Belle II TOP optics

2017/8 K.Inami (Nagoya university) for Belle II TOP group

Belle II TOP detector

- Belle II experiment
 - Higher luminosity B-factory experiment; x50 integrated luminosity from Belle
- Particle identification; Ring Imaging Cherenkov detectors
 - A fake rate for K/ π separation 2-5 times smaller than Belle
- TOP detector measures Cherenkov light arrival time/position precisely, then reconstructs particle velocity.
- 16 TOP modules are located in the barrel region outside of tracking device.

Module construction/installation done

Module

installation

TOP module components

Focusing mirror Glue each other • R=6.5m Mechanics, Quartz Bar Box (QBB) MCP-PMT + Readout electronics • 32 PMTs x 16ch = 512ch L=2.7m w=450mm 100mm 20mm^t 456mm 51mm 16x2 MCP-PMTs **Readout electronics**

Construction flow overview

Quartz radiator requirements

- Quartz material; Corning 7980 class 0, grade D or better
 - DIN58927 class 0 material has no inclusions (inclusions ≤0.01 mm diameter are disregarded).
 - Grade D (or superior) material having index homogeneity of ≤3 ppm over the clear aperture of the blank. This is verified at 632.8 nm according to the supplier brochure.
- Need high quality surface
 - Roughness: 0.5nm (to keep total reflectance)
 - Flatness: $<10\lambda(6.3\mu m)$ over full aperture (to keep ring image)
 - Edge chamfer: <0.2mm
 - Small tip area

Quartz bar

- Prototype production by Okamoto-optics.
- Most of production bars by Zygo
 - Because of production rate

Interferograms of one of the bar surfaces from metrology report

Acceptance test (bar)

Mirror and expansion prism

- Mirror by Exelis
 - Spherical mirror (R=6.5m)
 - Aluminized
 - Peak at the edge

• Prism by Zygo

Acceptance test (mirror and bar)

10

Gluing studies

- Used EPOTEK 301-2 glue
 - Need to keep joint stable by fully cured (~2 days)
- Developed "taping method"
 - Put tapes on bottom and sides of joint and pot glue on joint
 - Need to reduce leak for stable joint (optimization of gap, taping etc.)
- Strength tests
 - Checked glue joint strength for several cases
 - Prepared small quartz pieces (5x5x2cm³) with polished surface
- Test with large sample
 - Put glue between the dummy mirror glasses and check the situation
 - Two well-polished dummy mirror quartz

Taping method development

- Put tape under and side of quartz to keep the glue in the gap.
 - Remove tapes and clean up after fully cured (2~3 days after)
- Chose softer Teflon tape
 - Easy to fix the leakage around the edge
- Teflon block and tape for prism part
 - Difficult joint due to the difference of width; Prism (456mm), bar (450mm)
 - After several ways, finally no leakage happened
- Enabled to align/tune after taping by using soft tape

Glue flow

- Pot glue at the center of joint
- Move dispenser head forward following glue front.
 - Not to include air bubble
- Fill up the gap by glue (~one hour)
- If there are many bubbles, remove joint, clean surface carefully and retry again.

Striae like structure of glue

- Found index change of glue (striae like structure) along cure progress
- Found putting additional glue on top can avoid (or weaken).
 - Put Teflon tape as a dam on the top surface

Glue cleaning tests

- Check cleaning of remained glue between dam after half/full cure
 - We could remove, although thicker glue needs much acetone and time.
- Try to use thinner dam and less remained glue
 - Pre-cleaning at half cure state (5~8hours after mixing) makes the process easy.

Acetone residue after evaporation

- Found visible acetone residue after the evaporation
 - No clear residue for fresh acetones (just after getting from original bottle)
 - It looks due to leeching/dissolution from washing bottle.
 - Longer storage (>several weeks) shows more visible residue.
 - The bottle was recommended by Zygo.
 - \rightarrow Changed to use small Teflon bottle (to refresh short time cycle)

Bending test with small polished quartz

- Check the strength with the "normal" procedure
 - Alignment, taping, putting glue, curing, un-taping, cleaning the excess
- Tested many small samples
 - 841N; corresponds to the maximum stress by the self weight of 2.5m quartz bar supported at the end point without QBB. (extreme case)
- Glue applied by the default procedure shows good strength.
 - No strange delamination was seen during the test.

	Break at (N)
EPOTEK-1 ("normal" procedure)	6000
EPOTEK-2 ("normal" procedure)	6600
EPOTEK-3 ("normal" procedure)	6200
EPOTEK with weak striae 1	6500
EPOTEK with weak striae 2	6000
EPOTEK with acetone residue 1	5000
EPOTEK with acetone residue 2	5000

Test with large sample

- Glue cured with large quartz sample (same surface quality with mirror)
 - Again, visible stripe-shape index change found at beginning, but become very weak after full cure

Quartz alignment

- Optics joints are cleaned carefully, then aligned by gluing stage
 - Quartz position is tuned by micrometer heads at stage corners and side.
 - Relative angle and height are measured using autocollimator (~10arc-sec, ~0.05mrad) and laser displacement sensors (~20micron), respectively.
 - Gap between parts tuned using plastic film (t~50µm)

Gluing of modules

- Put tapes after the alignment
- Pot EPOTEK301-2 glue on the gap
- Pre-cleaning of glue excess
- Clean excess glue after fully cured and final inspection of quartz shape

Assembling

Optics: alignment, gluing, curing and aging (~2 weeks).

Enclosure: gluing CCDs and LEDs, integrating fiber mounts.

QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance check. QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".

Summary

- We finished 16+1 TOP module production and installation.
 - Produced 16 modules in one year.
- Quality assurance test shows excellent quality.
- We studied many gluing procedures using slide-glasses, small prisms, small quartz sample and large quartz sample, to fit to large quartz.
 - Developed "taping method"
 - Confirm good glue strength with our procedure
- Quartz gluing with alignment tools worked well.
- Assembly with quartz bar box was done successfully.