Lifetime of MCP-PMTs and other Performance Features

Albert Lehmann,

M. Böhm, R. Frytz, D. Miehling, M. Pfaffinger, S. Stelter (University Erlangen-Nuremberg, Germany)

- Introduction and motivation
- Lifetime results with ALD MCP-PMTs
- Information obtainable with TRB scans
- Some properties of new MCP-PMTs
- Outlook and summary

PANDA Detector at FAIR

Albert Lehmann

MCP-PMTs for PANDA DIRCs

MCP-PMTs are the only suitable sensors for PANDA

- Compact and available as multi-anode devices
- Single photon detection even in B-fields of 1 2 Tesla
- Excellent time resolution <50 ps</p>
- Low dark count rates

Barrel DIRC

- Photon rate: ~200 kHz/cm²
- 10 years anode charge: 5 C/cm²
- Pixel size: ~ 6 x 6 mm²

Endcap DIRC

- Photon rate: up to 1 MHz/cm²
- 10 years anode charge: >5 C/cm²
- Pixel size: ~ 0.5 x 16 mm²

Attempts to Reduce Aging

- Thin (5-10 nm) Al₂O₃ films at or between MCPs [NIM A629 (2011) 111]
- Improved vacuum quality
- Cleaning of MCP surfaces by electron scrubbing techniques
- Modified and more robust photo cathodes [JINST 6 C12026 (2011)]
- Deposition of ultra-thin atomic layer (MgO, Al₂O₃) on MCP substrate
 - MCP pores are coated in three steps
 - resistive layer
 - secondary electron emission (SEE) layer
 - electrode layer
 - Optimization of MCP resistance and SEE
 - for each film independently
 - higher gain at given HV
 - Arradiance Inc. \rightarrow PHOTONIS, LAPPD, ...

[NIM A639 (2011) 148]

Simultaneous Aging of MCP-PMTs

- **Problem in 2011:** The few aging tests existing were done in rather different environments \rightarrow results are difficult to compare
- <u>Goal</u>: measure aging behavior for all available lifetime-enhanced MCP-PMTs in same environment
- Simultaneous illumination with common light source \rightarrow same rate
- Aging results presented at RICH 2013:

Lifetime-Investigated MCP-PMTs

	BINP	PHOTONIS			Hamamatsu			
		XP85012	XP85112	XP85112	R10754X-01-M16	R10754X-07-M16M	R13266-07-M64	
pore size (µm)	7	25	10	10	10	10	10	
number of pixels	1	8x8	8x8	8x8	4x4	4x4	8x8	
active area (mm²)	9² π	53x53	53x53	53x53	22x22	22x22	51x51	
total area (mm²)	15.5² π	59x59	59x59	59x59	27.5x27.5	27.5x27.5	61x61	
geom. efficiency (%)	36	81	81	81	61	61	70	
photo cathode	Multi-alkali	bi-alkali			multi-alkali			
peak Q.E.	21% @ 495 nm	20% @ 380 nm	23% @ 380 nm	22% @ 380 nm	21% @ 375 nm	22% @ 415 nm	17% @ 415 nm	
comments	better vacuum, new cathode	better vacuum, polished surfaces	better vacuum, polished surfaces	better vacuum, ALD surfaces	film between MCPs	ALD + film	ALD + film	
# of tubes measured	2	1	1	3	1 (+1 L4)	2	4	

- Tubes first measured with no significant lifetime improvements
- Lifetime improved tubes measurement started ~6 years ago
- Hamamatsu 1 inch ALD tubes measurement started ~4 year ago
- Hamamatsu 2 inch ALD tubes started in Dec. 2015 and Aug. 2016

Albert Lehmann

Measurement of MCP Lifetime

Continuous illumination

- 460 nm LED at 1 MHz rate attenuated to 1-photon level $\rightarrow \sim 10-20$ mC/cm²/day
- All MCP-PMTs in same light spot
- Permanent monitoring of MCP pulse heights and LED light intensity

Q.E. measurements

- Light source: stable Xenon arc lamp
- 250–700 nm wavelength band with in-house monochromator $\Delta \lambda = 1$ nm
- Every ~4 weeks: wavelength scan
- Every 3-4 months: complete surface scan at 372 nm
- Thorlabs square diffuser (ED1-S50-MD) in front of LED to get ~30x30 cm² homogeneously illuminated light spot at sensor plane
- Holding structure for up to 16 two-inch MCP-PMTs

Albert Lehmann

gain almost stable and DCR decreases only slightly

when QE degrades clear wavelength dependence visible

Albert Lehmann

1 layer ALD: gain/DCR variations; QE stable up to 6 and 10 C/cm², then declining

2 layer ALD: very stable behavior up to >14 C/cm² Albert Lehmann

<u> Q.E. Scans</u> (Hamamatsu ALD)

1": stable to 4 C/cm², then moderate QE decline ; corners more serious
2": early QE degradation at JS0022; later prototypes (JS0035) stable

Q.E. Scans (Photonis ALD)

1 ALD layer: QE degradation starts at 6 C/cm² and 10 C/cm² 2 ALD layers: no sign of QE degradation up to >14.5 C/cm²

Albert

	Sensor ID	Integral charge (July 27, 2017) [mC/cm ²]	QE start [%]	QE latest [%]	QE latest / QE start [%]	Comments
Photonis XP85112	9001223	9234	22.15	5.29	24%	Start: 23 Aug. 11 Stop: 22 Sep. 15
	9001332	15383	22.96	9.63	42%	Start: 12 Dec. 12 ongoing
	9001393	14510	19.05	19.68	103%	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X/R13266	JT0117 (M16)	2086	19.97	9.32	47%	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	18097	21.52	7.3	34%	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	15872	21.4	8.22	38%	Start: 21 Oct. 13 ongoing
	JS0022 (M64)	3211	17.43	6.73	39%	Start: 11 Dec. 15 ongoing
	JS0035 (M64)	2553	25.47	26.36	103%	Start: 31 Aug. 16 ongoing
BINP	3548	6698	11.93	4.58	38%	Start: 21 Oct. 11 Stop: 08 Jul. 15

ALD

– non

ALD

Lifetime of ALD MCP-PMTs (07/2017)

1-inch ALD Hamamatsu: 50% of original QE after ~14 C/cm²

2-inch ALD Hamamatsu: later prototypes more stable

1-layer ALD PHOTONIS: aging starts at 6 and 10 C/cm²

• 2-layer ALD PHOTONIS: no sign of aging yet at 14.5 C/cm²

Albert Lehmann

Accelerate Aging Measurements

- At 2nd MCP output the QE degradation rate depends on photon rate
- At 1st MCP (or PC) no correlation between QE degradation and rate
- Simultaneous current measurement at cathode and anode requires one potentialfree picoammeter (up to 3.5 kV)

Albert Lehmann

Tests with Floating Picoammeter

- Floating picoammeter (FPA)
 - Self-built, since commercially not available
 - Floating to 2 kV (new one to 4 kV)
 - Current to voltage conversion
 - Readout with standard multimeter
 - Very linear behavior down to ~1 pA

Test measurements

- Photonis 9002085 at 1600 V
- Simultaneous illumination of MCP-PMT and photo diode with Pilas laser
- 6 h dark, then increasing light intensity
- PC current (FPA) proportional to light
- Anode current (Keithley) saturates
- Agreement with pulsed rate stability

Possible Causes of MCP Aging

Neutral molecules from residual gas react with PC [NIM A629 (2011) 111]

Ion feedback

- Amplification process causes
 - Desorption of atoms from MCP material (especially H and Pb)
 - Damage to MCP surfaces
 gain may change
 - Ionization of residual gas atoms

- ~keV ions hit and may react with PC
- Light (H⁺, He⁺, ...) and heavier ions (Si, K, Cs, Pb, ...) partly confirmed by TOF
- PC gets damaged \rightarrow QE loss \rightarrow Mechanism unknown !
- Findings from investigation of Photonis 9001223 (with aged/unaged PC halves)
 - Optical measurements \rightarrow photon absorption unaffected \rightarrow **no bulk damage**
 - Retarding potential analysis → shows only **minor effects on work function**
 - **Sputtering of Cs** from PC to MCP surface observed

Albert Lehmann

Scans with TRB/PADIWA DAQ

For details about TRB/PADIWA data acquisition see talk of M. Traxler

- Each channel: TRB system is permanently analyzing data stream and buffering PADIWA lead time and time-over-threshold (ToT) information of hits
- After a trigger (t = 0) all hits within a certain time interval (e.g. -10 to +10 µs) are read out and stored; in our case the trigger is usually given by the Pilas laser
- Main information per channel obtained with xy-scans
 - x-, y-position, lead time, ToT, number of hits
- Higher level information deduced (currently):
 - Afterpulse distributions \rightarrow TOF of feedback ions
 - Dark count xy-distributions
 - Charge sharing (and electronic) crosstalk (>= 2 hits at same time)
 - Recoil electron distributions (spatial information and time delay)

TRB scans allow the separation of hits from recoil electrons and those of charge sharing events as well as identification of afterpulsing hits

Albert Lehmann

TRB-Scan of PHOTONIS Hi-QE

Albert Lehmann

Comparison of Darkcount Rates

Determine darkcount rate per pixel with integral of N(-10000 ns to 0 ns)

- Rate/pixel varies from <10 Hz to ~10 kHz</p>
- By far lowest darkcount rate observed with Hamamatsu JS0035
- High darkcount rate in 2-layer ALD Photonis 9001393 (heavily aged!)
- Highest darkcount rates often seen in corner pixels

Albert Lehmann

Afterpulse Distributions

- Possibility to determine afterpulse rate (and distribution per pixel)
- % of afterpulses = N(115-550 ns) / N(98-115 ns)
- Several peaks in afterpulse distribution \rightarrow possibility to identify ions
- Significant afterpulsing seen in Hamamatsu ALD tube with film (??)
- 9001393 with longest lifetime has also significant afterpulse fraction

Recoil e⁻ in PHOTONIS Hi-QE

Albert Lehmann

XP85012; 25 µm; non-ALD; high-QE; 1600 V

Events with 1, 2, and >2 hits in time window between 95 and 110 ns

- 2 Hits (pixel borders) \rightarrow charge sharing among 2 pixels (same time)
- >2 Hits (pixel corners) \rightarrow charge sharing among 3 or 4 pixels
- Peak widths allow determination of charge cloud size $\rightarrow \sigma$ = 1.0 1.2 mm

Albert Lehmann

Crosstalk in Hamamatsu JS0035

R13266; 2-inch; 10 μm; ALD + film in front of 1st MCP; 2800 V

- Events with 1, 2, and >2 hits in time window between 95 and 110 ns
- Pixel borders clearly seen in 1-hit distribution
- >=2 Hits (pixel borders) \rightarrow no clear charge sharing seen !!
- Crosstalk behavior is very different to Photonis devices \rightarrow electronic crosstalk?

Albert Lehmann

QE Comparison of new MCP-PMTs

PHOTONIS Hi-QE

- 25 µm pores
- No ALD coating
- In HiQE tube the QE is significantly enhanced from 250 to 400 nm compared to older versions (e.g. 9001332)
- Max. QE of 29% at 380 nm

Hamamatsu 2-inch

- 10 µm pores
- ALD coating + film
- Good QE of 27% at 385 nm

"Real" Gain of 2-inch MCP-PMTs

PHOTONIS Hi-QE 9002085

- -U = 1600 V
- $-\sim 10^6$ gain at center (pixel 44)
- factor 2 gain variations
- Gain determined by ratio of current measurements at anode and PC (QE and CE cancel out)
- Measure direct PC current with unattenuated light
- Measure amplified current distribution obtained at shorted anodes with attenuated light

Hamamatsu 2-inch JS0035 -U = 2800 V

 $- \sim 8.10^{5}$ gain at center – factor 7 gain variation

Albert Lehmann

former MCP-PMTs showed stable operation to >1 MHz/cm² single photons

Step from 1-inch to 2-inch MCP-PMTs (Hamamatsu) lowered rate capability by more than an order of magnitude (higher capacity?)

Also new HiQE MCP-PMT from Photonis shows lower rate capability

Albert Lehmann

- Last years have seen a tremendous lifetime increase of latest MCP-PMT models due to recent design improvements
 - application of ALD technique (x50 lifetime improvement)
 - Huge step forward !
 - However: aging mechanism still not understood
- Equipping the PANDA DIRCs and other high rate detectors with MCP-PMTs appears feasible
- Results of TRB scans look very promising and may provide a rich data set for many MCP-PMTs (especially when quality assurance tests are started)