dimensions: Long and Tedious Optimization

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and

Next Step: DiRICH

DiRCH concept

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platform

Experiences and

Next Step: DiRICH

DiRICH Requirements and Design Consequences

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platforn

Experiences and Limits

Next Step:

- FEE module for 32 channels
- Amplification, Discrimination, TDC + DAQ
- no cables
- analog input signals and digital output signals (serial transmission) over the same connector
- low power consumption
- only possible with newest FPGAs (price/performance) and most dense connectors

DiRICH: Some New Ideas

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platforn

Experiences and Limits

Next Step: DiRICH

- galvanically isolate PMT from FEE with transformers
 - reduces issues with HV-Power-Supply GND connection
 - brand new 2.2x1.5mm² transformer types available
- reduce bandwidth of amplifiers (transistor based compared to MMICs) to needed minimum
 - ASICs available for this task? PADI is a candidate.
- Status
 - schematics are done (mainly connectors)
- Challenges + Risk
 - PCB Layout: technically and manpower

Summary

TRB Developments

Michael Traxler for the TRB Collaboration

TRB Platforn

Experiences and Limits

Next Step DiRICH

- TRB platform reached a mature state
- lessons have been learned
- next steps are customization for HADES/CBM-RICH and Barrel-DIRC projects
- far advanced state for HADES-RICH project
- large overlap for FEE and mutual benefit is large (tests, measurements, etc)
- not without risks!