

### The PANDA Strip ASIC: PASTA

**DIRC 2017** 

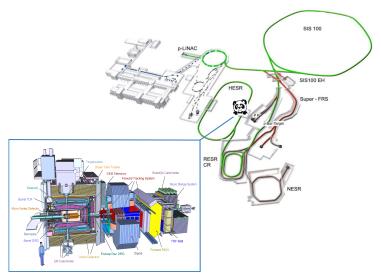
Alessandra Lai on behalf of the PANDA MVD group, IKP1-Forschungszentrum Jülich, August 9, 2017



PANDA @FAIR

The PASTA chip

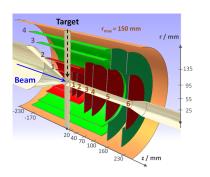
JDRS: Jülich Digital Readout System for the MVD


**Quantitative Measurements** 

Summary

#### PANDA@FAIR

Facility for Antiproton and Ion Research






#### **MVD: Micro Vertex Detector**

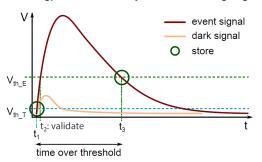


- free running readout @clk freq 160 MHz
- vertex resolution < 100  $\mu$ m



- time information < 10 ns
- deposited energy information for PID with dE/dx
- four barrel layers
- six disk layers in the fw direction
- pixel detectors in the inner part
  → front-end chip: ToPix
- double-sided strip detectors in the outer part
  - → front-end chip: PASTA

#### **PASTA: PANDA Strip Asic**


Free running readout chip for the strips

Concept based on TOFPET ASIC.

- Developed for medical application.
- Readout of SiPM.

Time over threshold measurement based on two leading-edge discriminators.

- Low threshold time branch: resolve leading edge of pulse (time stamp resolution).
- High threshold energy branch: reduce jitter on the falling edge.



#### From TOFPET to PASTA



|                          | TOFPET v1             | PASTA v1                 |
|--------------------------|-----------------------|--------------------------|
| Input capacitance/charge | SIPM: 320 pF / 300 pC | Si Strips: 50 pF / 38 fC |
| Power consumption        | 7-8 mW/ch             | < 4 mW/ch                |
| Channel pitch            | 104 $\mu$ m           | 63 $\mu$ m               |
| Radiation tolerance      | n/a                   | 100 kGy                  |
| Efficiency gap           | ca. 6% evt loss       | no evt loss              |
| Charge resolution        | less important        | 8 bit dyn. range         |

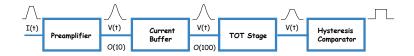
#### Additional changes:

- Switch to area optimized technology (110 nm).
- Rewritten control logic.

#### **PASTA Architecture**






- Amplification and discrimination.
- Time interpolation.
- Control charge conversion and initiate timestamp storing.
- 4 Handle configuration and channel data.

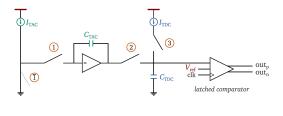
#### Auxiliary circuits:

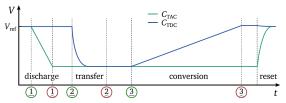
- Calibration circuit: configurable test pulse generation.
- Output drivers: conversion of outgoing signals to LVDS standard.
- Bias cells: voltage levels for analog components.

#### Front-End





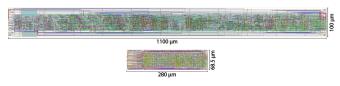

- Preamplifier: amplification of small current signal from sensor.
- Current buffer: second amplification and impedance adjustment.
- TOT stage: third amplification, improved linearity of the system, saturated amplifier.
- Hysteresis comparator: comparison with threshold voltage (different for rising and falling edge).


## nberof the Helmholtz Association

### **Analog Time to Digital Converter (TDC)**



- Clock resolution: 6.25 ns (@160 MHz) coarse timestamp.
- Enhanced resolution: up to 50 ps fine timestamp.



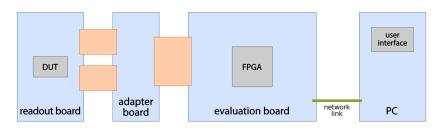





#### TDC controller:

- interface between analog circuitry and digital storing/trasmission of data;
- detects valid events and store measurement for them;
- size reduced by 80% wrt TOFPET;
- power consumption reduced by half wrt TOFPET;
- radiation-hard logic for Single Event Upset (SEU) protection.




#### Global controller:

- configuration interface;
- clock distribution;
- global time counter;
- test pulse generation;
- channel multiplexing;
- data collection and transfer.

### JDRS: Jülich Digital Readout System

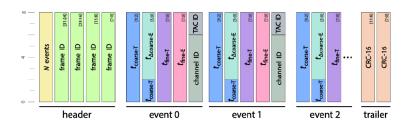
JÜLICH FORSCHUNGSZENTRUM

The basic components



Data conversion and communication with the PC:

- DUT: ToPix, PASTA
- evaluation board: Xilinx ML605 (Virtex-6 FPGA)
- firmware: VHDL


Configuration and data handling:

- PC
- software: C++
- MVD Readout Framework (MRF)
- Qt-based GUI

#### **Data Collection and Transfer**



- Event data is stored in frames.
- Formatted with header/trailer.
- Continuous stream of data over the tx lines.
- 8b/10b encoding to ensure a DC-balanced line.
- Use of control symbols (comma words) between frames.



### rof the Helmholtz Association

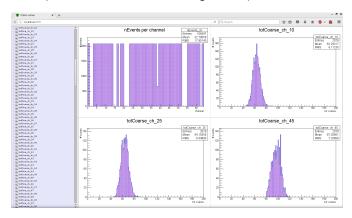
#### **Data Handling**



- FPGA data handling:
  - 10b/8b decoded data stored in FIFO.
- Software data handling:
  - request data from fifo;
  - store raw data on disk;
  - convert data word into usable object.



- Suppress comma words.
- Display frame indicator.
- Suppress empty frames.


## of the Helmholtz Association

#### **Online Monitoring**



The data is decoded online.

The results are published on a web server using the THttpServer class from ROOT.



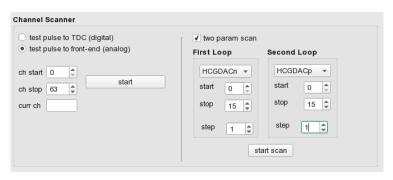
## sher of the Helmholtz Association

#### **Configuration of the Internal Test Pulse**



PASTA can generate a test pulse internally.

Two possibilities:


- test pulse used directly instead of the discriminator output (digital signal);
- test pulse fed throught the analog calibration circuit (analog signal).



#### **Channel Scan**



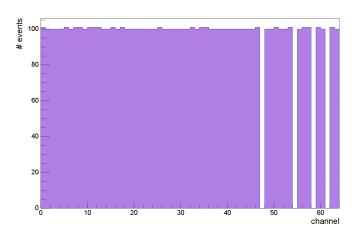
- PASTA has 46 global and 22 local free parameters.
- Automatize the measurements for the optimization of such parameters.
- Define the type of injection.
- 2 Scan a user define range of channels.
- 3 Choose up to two parameters to sweep.



# ember of the Helmholtz Association

#### **Performance Measurements**




Measurement to charachterize the chip are currently ongoing:

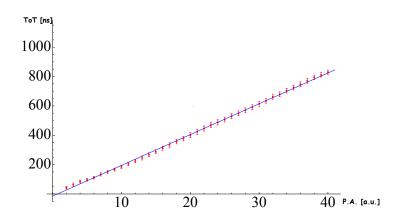
- in the laboratory;
- under beam (next fall).
- Focus on the coarse information for both time and energy branch.
- No detailed studies on the TDC yet.
- Operation frequency is half of the nominal one (i.e., 80 MHz).

### **Channel Response**



Scan of all the channels for fixed amplitude.



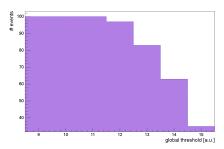

Not all the channels are responsive.

#### **ToT Linearity**



Scan of all the channels within a given amplitude range. Only coarse information used.

$$ToT = t_{coarse_E} - t_{coarse_T}$$

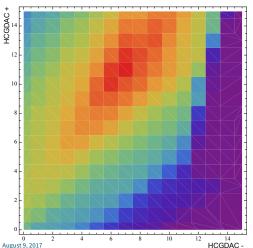



#### Threshold determination



Amplitude incoming signal > threshold → signal detected

- Global threshold:  $\Delta_{th} = HCGDAC_{+} HCGDAC_{-}$  $\longrightarrow$  midvalue of an interval with predefined amplitude.
- Local threshold: fine tuning.
- Sweep over  $\Delta_{th}$  at fixed pulse amplitude  $\rightarrow$  expected: S-curve shape.




- S-curve structure only for some channels → box distribution even for small amplitudes.
- Different optimal values for different channels.

#### **Threshold distribution**



Find the combination of  $HCGDAC_+$  and  $HCGDAC_-$  to maximize nEv. Fixed pulse amplitude.



#### **Summary & Outlook**



- The PANDA MVD will use pixel and strip detector.
- For the strip, part the PASTA chip was designed.
- It is inspired from the TOFPET ASIC, but it fulfills specific requirement of the MVD.
- A dedicated readout system is under development at FZJ.
- Measurement to assess the performances of the chip have started and are still ongoing.
- Preliminary results hint to the fact that the measurement principle is working in PASTA.
- More optimization is needed: aim for a PASTA version 2.

### **Backup**



#### **Time amplification**

i.e. how to get the enhanced resolution.



#### 5.5.1.2 Time Amplification

The ASIC has an internal counter incremented by the clock to generate time stamps. Just using this counter to time events would lead to a precision based on the clock's period, or 6.25 ns for an input clock of 160 MHz. With the chosen scheme of converting the phase between a trigger and the clock into a proportional voltage drop and then recharge this, a time amplification is gained.

Two factors influence this amplification: a larger capacitance for the second capacitor

$$C_{\text{TDC}} = 4 \cdot C_{\text{TAC}} \tag{5.2}$$

and a lower recharging current

$$I_{TDC} = \frac{1}{32} \cdot I_{TAC}$$
. (5.3)

Using the relation for charge in a capacitor and constant currents

$$C \cdot U = O = I \cdot t$$

one gets the gain of this method for the time after the process  $(t_{TDC})$  versus the time before  $(t_{TAC})$  by assuming the voltage level is equal after connecting both capacitors:

$$\begin{split} \frac{I_{\text{TAC}} \cdot I_{\text{TAC}}}{C_{\text{TAC}}} &= U_{\text{TAC}} &= U_{\text{TDC}} = \frac{I_{\text{TDC}} \cdot I_{\text{TDC}}}{C_{\text{TDC}}} \\ &\Rightarrow t_{\text{TDC}} &= t_{\text{TAC}} \cdot \frac{I_{\text{TAC}}}{I_{\text{TDC}}} \cdot \frac{C_{\text{TDC}}}{C_{\text{TAC}}} \\ &\stackrel{(5.2)\&(5.3)}{\Longrightarrow} &= t_{\text{TAC}} \cdot 32 \cdot 4 = t_{\text{TAC}} \cdot 128 \;. \end{split}$$
(5.4)