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Machine Learning for 
Imaging Cherenkov Detectors



2

● DL is a subset of ML which makes the 
computation of multi-layer NN feasible. 
When applied to massive datasets and  giving 
massive computer power it outperforms all 
other models most of the time.

● ML is becoming ubiquitous in nuclear and 
particle physics. 

● DL just started having an impact in 
nuclear/particle physics

Artificial Intelligence 

Machine Learning

  Deep Learning

                      C. Fanelli. DIRC2019, 11-13 Sep 



3

Outline
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FastDIRC

detector design

deepRICHGeant

(Bayesian) 
Optimisation

calibration

Deep
Learning

[1]

[2]

[3]

[4]

1. Short intro on BO

2. EIC dRICH detector design 

3. GlueX DIRC optical box calibration using FastDIRC 

4. Exploring deep learning for DIRC 

Conclusions 
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Optimization
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Simplest Approaches 

●  We are not really great at interpreting high-dimensional data  

● Manual Search 
Good luck!

● Grid Search 
Easy but scales poorly -> curse of dimensionality

● Random Search
Faster, but won’t guarantee optimal search 

● What if we can self-learn the optimal values?

● Bayesian Optimization 
Takes advantage of the information the model 
learns during the optimization process. 
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BO Applications
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This approach finds a lot of applications:

● E.g. Hyperparameters 

In particle physics:

● Tuning Simulations [1610.08328])

● Novel directions (this talks):

○ Optimal Design (hardware, ... ) (cf. 

(EIC dRICH)

○ Calibration (cf. GlueX DIRC)

Can work with noisy, non-differentiable 
black-box functions
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How it works

Evaluate performance 
of f with parameters θ

Update current 
belief of loss surface 

of f 

Choose θ that 
maximizes some utility 
over the current belief 

ynew=f(θnew)

f|ynew

θnew
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● BO is a strategy for 
global optimization.

● After gathering 
evaluations BO builds 
a posterior distribution 
used to construct an 
acquisition function. 

● This cheap function 
determines what is 
next query point.
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Detector Optimization

t
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og

● Optimization of detector 
design is quite complex 
problem that can be 
accomplished with BO

● Multi-purpose detector 
requires large-scale 
simulations of the main 
processes to make decision

● Goal: satisfy detector 
requirements and  minimize 
cost R&D
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A machine for delving deeper than ever 
before into the building blocks of matter

Building the future EIC is the top long-term priority for 
medium/high-energy nuclear physics in the U.S. 

It already consists of a large international collaboration. 
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Electron Ion Collider
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● h-endcap: A dual-radiator RICH is 
needed to cover continuously 
momenta up to 50 GeV/c

● e-endcap: A small lens focused 
aerogel RICH for momenta up to 
10 GeV/c

● Barrel: A DIRC provide a compact 
and cost effective way to cover 
momenta up to 6 GeV/c

● TOF (and or dE/dx in the TPC) 
can cover the low momenta region
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PID 
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dRICH 

3σ

(2σ bands)

See A. Del Dotto, 
EICUG2017,
and E. Cisbani’s talk

Full momentum, 
continuous coverage. 

Cost effective
Simple geometry/optics.

 6 Identical open sectors 
(petals)

Optical sensor 
elements: 4500 
cm2/sector, 3 mm 
pixel

aerogel (4 cm, n(400nm) 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, nC2F6 1.0008)

Large Focusing Mirror 

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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dRICH Optimization 

3σ

(2σ bands)

Ranges mainly due to mechanical constraints and optics requirements.

These requirements can change in the next future based on inputs from prototyping.
 

       aerogel

       gas
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Results

improved “speed” of convergence - tested 
different regression methods - implemented 

stopping criteria - determined tolerances 

Model built from observations
black points: observations

           optimal design
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Preliminary 

3σ

(2σ bands)

E. Cisbani, A. Del Dotto, CF
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GlueX DIRC calibration 

DIRC will improve GlueX PID capabilities 

(current π/K separation limited to 2 GeV/c)

(with DIRC)

see J. Stevens’ talk
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Detector Alignment

DIRC @ GlueX/JLab 

● Optical box made by several components and filled by water.

● During data-taking this becomes a noisy black-box problem 
with many non-differentiable terms. 

○ relative alignment of the tracking system with the 
location and angle of the bars 

○ mirrors shifts cause parts of the image change

○ other offsets

● These aspects make seemingly impossible to analytically 
understand the change in PMT pattern

● Requires dedicated system for calibration. 
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Pure sample of particles for alignment

generated ρ decay 

● The idea is to use pure sample of pions produced 
by abundant channels like ρ decays 
  

● At low momentum they are well identified by 
current GlueX PID capabilities. 

● Use these pions as candles for alignment. 

● Test alignment with one bar first and for a 
subrange of kinematics (momentum, angles, and 
position in the bar) - proof of principle

● Generalize technique (to kaons, other bars, etc. )
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FastDIRC
J. Hardin and M. Williams, JINST 11.10 (2016)

     better resolution in regions with high overlap 

 

Fast tracing, mapping straight lines through a tiled 
plane

1. Generation 

2. Traces through bars 

3. Traces through expansion volume  

open source
https://github.com/jmhardin/FasDIRC

KDE-based  
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Toy model with main offsets 

Particles used = 15000 
Points explored = 1200 

FoM = LogL normalized to a default alignment

 4

 2

 1

(7D)

Real Offsets
3-seg mirror:

θx,θy,θz=(0.25,0.50,0.15) deg, y = 0.5 mm;
bar z = 2.0 mm; 

PMT (r,θ)=(1.5 mm,1.0 deg)

Minimum at
3-seg mirror:

θx,θy,θz= (0.2485, 0.5832, 0.1171) deg, 
y = 0.5894 mm; 

bar z =2.0788 mm; 
PMT (r,θ)=1.8690 mm, 1.3544 deg

3-seg mirror offsets 
(most critical for alignment) 
found within the tolerances. 

P
r
e
l
im
in
a
r
y

see C. Fanelli, EIC ML seminar  
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https://www.jlab.org/indico/event/247/session/8/contribution/26/material/slides/0.pdf
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Kinematics: (E , θ, φ): (4 GeV, 4 deg, 40 deg) 

 

Matching resolution:  1.589 mrad 
Matching resolution per γ:  7.438 mrad

AUC = 93.9%

correct calibrated non-corrected 

Eff. Reso:  1.572 mrad 
Reso per γ:  8.265 mrad
AUC: 99.85%

Eff. Reso:  1.599 mrad 
Reso per γ:  8.411 mrad
AUC: 99.83%

Eff. Reso:  2.041 mrad 
Reso per γ:  10.725 mrad
AUC: 98.9%

3-seg mirror:
θx,θy,θz=(0.25,0.50,0.15) deg, 
y = 0.5 mm;
bar z = 2.0 mm; 
PMT (r,θ)=(1.5 mm,1.0 deg)

3-seg mirror:
θx,θy,θz=(0.2485, 0.5832, 0.1171) deg, 
y = 0.5894 mm;
bar z = 2.0788 mm; 
PMT (r,θ)=(1.8690 mm, 1.3544 deg)

3-seg mirror:
θx,θy,θz=(0., 0., 0.) deg, 
y = 0. mm;
bar z = 0. mm; 
PMT (r,θ)=(0. mm, 0. deg)
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Toy model with main offsets see C. Fanelli, EIC ML seminar  

https://www.jlab.org/indico/event/247/session/8/contribution/26/material/slides/0.pdf
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we stand at the height of 

some of the greatest 

accomplishments that 

happened in DL

Meta-learning [3]Autopilot [2] 

Natural Language Processing [1]

Video to video synthesis [4]

...but this is also the beginning of this incredible data-driven technology, in particular in our field

Ref [1] [2] [3] [4]
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Deep Learning

http://jalammar.github.io/illustrated-transformer/
https://www.tesla.com/autopilot
https://github.com/tensorflow/adanet
https://tcwang0509.github.io/vid2vid/
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NN: How does it work? 

● The real magic about NN is the 
result of an optimization technique: 
back-propagation (how a NN works 
to improve its output over time)

 
● DL (more hidden) nets are good in 

learning non-linear functions (heavy 
processing tasks)

● Based on old school NN revitalized 
by augmented capabilities (e.g. 
GPU) and a plethora of new 
architectures (RNN, CNN, 
autoencoders, GAN, etc.)

Forward Propagation

Error
Estimation

Backward Propagation
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Generative Adversarial Network

Data sample

sample 

R/F

is data sample? 

Discriminator

Generator

from noise 
to an event

 CALOGAN can generate the reconstructed CALO image using random noise, skipping the GEANT and RECO steps

Fast Simulations

● Detailed simulation of detector response is provided by 
amazing tools like Geant, which is slow and often 
prohibitive for generating large enough samples.  

● Cutting-edge application of deep learning uses GAN for 
fast simulation. 

● 2-NN game, one model maps noise to images, the other 
classifies the images if real or fake.

● The goal is to confuse the discriminator.    

- CALOGAN: Paganini, de Oliveira, Nachman 1705.02355
- jet images production: 1701.05927

arXiv:1406.2661 
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https://arxiv.org/abs/1406.2661
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ML/DL for DIRC
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Cherenkov detectors fast simulation using neural networks 
D. Derkach et al, NIM (in press) 
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Variational autoencoder 
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- It learns a latent variable model 
of its input data 

- Instead of letting the network to 
learn some function, we learn the 
parameters of a probability 
distribution that models our data, 
then we can sample data points 
from this distribution to generate 
new input data samples 

- This means a VAE can be 
considered a generative model 
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DeepRICH: 
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CF, J. Pomponi

(preliminary)

The model is trained minimizing a total loss function, 

consisting of:

● average reconstruction loss 

● cross-entropy for classification accuracy 

● MMD between the distributions p(z) and q(z)
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DeepRICH
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P, Ө, φ = 5.0 GeV/c, 3.0 deg, 20.0 deg
CF, J. Pomponi

(preliminary)

injected π 
reconstructed  π 

injected K 
reconstructed  K 



● We proved that deepRICH can reach the PID performance of 
established algorithms. This depends only on the available 
resources for training. 

● Remarkable reconstruction time ~1ms for a batch of 104 
particles
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DeepRICH
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CF, J. Pomponi

P, Ө, φ = 5.0 GeV/c, 3.0 deg, 20.0 deg

t
r
u

e

@ 4 GeV/c

More details in ArXiv 1911.11717 

https://arxiv.org/pdf/1911.11717.pdf
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protons

PbOPbWO4

Summary

● d-RICH: we demonstrated the design is 
optimizable. When more realistic constraints will 
be available they will be implemented in BO. This 
can be useful in prototyping of dRICH design and 
any other detector. 

● Global optimization techniques can be used for 
the GlueX DIRC expansion volume calibration 
with real data.

● Applied deep learning to PID for DIRC. Shown 
feasibility with a variational autoencoder. 
Potential for high performance (both in terms of 
reconstruction and time). Possibility to extend the 
architecture to fast simulation. 
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BACKUP
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Bayesian Optimization 

It basically consists of three steps 

Evaluate 
performance of f with 

parameters θ

Update current belief 
of loss surface of f 

Choose θ that 
maximizes some utility 
over the current belief 

ynew=f(θnew)

f|ynew

θnew
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Update 

● GPs are the generalization of a Gaussian distribution to a distribution over functions, instead of random 
variables. 

● GP is completely specified by its mean function and covariance function. 

● How should I read this?

○ Solid line: function we are trying to min/max 

○ Shaded region: probability model (we know the 
actual points already evaluated but we are more 
uncertain in regions where we haven’t). 

○ In every point a normal distribution of the 
potential performance function is built.  
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● Where am I going to sample next?

● We use utility functions called acquisition functions (formalize what is the best guess )

● Expected improvements is one example: find next point that improves the performance the most.
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Next points

best value we found so far
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PDF

CDF
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BO
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http://ash-aldujaili.github.io/blog/2018/02/01/ei/



36

Field Effects

A. Del Dotto, EICUG2017
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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(GlueX) DIRC Reconstruction Algorithms 
J. Hardin and M. Williams, JINST 11.10 (2016)

       basically a trade-off memory/CPU usage

           faster reconstruction/hit pattern    better resolution in regions with high overlap 

 

R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)

1. Creation of the LUT: store directions at the end of the 
radiator for each hit pixel

2. Direction from the LUT for the hit pixels are 
combined with the track directions (from tracking)

Fast tracing mapping straight lines through a tiled plane

1. Generation - 2. Traces through bars - 3. Traces 
through expansion volume  

https://github.com/jmhardin/FasDIRC
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Hit Patterns 

● 3D (x,y,t) readout and this allows to separate spatial 
overlaps. 

● Patterns take up significant fractions of the PMT in 
x,y and are read out over 50-100 ns due to 
propagation time in bars.

● H12700 PMTs have a time resolution of O(500 ps) 
and read-out electronics giving time information in 1 
ns buckets.

DIRC rings for π⁺ plotted with time on the z-axis.

Credits: 
J. Hardin, PhD thesis 

t

yx

J. Hardin and M. Williams, JINST 11.10 (2016)

                      C. Fanelli. DIRC2019, 11-13 Sep 


