

Time resolved single event imaging (x, y, t) with MCP detectors and its potential for DIRCs

Outline:

- Why this talk ?
- Who is ProxiVision ?
- What is our experience with high rate x,y,t readouts?
- How can DIRCs benefit from that?

PV-OM-070817

Why this talk?

Why this talk ?

134

5. Development of a conceptual detector design

Figure 5.36.: Comparison of selected anode designs discussed in this section. The

INNOVATION IN OPTOELECTRONICS

Why this talk ?

My experience today:

- Delayline (DL) system with > 5 MHz proven!
- 10 MHz per Delayline feasible.
- Would be sufficient for detectors like the Endcap DIRC (3 x DL/tube => 30 MHz/tube)
- Advantages can be:
 - Low number of channels (2 per DL)
 - High spatial resolution < 100 μm
 - Fast single event timing:
 ~50 ps @ MCP / 150 ps @ anode
 - Flexible anode design outside the tube

Who is ProxiVision?

ProxiVision:

- Main products:
 - (UV) Image Intensifiers
 - PMTs
 - related detector systems
- Location: Bensheim, DE
- Roots: Bosch Fernseh GmbH
- **Size**: SME, ~65 employees
- New facility since 2016: 2300 m² production area, 700 m² admin. area, on 8000 m² property.

INNOVATION IN OPTOELECTRONICS

Product range in a nutshell

- Vacuum Tubes:
- Camera systems:
- Electronics:
- Components:

- Image Intensifiers and Photomultipliers
- Gated iCCD, X-Ray, Neutron
 - Power supply, readout electronics
 - Open-MCP, Phosphor screens (also > 10x10 cm²)

INNOVATION IN

OPTOELECTRONICS

Plus customized detectors and cameras.

Reveal the invisible

הסובוא

INNOVATION IN OPTOELECTRONICS

ProxiVision's working horse: Solar Blind Image Intensifier.

- Fast, low-noise detection of single UV-C photons
- UV-C source: hot rocket plumes
- No natural UV-C sources => clutter free detection
- Ruggedized design is used on vehicles and aircraft to trigger countermeasures.

ProxiVision's working horse: Solar Blind Image Intensifier.

- Ozone-layer acts as filter for solar UV-C
- => all UV-C sources below are artificial !
- Sensor requirements: UV-C sensitive and as insensitive as possible > 280 nm.

INNOVATION IN OPTOELECTRONICS

FUV Detection in Space

- FUV detector for the METIS instrument on the Solar Orbiter mission (ESA)
- Goal: FUV imaging at Lyman-α lines of H und He in the solar corona.
- Enables the study of solar plasma dynamics.

Source: ESA

CEM based PMTs

- Typical active \varnothing [mm]: 5, 9, 15
- Required HV: 2-3 kV
- Low dark count, down to 10 Hz/cm² (Low-noise Bialkali 160-670 nm)
- Available spectral range: 115 nm 900 nm
- TTS ~ 2 ns

- Modules with internal HV-Supply
- Gain control via 0..5 V reference.
- Analog and TTL out

What is our experience with high rate x,y,t readouts?

Neutron sensitive MCP

Neutron detection in boron-doped MCP

Charge amplification triggered by ions from bulk glass

Applications?

Woracek et al., **Physics Procedia** 69 (2015) 227 – 236

- Neutron de Broglie wavelength is determined by the time of flight.
- ToF camera delivers "hyperspectral" neutron image
- ",Bragg edge" (top picture) allows to measure bulk material properties like phase distribution (left).

Adv. Mater. **2014**, *26*, 4069–4073

INNOVATION IN

OPTOELECTRONICS

I'DXI

 $\lambda = 2d_{hkl}$

2d_{kkl}sin90*=λ

No more scattering from same hkl plane with increasing λ

 $\lambda > 2d_{hkl}$

2d_{hkl}sinθ<λ

Capacitively coupled delayline

Neutron imaging by spatially resolved detection of single neutrons at high rate.

~100 µm position resolution, ~1 µs time resolution per neutron (limited by neutron ToF jitter)

INNOVATION IN OPTOELECTRONICS

Time resolved neutron camera

INNOVATION IN OPTOELECTRONICS

Time resolved neutron camera

Neutron imaging by spatially resolved detection of single neutrons at high rate. $\sim 100 \ \mu m$ position resolution, $\sim 1 \ \mu s$ time resolution per neutron (limited by neutron ToF jitter)

INNOVATION IN OPTOELECTRONICS

Tomography recorded in "overnight run"

INNOVATION IN

OPTOELECTRONICS

Radiography and tomography of a pneumatic cylinder (CONRAD@BER2) Lightweight organic materials in metal cylinder generate strong contrast

Robin Woracek, NIMA 839 (2016) 102–116

- List data => Time-of-flight spectra can be plotted for arbitrary regions/pixels
- "Hyperspectral neutron imaging" (Time ⇔ Wavelength @ pulsed src.)

INNOVATION IN OPTOELECTRONICS

Polished System

Detection of thermal and cold neutrons with high spatial and time resolution.

Time-of-flight => de Broglie wavelength (wavelength resolved imaging)

INNOVATION IN

OPTOELECTRONICS

Oliver.Merle@proxivision.de

Potential DIRC usage:

- 1D Strips for focusing designs
 - high spatial resolution ~100 μm
 - Fast timing ~150 ps
 - Low channel count
 - TDCs can be up to ~5 m away from analog FEE.
 - >>5 MHz per Strip
 - Works with Chevron
- Even 2d Imaging possible.
- In the example to the left:
 - 6 instead of 300 channels
 - 1 instead of 300 anode pins
 - PCBs can still be in vincinity.

INNOVATION IN OPTOELECTRONICS

Questions ...

contact Oliver.Merle@proxivision.de

