Machlne earnlng {e]g




Artificial Intelligence

Machine Learning

Deep Learning
@)

DL is a subset of ML which makes the
computation of multi-layer NN feasible.

When applied to massive datasets and giving
massive computer power it outperforms all
other models most of the time.

ML is becoming ubiquitous in nuclear and
particle physics.

DL just started having an impact in
nuclear/particle physics
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Optimization

g
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Simplest Approaches

e We are not really great at interpreting high-dimensional data

e Manual Search
Good luck!

e Grid Search
Easy but scales poorly -> curse of dimensionality

e Random Search

Faster, but won't guarantee optimal search Likelihood

How probable is the evidence
given that our hypothesis is true?

e What if we can self-learn the optimal values?

. Ple

Prior
How probable was our hypothesis

before observing the evidence!

P(H|e)=
e Bayesian Optimization
Posterior

Takes advantage of the information the model
learns during the optimization process.

How probable is our hypothesis
given the observed evidence?
(Not directly computable)

H) P(H)

Marginal

How probable is the new evidence
under all possible hypotheses?

P(e) =Y P(e | H)) P(H)

C. Fanelli. DIRC2019, 11-13 Sep



BO Applications e

Top 10 brewery in GieBen, Hessen

23 Alle Filter € €€ €€E €€€E Jetzt gedffnet

This approach finds a lot of applications:

B 1. Licher Privatbrauerei

e E.g. Hyperparameters
In particle physics:
e Tuning Simulations [1s10.08328))

e Novel directions (this talks):

o Optimal Design (hardware, ...)
(EIC dRICH)

o Calibration (cf. Gluex DIRC)

Can work with noisy, non-differentiable
black-box functions
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How it works

Posterior
Posterior

e BO is a strategy for
global optimization.

t=3
e After gathering |
evaluations BO builds '
a posterior distribution
used to construct an
acquisition function.

e This cheap function
determines what is Evaluate performance
Ynew=f(Onew) of fwith parameters 6 Onew
next query point.

Choose 6 that
maximizes some utility
over the current belie

_ Acquisition function
Acquisition function

Update current
belief of loss surface

of flynew
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Detector Optimization

BO
e Optimization of detector PO . .' OR =

design is quite complex

problem that can be V perparamete

accomplished with BO : 9. meximize hlecive FnCIon e pace chist ikl

' ‘
trade-off % F

e Multi-purpose detector > P L lBaY

requires large-scale : o S e

simulations of the main geometry, type |

processes to make decision / A 00 A
e Goal: satisfy detector S > T

) L HEP events Detector observatio
requirements and minimize 'l simulation simulation detector response
cost R&D |
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A machine fof delving'deeper than ever &\ »
before into the building blocks of
<

mo’.‘ﬁ@“
§§$ B o s
o §§§ Electron Collider Ring

Electron Source

) RS arXiv:1504.07961 =

s
—

Beam

Dump Polarized

Electron
Source

Electron
’(///((((’ ctrons

(Polarized)

Building the future EIC is the top long-term priority for ;
medium/high-energy nuclear physics in the U.S.
It already consists of a large international collaboration.

arXiv:1409.1633

100 meters
G
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Flux returm yoke

P I D g il s

solenoid coil (1.5-3 T)

EMcal (Sci-Fi)

o A dual-radiator RICH is . R

———— .

needed to cover “‘;"‘*-:,'
momenta up to 50 GeV/c |

Endcap GEM tracker

Space for additional
muon chamber

trackers (top view)
Sm

e e-endcap: A small lens focused e e =
aerogel RICH for momenta up to
10 GeV/c

10x100 GeV
Q2> 1 GeV?2

e Barrel: ADIRC provide a compact
and cost effective way to cover
momenta up to 6 GeV/c

e-endcap

S
Q
=,
E
3
4=
c
Q
&
O
2

e TOF (and or dE/dx in the TPC)
can cover the low momenta region

® Rapidity
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d RICH _ Cost effective = — ‘:
_ Simple geometry/optics. | - |

6 Identical open sectors
(petals)

Optical sensor
elements: 4500
cm?/sector, 3 mm
pixel

aerogel (4 cm; n(400nm) 1.02)
+ 3 mm acrylic filter
+ gas (1.6 m, nC2F6 1.0008)

Large Focusing Mirror

See A. Del Dotto,
EICUG2017,
and E. Cisbani’s talk

9 GeV/ Pien-simulation

C. Fanelli. DIRC2019, 11-13 Sep
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

dRICH Optimization K8k — 8l I/ Dy

No

1p.e.
parameter description range [units]
mirror radius [290.0,300.0] [cm] i
radial position of mirror center [125.,140.] [cm]

=== Chromatic == = Magnetic
Emission === Track

longitudinal position of mirror center | [-305.,-295.] [cm]
shift along y of tiles center [-5,5] [cm]
shift along z of tiles center [-105,-95] [cm]
shift along x of tiles center [-5,5] [cm]

20
polar angle [deg]

refraction index of aerogel [1.015,1.03]
aerogel thickness [3.0,6.0] cm

=== Chromatic == = Magnetic
Emission === Track
Pixel

Ranges mainly due to mechanical constraints and optics requirements.

10 15 20
polar angle [deg]

These requirements can change in the next future based on inputs from prototyping.
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Model built from observations
black points: observations
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Preliminary

gas (optimal)
aerogel (legacy)

aerogel (optimal) ||

+ gas (legacy)
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E. Cisbani, A. Del Dotto, CF

No Relative Error

+ Aerogel
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GlueX DIRC calibration

forward calorimeter

barrel time-of

start calorimeter -flight

counter

forward drift
chambers

central drift
chamber

superconducting
magnet

n/K separation

see J. Stevens’ talk

DIRC will improve GlueX PID capabilities

(current T1/K separation limited to 2 GeV/c)

10
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supporting bracket
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Detector Alignment

DIRC @ GlueX/JLab

target

Optical box made by several components and filled by water.

During data-taking this becomes a noisy black-box problem
with many non-differentiable terms.

relative alignment of the tracking system with the
location and angle of the bars

mirrors shifts cause parts of the image change

o other offsets

These aspects make seemingly impossible to analytically
understand the change in PMT pattern

Requires dedicated system for calibration.

C. Fanelli. DIRC2019, 11-13 Sep
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supporting bracket

kaon (2.0, 3.0, 20.0, 0.0, 0.0)

e pion (2.0, 3.0, 20.0, 0.0, 0.0)
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Pure sample of particles for alignment

e The idea is to use pure sample of pions produced

by abundant channels like p decays crp—

e Atlow momentum they are well identified by .

A Entries 22797
current GlueX PID capabilities. iy S
= Std Devx 8.138

StdDevy 1.656

e Use these pions as candles for alignment.

generated p decay

e Test alignment with one bar first and for a
subrange of kinematics (momentum, angles, and
position in the bar) - proof of principle

e Generalize technique (to kaons, other bars, etc. )

C. Fanelli. DIRC2019, 11-13 Sep 18



FastDIRC

J. Hardin and M. Williams, JINST 11.10 (2016)

Fast tracing, mapping straight lines through a tiled

plane

1. Generation

2. Traces through bars

3. Traces through expansion volume
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better resolution in

KDE-based
P(x)~ D K(x—s)

open source
https://github.com/jmhardin/FasDIRC

regions with high overlap
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TOy mOdel W|th ma|n Offsets see C. Fanelli, EIC ML seminar

Real Offsets

-aligned | 3-seg mirror:
e | 0x,0y,02=(0.25,0.50,0.15) deg, y = 0.5 mm;
i barz=2.0 mm;
PMT (r,8)=(1.5 mm,1.0 deg)

Minimum at

3-seg mirror:

0x,0y,0z= (0.2485, 0.5832, 0.1171) deg,
y = 0.5894 mm;

bar z =2.0788 mm;

PMT (r,0)=1.8690 mm, 1.3544 deg

1§
PMT 6 [deg]

Particles used = 15000
Points explored = 1200

FoM = LogL normalized to a default alignment

3-seg mirror offsets
(most critical for alignment)

found within the tolerances.

C. Fanelli. DIRC2019, 11-13 Sep
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https://www.jlab.org/indico/event/247/session/8/contribution/26/material/slides/0.pdf

TOy mOdel W|th ma|n Offsets see C. Fanelli, EIC ML seminar

correct calibrated non-corrected
3-seg mirror: 3-seg mirror: 3-seg mirror:
0x,0y,62=(0.25,0.50,0.15) deg, 0x,0y,0z=(0.2485, 0.5832, 0.1171) deg, 6x,0y,6z=(0., 0., 0.) deg,
y=0.5mm; y = 0.5894 mm; y=0.mm;
barz =2.0 mm; bar z =2.0788 mm; barz =0. mm;
PMT (r,8)=(1.5 mm,1.0 deg) PMT (r,8)=(1.8690 mm, 1.3544 deg) PMT (r,8)=(0. mm, 0. deg)

Pion Rejection
Pion Rejection

Eff. Reso: 1.572 mrad

Eff. Reso: 2.041 mrad
I Reso pery: 10.725 mrad

Eff. Reso: 1.599 mrad

Reso pery: 8.265 mrad "I Reso pery: 8.411 mrad

AUC: 99.85% L AUC: 99.83% AUC: 98.9%

0.8 1 : : } 0.8 1
Kaon Efficiency Kaon Efficiency

0.8 1
Kaon Efficiency

Kinematics: (E , 6, @): (4 GeV, 4 deg, 40 deq)

C. Fanelli. DIRC2019, 11-13 Sep 21


https://www.jlab.org/indico/event/247/session/8/contribution/26/material/slides/0.pdf

Deep Learning

we stand at the height of o
some of the greatest

accomplishments that

happened in DL

AUtOpilOt 2]

Meta-learning s

Labels
]

AdaNet

Ref [1] [2] [3] [4]

Features

Video to video synthesis

Input Labels Style |

. Ty
Vf»,L i i B s i ‘A i 2. X ‘.a""“‘

Style 2 Style 3

...but this is also the beginning of this incredible data-driven technology, in particular in our field

C. Fanelli. DIRC2019, 11-13 Sep
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http://jalammar.github.io/illustrated-transformer/
https://www.tesla.com/autopilot
https://github.com/tensorflow/adanet
https://tcwang0509.github.io/vid2vid/

: How does it work?

VYV VY

Forward Propagation

+1

Backward Propagation

e —

s
Lm

Error
Estimation

The real magic about NN is the
result of an optimization technique:
back-propagation (how a NN works
to improve its output over time)

DL (more hidden) nets are good in
learning non-linear functions (heavy
processing tasks)

Based on old school NN revitalized
by augmented capabilities (e.g.
GPU) and a plethora of new
architectures (RNN, CNN,
autoencoders, GAN, etc.)

= 9m (W'rrz,.7rl,—l:l7771—l “ bm)

C. Fanelli. DIRC2019, 11-13 Sep
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Generative Adversarial Network

arXiv:1406.2661

Data sample

is data sample?

R/F

from hoise
to an event

sample

Fast Simulations

Detailed simulation of detector response is provided by
amazing tools like Geant, which is slow and often
prohibitive for generating large enough samples.

Cutting-edge application of deep learning uses GAN for
fast simulation.

2-NN game, one model maps noise to images, the other
classifies the images if real or fake.

The goal is to confuse the discriminator.

CALOGAN: Paganini, de Oliveira, Nachman 1705.02355
jet images production: 1701.05927

CALOGAN can generate the reconstructed CALO image using random noise, skipping the GEANT and RECO steps

C. Fanelli. DIRC2019, 11-13 Sep
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https://arxiv.org/abs/1406.2661

M L/D L for D I RC Cherenkov detectors fast simulation using neural networks

D. Derkach et al, NIM (in press)

GAN DLL

20
aon DLL
n DLL
astDIRC kaon DLL
AN kaon DLL

FastDIRC DLL Proton

2 4 0 2
FastDIRC DLL Kaon

interpretation of the references to colou this figure legend, the reader is referred to the web version of this ar
n vs K, AUC(FastDIRC) n vs K, AUC(FastDIRC) - AUC(GAN)

§-2.2E-03 1.2E-03 -8.7E-04 -2.5E-03

2

=
a
®
<)

o

-3.7E-03 -2.9E-03 -4.0E-03 /3.2
- 0.003

-5.8E-03 7.1E-03 eIk} 0.000

d particle ps:

5.9E-04 -2.0E-03 -4.2E-03 =0.003

backgrou

-0.006

: - -0.009
-1.2 -0.6 -0.0 0.6 1.2
m. signal particle pseudorapidity

2. Separation power between kaons and pions measured in area under rec r operating charact
difference between GAN and FastDIRC AUC scores. The statistical uncertainty is around 0.005,

C. Fanelli. DIRC2019, 11-13 Sep
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Variational autoencoder

Alice

gp(zlr) 0

Pdata (x)

H

Match by D(p(2)lq(2))
v

p(2)

Bob
po (x|2)

- It learns a latent variable model
of its input data

- Instead of letting the network to
learn some function, we learn the
parameters of a probability
distribution that models our data,
then we can sample data points
from this distribution to generate
new input data samples

- This means a VAE can be
considered a generative model

Pdata (x )

C. Fanelli. DIRC2019, 11-13 Sep 26



DeepRICH: CF, J. Pomponi

(preliminary)
Kinematics J
\ e / The model is trained minimizing a total loss function,
¥ consisting of:
Latent _
variables e average reconstruction loss
e cross-entropy for classification accuracy
Classifier e MMD between the distributions p(z) and q(z)
/ Decoder \
X, Yt

C. Fanelli. DIRC2019, 11-13 Sep



DGGpR'CH CF, J. Pomponi

P, ©, ¢ = 5.0 GeV/c, 3.0 deg, 20.0 deg

(preliminary)

injected Tr injected K

reconstructed T reconstructed K
~l’!‘ .8‘
- v -

—1000
=500
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DeepRICH

CF, J. Pomponi

Q
=)
-
I
Q
<
q
@
o
Q

DeepRICH AUC
FastDIRC AUC

FastDIRC AUC

DeepRICH AUC

~ FastDIRC AUC
8

o

DeepRICH AUC
FastDIRC AUC
8 8

More details in ArXiv 1911.11717

We proved that deepRICH can reach the PID performance of
established algorithms. This depends only on the available

resources for training.

|

DeepRICH |

FastDIRC |

|Kinematics| AUC| es | ez [AUC]| es | e |

4 GeV/c 99.74(98.18(98.16|99.88|98.98 | 98.85
4.5 GeV/c |98.78(95.21(95.21{99.22|96.33 |96.32
5 GeV/c |96.64(91.13|91.23|97.41{92.40|92.47

Remarkable reconstruction time ~1ms for a batch of 10*

particles

= [

)
b=
=
5
=

10
Batch size

C. Fanelli. DIRC2019, 11-13 Sep
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https://arxiv.org/pdf/1911.11717.pdf

Summary

d-RICH: we demonstrated the design is
optimizable. When more realistic constraints will
be available they will be implemented in BO. This |
can be useful in prototyping of dRICH design and e
any other detector.

Ay

Global optimization techniques can be used for
the GlueX DIRC expansion volume calibration
with real data.

Applied deep learning to PID for DIRC. Shown
feasibility with a variational autoencoder.
Potential for high performance (both in terms of
reconstruction and time). Possibility to extend the
architecture to fast simulation.
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BACKUVP
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Bayesian Optimization

It basically consists of three steps

Evaluate
performance of f with
Ynew=f(Bnew) parameters 6 Onew
_ Choose 6 that
Update current belief maximizes some utility
of loss surface of f over the current belief
flynew

C. Fanelli. DIRC2019, 11-13 Sep
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Update

Posterior

Acquisition function

Yiow=F{Bnow)

Update current belief
of loss surface of
learner f

flynew

e GPs are the generalization of a Gaussian distribution to a distribution over functions, instead of random

variables.

e GP is completely specified by its mean function and covariance function.

Posterior

Acquisition function

How should | read this?

o Solid line: function we are trying to min/max

o Shaded region: probability model (we know the
actual points already evaluated but we are more
uncertain in regions where we haven't).

o In every point a normal distribution of the
potential performance function is built.

C. Fanelli. DIRC2019, 11-13 Sep
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Next points

Posterior

Acquisition function

Yiow=F{Bnow)

flynew

Choose 6 that

maximizes some utility
over the current belief

e Where am | going to sample next?

e We use utility functions called acquisition functions (formalize what is the best guess )

e Expected improvements is one example: find next point that improves the performance the most.

Posterior

Acquisition function

want to
maximize

EI(8) =

EXPLOITATION EXPLORATION

Sample a 8 with higher Sample a point where
value than current one uncertainty is high
(1@ = £(0))@@) +|a@p@), () >0
0, o) =0
L, _ 1) = ()
a(6)

C. Fanelli. DIRC2019, 11-13 Sep
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B O http://ash-aldujaili.github.io/blog/2018/02/01/ei/

Modelled with a Gaussian Process, the function value at a given point x can
be considered as a normal random variable with mean u and variance o2.
Given the best (minimum in a minimization setup) function value obtained

so far-let’s denote it by f*:

we are interested in quantifying the improvement over f* we will have if we
sample a point x . Mathematically, the improvement at x can be expressed as
follows

I(x) = max(f* — ¥, 0)

where Y is the random variable ~ N'(u, 62) that corresponds to the function
value at x. Since / is a random variable, one can consider the average
(expected) improvement (EI) to assess x:

EI(x) = Ey.. 5y on [1(X)]

With the reparameterization trick, ¥ = u + o€ where € ~ N (0, 1), we have:

EI(x) = E,.. 0,1y [{ ()]

which can be written as (from linearity of integral, and the definition of

ie"“ 2 derivative )

El(x) = / wl(x)(ﬁ(e)de

(oo}

(f*-wlo
El(x) = / (f* — u —oe)p(e)de

o0

* _ (f*-wlo
EI) = (F* — o2y o / ed(e)de

g o

EIG) = (* - ol

(f*-wlo
”) + \/;_ / (—e)e'ez’zde
T J-o0

* il o . *—wlo
B = ¢* - ol =) + e tn g m

fr—p
7 )

—ﬂ)+0¢g'—#

o o

f5—u

c

f*

EI(x) = (f* — pd( ) + o (¢

EI(x) = (f* — wo( )
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Field Effects

Smearing from field
perpendicular to the track 8
affects the Cherenkov 2,
angle (Ring) resolution

Bjto P

8{G]

b au it

~

e Polar angle
\ 250

E

Can be suppressed
by active shaping
of the field

SEEEREERRREE

Related issues: . i
* Cost and space for adapting the magnet
* Effect of the field on the photo-detector

Indeed the choice of the photo-sensors will be driven by magnetic field
and cost effectiveness!

C. Fanelli. DIRC2019, 11-13 Sep
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

(GlueX) DIRC Reconstruction Algorithms

LUT-based geometrical

R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)

1. Creation of the LUT: store directions at the end of the
radiator for each hit pixel

2. Direction from the LUT for the hit pixels are
combined with the track directions (from tracking)

-y 1.2k
i 6 =0.8239rad
2 [ 6/=08175rad
S 08 of = 8.1 mrad
& C K -
® osf- O = 8.4 mrad
aik. kaons pions
02f
87 075 08 08 09
0, [rad]

KDE-based

J. Hardin and M. Williams, JINST 11.10 (2016)
Fast tracing mapping straight lines through a tiled plane

1. Generation - 2. Traces through bars - 3. Traces
through expansion volume

PG
NG }
- : |
- 2 P(X)%ZK(X—SI.)
m e - i
N b=40° |

basically a trade-off memory/CPU usage

faster reconstruction/hit pattern

better resolution in regions with high overlap
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Hit Patterns

DIRC rings for m* plotted with time on the z-axis.

Credits:
J. Hardin, PhD thesis

3D (x,y,t) readout and this allows to separate spatial
overlaps.

Patterns take up significant fractions of the PMT in
X,y and are read out over 50-100 ns due to
propagation time in bars.

H12700 PMTs have a time resolution of O(500 ps)

and read-out electronics giving time information in 1
ns buckets.

J. Hardin and M. Williams, JINST 11.10 (2016)

C. Fanelli. DIRC2019, 11-13 Sep 38



