The Guy DIRC Project

Massachusetts Institute of Technology

INDIANA UNIVERSITY

THE CATHOLIC UNIVERSITY of AMERICA

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Justin Stevens DIRC 2017 Workshop

Jefferson Laboratory (JLab)

* Newport News, Virginia

ISLAND

NOVA SCOTIA

MAINE

***** Home to the Continuous Electron **Beam Accelerator Facility (CEBAF)**

INLOUIA

tagger magnet

tagger to detector distance

is not to scale

- Designed for light quark meson spectroscopy
- 9 GeV linearly-polarized photon beam on LH₂ target
- Baseline π/K separation up to
 ~2 GeV provided by time-of-flight

diamond

wafer

electron

beam

Strange meson spectroscopy

Y(2175): K[±] momentum vs polar angle

S

S

Significantly extends reach in search for exotic hadrons (hybrid, multi-quark, etc.) containing strange quarks

GlueX DIRC design constraints

*** Support structure:**

radiators retractable, minimize material thickness in active area, non-magnetic materials near solenoid field

* Optical boxes: no modifications to bar boxes, DAQ integration (photodetector and electronics choice)

Support structure assembly

DIRC design constraints

Nominal Postion

- * No I-beam near beamline to minimize material, and limit rails to only required positions on bar boxes
- * Non-ferromagnetic requirement near solenoid field

Inner support frame design

SLAC Barbox rail supports

- * No I-beam near beamline to minimize material, and limit rails to only required positions on bar boxes
- * Non-ferromagnetic requirement near solenoid field

Inner support frame design

* No I-beam near beamline to minimize material, and limit rails to only required positions on bar boxes

* Non-ferromagnetic requirement near solenoid field

Inner support frame assembly

Segmented rails

- * No I-beam near beamline to minimize material, and limit rails to only required positions on bar boxes
- * Non-ferromagnetic requirement near solenoid field

Support structure installation

- * Final assembly and testing ongoing now at IU
- Expect delivery to JLab in August and installation soon thereafter
- Requires temporary floor mounts while FCAL carriage is retracted

Bar box transportation

Transportation strategy

- Transport 4 bar boxes
 from SLAC to JLab in two
 separate shipments
- First bar box shipment in Fall 2017, second shipment of remaining three soon thereafter

- * Real-time monitoring system for bar boxes in transit
 - * Multiple cameras for viewing bars
 - * N₂ flow sensors, accelerometers, etc.

Monitoring system development

* Distinct kaleidoscope pattern when viewing bar from window which can be monitored in ~real time

Camera tests at SLAC

- * LED light source for use inside shipping crate
- Tested various mounting schemes for cameras for image quality and stability

Camera tests at SLAC

Mount plates directly to bar box

Too close to see full bar

 Will use 4 (6) cameras on plates directly mounted to bar box with larger stand off distance to view 3 (2) bars per camera

Monitoring system logistics

- * Many sensors, cameras, etc. needed in transit, which provide input to central computer and broadcasts wireless signal to trail car
- Wireless interface for accelerometers, temp sensors, flow meters, etc.
- * Limit power consumption to that available in refrigerated truck
- * Full test run in September to install all components in crate and test the system before shipping to SLAC

Wireless Accelerometers

Optical box design

- Design based on SLAC
 FDIRC prototype
 - Replace fused silica
 block from FDIRC
 prototype with mirrors
 contained in distilled
 water
 - Replace of cylindrical mirror with 3-segment flat mirror
- Similar coupling of bar boxes to water volume as used at BaBar

Optical box design

MAPMT readout

See talk by Ilaria Balossino

- Need existing solution, since limited time for electronics development
- * CLAS12 RICH has very similar requirements for single photon detection
- * Limited timing resolution compared to other DIRCs
- * All boards in house at JLab, tests ongoing

Optical cookie development

- * Belle II experience for materials: TSE3032 and RTV615
- * Custom molds to produce various thickness cookies

Optical cookie performance

Relative to single quartz window

* Quantified transmission of various thickness cookies and materials

Ongoing studies of application force will determine final thickness

Calibration source optimization

Calibration source optimization

* 3 fibers with a lens or square diffuser provides full illumination of the MAPMT plane

Studying timing characteristics and requirements of laser vs LED light sources in simulation

* 2017:

- * Transport BaBar bar boxes from SLAC to JLab
- * Install support structure and services for first optical box

*** 2018:**

Install first optical box and available MAPMTs and begin commissioning detector with available beam time

*** 2019:**

- * Complete installation and commission complete detector
- * Looking forward to exciting results for DIRC2019 workshop