SiPM photosensors and fast timing readout for the Barrel Time-of-Flight detector in PANDA

Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group

07.08.2017, DIRC2017

Outline

- Introduction: SiPM
- PANDA Barrel-TOF / SciTil
 - R&D History
 - Current design, performance
 - Possibilities for further optimisation

Evolution of Detector Technology

- single channel to multichannel
 - MWPC, hodoscope
- same effect by another mechanism/principle
 - photoelectron multiplication (PMT \rightarrow SiPM)
 - gas ionisation (PC \rightarrow GEM, RPC)
 - ionisation (gas \rightarrow semiconductor, STJ)
- same principle in a different application, readout
- different size (smaller / larger)

SiPM (PPD)

- Evolution from
 - PMT / Geiger-tube / photodiode.
 - Multichannel.
 - Compact.
- Matured technology, yet evolving rapidly.
 - Power relationship among market players also changing.
 - Hamamatsu, KETEK, AdvanSiD, SensL, Philipps, and many smaller manufactures.
- Replace vacuum-PMT?
 - It will come at some point. The question will be when.
 - Price per sensitive area.

Comparison with MCP-PMT/G-APD

	ΡΜΤ	MCP-PMT	SiPM
Gain	~10 ⁶	~ 106	10 ^{5~6}
Bias Voltage	1-2k	I-2k	20~100
Dark Count	low	low	high
Cost	~700€/ch?	?	~30€?
Sensitive Area	1"-2"	50x50?	$Imm^2 \sim 20mm^2$
Cost/Size			
Magnetic Field	< 0.1T	< ~2T	< 15T
Time Resolution	good	very good	good
Linearity	good	good	good (<npix)< td=""></npix)<>
Gain Stability			temp., voltage sensitive

Matrix SiPM prototype (56x56mm²) for the PANDA B-DIRC

Matrix quardatic mirror light guide

Light Concentrator: Aluminum coated Chromium) 8x8 = 64 cells I cell: $7x7mm^2 \Rightarrow 3x3 mm^2$

> 56x56 mm² sensitive area Hamamatsu MPPCs 3x3mm²

Self-triggering on a single photon was not possible 7

Barrel Time-of-Flight Detector, a.k.a. SciTil

MVD<STT<B-DIRC<B-TOF<EMC

Chapter 3: Capabilities and Requirements

t₀ determination

event sorting

• 20 MHz I.R. in the high luminosity mode

 and actually PID as well are coupled and need to be done iteratively with increasing accuracy

Requirement: σ_t<100 ps to keep the efficiency loss due to event mixing in a tolerable level

Project Status

- 2017 March After an internal review, TDR was approved by the collaboration to submit to FAIR.
- Now
 TDR being reviewed by FAIR/ECE.
 - Received first comments in July.
 - Current main activity = FEE devel.

Conceptual design, Proposal

2012

Proposal for a Scintillator Tile Hodoscope for $\overline{\mathsf{P}}\mathsf{ANDA}$

Version 1.1

K. Goetzen, H. Orth, G. Schepers, L. Schmitt, C. Schwarz, A. Wilms

Abstract

In this document a new detector in place of the barrel time-of-flight detector is proposed. This detector is based on small scintillator tiles read out by silicon photomultipliers. The motivation in terms of physics and technical benefits are summarized. Details of the detector layout are given.

Scintillator Tile Hodoscope

K. Goetzen et al., Proposal for a scintillator barrel hodoscope for PANDA

Single tile performance (original geometry) fulfilled the target time resolution

JESSICA@COSY@FZ-Jülich, Jan2014

Analog and Digital SiPM

analog

Array of SPADs (Single Photon Avalanche Diode) A few 100-1000 SPADs Signal: analog sum of individual pulses Pulse amplitude depends on gain/temperature Hamamatsu, KETEK, AdvanSiD, SensL, ...

Array of SPADs (Single Photon Avalanche Diode) 3200 / 6400 SPADs per pixel Signal: digital sum of trigger bins (breakdowns) & digital time stamp from TDC Pulse amplitude is not relevant Philips 14

Results using DPC: time resolution

<image>

SciTil1: EJ-228 with Philips DPC SciTil2: EJ-228 with Philips DPC SCI1: BC-408 with Philips DPC

Results using DPC: time resolution

SciTil1: EJ-228 with Philips DPC SciTil2: EJ-228 with Philips DPC SCI1: BC-408 with Philips DPC

Calculate σ_{i} from TOF resolutions: $\sigma_{scitil} = 46.9 \pm 0.6 \text{ ps}$ $\sigma_{scitil} = 42.2 \pm 0.7 \text{ ps}$ $\sigma_{scit} = 57.0 \pm 0.5 \text{ ps}$

Photodetector position

S.E. Brunner, L. Gruber, J. Marton, H. Orth, K. Suzuki.

SciTil Workshop - Vienna, July 24, 2014

SciRod (Erlangen)

more lightguide-like tile geometry Scintillator Samples

BC408 (τ = 2.1 ns)

- 5 x 5 x 170 mm³
- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 30 x 30 mm³

BC420 (τ = 1.5 ns)

- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 5 x 30 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 10 x 30 mm³

3

19

SciRod (Erlangen) cont'd

More Time Resolutions (1)

Scintillator 5 x 5 x 120 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88		94		101
	S10362-100P(x10)	71		77		74
	S12572-050P	72		77		74
BC420	S12572-015P	60		108		63
	S12572-050P	50	79	74	57	52

Scintillator 5 x 10 x 120 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88	116	132	98	93
BC420	S10362-100P	75		121		82

BC420 scintillator provides better results than BC408

Albert Lehmann

20

SciRod (Erlangen) cont'd

More Time Resolutions (2)

Scintillator 5 x 5 x 50 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	68		103		74
	S12572-050P	74		67		68
BC420	S12572-050P	78		64		51

Scintillator $5 \times 10 \times 50 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_t	σ_{t}
BC408	S10362-100P	113		123		92

Scintillator 5 x 5 x 170 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_t	σ_{t}	σ_{t}
BC408	S10362-100P	88	85	129	85	99

Longer and wider rods tend to give worse time resolution

SciRod Summary

- Various geometry tested. Convincingly better.
- Gives better results primarily due to better light collection.
- Time resolution 50-100 ps.
- shorter, narrower geometry preferred.
- Different $\Delta \theta$, $\Delta \phi$ granularity
 - position resolution 13mm. Actually better.

MEG2 TOF counter

Y. Uchiyama, VCI2016

AdvanSiD: ASD-NUV3S-P-50 (3 × 3 mm2, 50 μm) This prototype model was found to have worse performance Scintillator: EJ232, 120 × (40 or 50) × 5 mm³

Series connection of multiple SiPMs
 Signal transmission over a long PCB board

Series connection of multiple SiPMs

relatively new technique to increase effectively the sensitive area of SiPM (typically 3x3mm²)

~30% faster rise time ~30% smaller signal width

	Sensitive area	Bias Voltage	Signal shape	Gain	V_{BD} adjustment	
Single	1	Vbr+OV	-	1	-	i.
Series	N	$N \times (V_{br} + OV)$	faster	1/C	Yes	
Parallel	N	V _{br} +OV	slower	С	No	
Hybrid	N	V_{br} +OV	faster	1/C	No	

Table 4.1: Comparison of series, parallel and hybrid connections of N SiPMs with reference of a single senso

SciTil, new design

Micro Stripline Technique

- Coaxial-like structure to transmit signals over a PCB board, realised on a multilayer PCB board, that features
 - High density
 - Good shielding from external noise
 - High bandwidth
 - Low crosstalk
 - Mechanical strength
- 3 (cupper) layers per signal

Designed by INFN-Genova

Matteo De Gerone <<u>matteo.degerone@ge.infn.it</u>>

Example of MEG2 TOF

Super Module

Super Module - a half length prototype

HV 240V, threshold -30 mV, 2000 events/position, 3069 positions

Mean time resolution σ = 53.9 ps

Position resolution $\sigma_x = 5.5 \text{ mm}$

Side view of the SciTil

400-

сч ³⁰⁰⁻ Ча Х 200-

100-

0-30

Further optimisation?

- #sensor $4 \rightarrow 5$ or 6
- sensor size $3x3 \text{ mm}^2 \rightarrow 4x4 \text{ mm}^2$ or $5x5 \text{ mm}^2$
- scintillator thickness 5 mm \rightarrow 4 mm or 3 mm?

Wrapping material	Time resolution [ps]	Number of detected photons
No wrapping	55.0 ± 0.3	288 ± 2
Aluminised Mylar foil	52.7 ± 0.3	355 ± 2
Tyvek hardstructure 1057D	55.0 ± 0.3	394 ± 3
Enhanced specular reflector (ESR)	55.2 ± 0.3	355 ± 3
Teflon tape	59.4 ± 0.3	408 ± 4
aluminium foil	54.2 ± 0.3	344 ± 3
Wrapping material	Time resolution [ps]	Number of detected photons
No wrapping	61.3 ± 0.3	371 ± 2
Aluminised Mylar foil	59.7 ± 0.3	445 ± 3

The best time precision when triggering on the first photon? Analog SiPM

Time resolution of a scintillator tile read-out with the Hamamatsu SiPMs

No, the trigger threshold should not be set to the first detected photon, due to electronics noise and the SPTR of the SiPM.

Electronics threshold: SiPM

• A similar behavior has been also reported by others

S. Gundacker et al., Time of ight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, J. Instrum. 8 (2013) P07014.

S. Seifert, H. van Dam, D. Schaart, The lower bound on the timing resolution of scintillation detectors, Phys. Med. Biol. 57 (2012) 1797-1814.

S. Seifert et al., A Comprehensive Model to Predict the Timing Resolution of SiPM-Based Scintillation Detectors : Theory and Experimental Validation, IEEE Trans. on Nucl. Sci., Vol. 59, pp. 190-204, 2012.

Effects of scintillation light collection on the time resolution of a time-of-flight detector for annihilation quanta S. Ziegler at al. (1990)

L. Gruber

SciTil Workshop - Vienna, July 24, 2014

The best time precision when triggering on the first photon? Digital SiPM

Time resolution of a scintillator tile read-out with the Philips DPC

Yes, the trigger threshold should be set to the first detected photon

Summary

- SiPM (analog / digital)
- Barrel Time-of-Flight Detector for PANDA
 - series connection of 4 SiPMs
 - signal transmission lines with PCB board
 - $\sigma_t \sim 60 \text{ ps}$, lab / beam test
- Still some rooms for improvements