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BACKGROUND: LARGE AREA PICOSECOND
PHOTODETECTOR (LAPPD)

= LAPPD is a photomultiplier based on new generation microchannel plate,
reinvents photodetector using transformational technologies.

» Goals: low-cost, large-area (20 cm x 20 cm), picosecond-timing, mm-position
= Applications: picosecond timing, mm-spatial on large-area

v' Particle physics: optical TPC, TOF, RICH

v' Medical imaging: PET scanner, X-ray imaging devices

v" National security: Detection of neutron and radioactive materials

= Status: Incom, Inc. is routinely producing standard LAPPD on a pilot production
basis for test and evaluation by “Early Adopters”.

e ‘ Argonne &
J. Xie, NDIP 2017, Tours, France, M. Minot et al., Nucl. Instr. Meth. A 936 (2019) 527-531



NEXT GENERATION MICRO-CHANNEL PLATES - 1.GCAS

= Conventional Pb-silicate glass MCP: Based on optic fiber production,
chemical etching and thermal processing
x Expensive lead-silicate glass
x Complex, labor consuming technology
x Large deviation of channel diameters within MCP
x  Difficult to produce large area MCP, brittle after firing

/

< “Next generation” MCPs - Break through 1: Production of large blocks

of hollow, micron-sized glass capillary arrays (GCAs) based on the use of
hollow capillaries in the glass drawing process

v' Use considerably less expensive borosilicate glass (Pyrexs or similar)
v Eliminate the need to later remove core material by chemical etching
v Low alkali content for reduced background noise

v" World’s largest MCP: 20 cm x 20 cm

M. Minot et al., Nucl. Instr. Meth. A 787 (2015) 78-84




NEXT GENERATION MICRO-CHANNEL

PLATES - 2.ALD

< “Next generation” MCPs - Break Self-terminating surface reactions

through 2: Functionalization of the o=
) . . L =

glass capillary arrays with atomic layer Aa) =
deposition (ALD) methods e e R

v’ Self-limiting thin film deposition technique na P __

v' Controlled film thickness B) B

v' Freedom to tune the capabilities: = Aacacaces

v" Robust, good performance

MCP after functionalization
. : ) MCP parameters

= Pore size: 20 ym

= Thickness: 1.2 mm

= L:Dratio: 60:1

= Open area ratio: 60%
= Average gain: 7 X 106
20cm x 20 = Gain variation: <10%

Average gain image “map”

R L A T

M. Minot et al., Nucl. Instr. Meth. A 787 (2015) 78-84

The Argonne ALD technique has been licensed to Incom, Inc. for commercialization.

ABORATORY



ARGONNE 6 CM MCP-PMT & LAPPD™

Small form factor LAPPD (6 cn MCP-PMT) was produced at Argonne for R&D.
Knowledges, Design and Experiences were transferred to Incom to support
commercialization of 20 cm LAPPD™

Commercialization: 20x20 cm?

R&D test bed: 6x6 cm?

Image from M. Minot et al., Nucl. Instr. Meth. A 936 (2019) 527-531
» The Argonne 6 cm MCP-PMT and Incom 20 cm LAPPD™ share the same MCPs and similar
internal configuration and signal readout.

» The Argonne 6 cmm MCP-PMT serves as R&D test bed for performance characterization and
design optimization; Incom 20 cm LAPPD™ is the final commercialized product.

» Close collaboration and communication (bi-weekly meeting, joint SBIR program), optimized
configurations are directly transferred to Incom production line for mass production.



ARGONNE 6 CM MCP-PMT
FLEXIBLE DESIGN FROM INITIAL LAPPD

A glass bottom plate with stripline anode readout

= Aglass side wall that is glass-frit bonded to the bottom plate
= A pair of MCPs (20um pore) separated by a grid spacer.

» Three glass grid spacers.

= Aglass top window with a bialkali (K, Cs) photocathode.

* Anindium seal between the top window and the sidewall.

Top Window

Photocathode

Nichrome border

Grid spacer #1
Top MCP
Grid spacer #2

Bottom MCP

Indium seal

Grid spacer #3

Side wall
Anode strip
Bottom window

J . Wang et al., Nucl. Instr. Meth. A 804 (2015) 84-93
M. Hattawy et al., Nucl. Instr. Meth. A 929 (2019) 84-89




Photocathode &
growth chamber

The only place in US academia that functional MCP-PMTs with low-cost

i Argonne &
! Incom MCPs were fabricated. J . Wang et al., Nucl. Instr. Meth. A 804 (2015) 84-93 ™™



HERMETIC PACKAGING MCP & Resistive Grid Spacer Stack

Hydraulic driven platens

\ 4

Glass LTA

Completed Tube

= Tube processing is very challenging

= Achieved 95% sealing yield Argonne &
J . Wang et al., Nucl. Instr. Meth. A 804 (2015) 84-93



TEST FACILITIES

Optical Table for photocathode test ps-Laser Facility for timing characterization

MCP- ’
dark

B h
PMT
box

Argonne &
M. Hattawy et al., Nucl. Instr. Meth. A 929 (2019) 84-89



ARGONNE MCP-PMT KEY PERFORMANCE
WITH 20 MICRON MCP PORE SIZE

Spectra response Signal component
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_ _ Argonne &
J . Xie et al., Rev. Sci. Instrum. 90 (2019) 043109 oL oo




COMMERCIALIZED STANDARD LAPPD™ KEY PERFORMANCE

WITH 20 MICRON MCP PORE SIZE, STRIPLINE READOUT
Credit to: Incom, Inc. LAPPD R&D group

Spectra response

LAPPD37 3D QE map 365nm 11/24/18
QE,.. = 26.1%

QE ean = 24.3% + 2.5%
100
-50
0

50
Y [mm] 100 100 X [mm]

Gain & Timing

FWHM: 1.1 ns v ]

Rise time: 850 ps , movieucs |
Gain: 4x108 with
CP HV @ 900V

0 (TTS) = 64 psec

signal (mV)

Normatized Counts  2018-01-31

-5

T ER I T T S R T S R | - e o
60000 65000 70000 75000 | e T S T e e 64500 65000 65500 66000 aaéoo
time (psec) A AT AT AT A time (psec)

M. Minot et al., Nucl. Instr. Meth. A 936 (2019) 527-531 "



WITH THE SUCCESS OF STANDARD LAPPD™
COMMERCIALIZATION

NEXT ...

OPTIMIZATION OF STANDARD LAPPD™ DRIVEN BY
PROJECTS & APPLICATIONS

Electron lon Collider:
The Next QCD Frontier

Near-term: SoLID Long-term: EIC

SoLID (Solenoidal Large Intensity Device) Preliminary Conceptual Design Report, 2018 Argonne &

Electron lon Collider: The Next QCD Frontier, arXiv:1212.1701



EIC science program will profoundly impact
our understanding of nucleon structure and the glue
uniquely tied to a future high energy, high luminosity,
polarized ep / eA collider
never been measured before
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probe the “ce —
Deep Inelastic Scattering (DIS): PID is critical for EIC Detector
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Sensors & Electronics

;

l 1
#==\| Thick GEMs and Low-cost LAPPD SiREAD for
=1l Micromegas for fits for LAPPD
gas RICH Every sub-system electronics

INFN, Rate capability issue
A.Del Dotto et al., Nucl. Instr. Meth. A 876 (2017) 237-240, C.P.Wong et al.

Argonne & Incom

Univ. of Hawaii & Incom

, Nucl. Instr. Meth. A 871 (2017) 13-19
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Key Issue: Photodetectors

® Photo Detectors: The most important challenge is to provide
a reliable highly-pixilated photodetector working at 2-3 Tesla.

This problem is not yet solved.
L

» Large-Area Picosecond PhotoDetector (LAPPD)
® Promising but still not fully applicable for EIC needs.

O Current focus at Argonne National Laboratory:
- Magnetic field tolerance
- Fine pixel readout

O Other requirement:
- QE uniformity (addressed by Incom)
- Life time (testing at University of Texas, Arlington)
- Rate capability, radiation hardness (SoLID)
- After pulse
- Stability ...




IMPROVEMENT OF ARGONNE MCP-PMT PERFORMANCE
IN MAGNETIC FIELD

ANL version 1

Internal resistor chain
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20 um MCP
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Babar and CLEO Magnets: 1.5T

« Optimization of biased voltages for both MCPs: version 1 -> 2
« Smaller pore size MCPs: version 2 -> 3
* Reduced spacing: version 3->4
« Further improvement if needed:
Smaller pore size is planned: 6 pm, version 4 -> 5 (future)

M. Hattawy et al., Nucl. Instr. Meth. A 929 (2019) 84-89

Argonne &



MCP-PMT TIMING RESOLUTION IMPROVEMENT

ANL version 2

ANL version 3
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Argonne &
J . Xie et al., Rev. Sci. Instrum. 90 (2019) 043109



ANGLE DEPENDENCE ISSUE
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» The MCP-PMT performance in magnetic field is clearly angle related, due to the
8° MCP bias angle, the highest gain is obtained around 8°.

> Notice the two peaks around £8°, indicating the effect from upper and lower MCP
bias angles are different.

» This is an issue, needs to be solved for LAPPD. With large area, there is
always angle difference for the center and edge regions in a magnetic field.
» Simulation will be useful to explain the different effect, seeking solution.

17 M. Hattawy et al., Nucl. Instr. Meth. A 929 (2019) 84-89 Argonne &



FINE PIXELATED READOUT THROUGH GLASS/FUSED SILICA ANODE

Argonne MCP stack (glass anode) in Fermilab test beam

4 different
pixel sizes
o . (2x2,3x3,4x4 and
WL o - - i | 1 B 5x5 mm2)

— = ‘ ‘ implemented for
testing

Argonne &



TRACKING SYSTEM

Location of MCP-PMT vacuum chamber
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= 4 MWPC'’s for tracking, MWPC 1 and 2 upstream, and 3 and 4 downstream
= In MWPC 3 we got a lot of spray from hadronic interactions in the vacuum chamber

Argonne &



EVENT DISPLAY

4x4 mm? pixels

e
—

——

2x2 mm?2 pixels

2x2 mm? pixel size is too small, Larger pixel size, signals are more
signals spread onto several pixels. confined, mainly on one pixel.

i
r

Argonne &




CENTER OF MASS CALCULATION FOR HIT POSITION

5x5 mm as example
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= Yellow dot is the center of mass of pad hits
= Blue dot is projection from MWPC tracking

Argonne &



POSITION RESOLUTION

Difference between the pad mean position (CG) and the track pointing
3Xx3 mm
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= All resolutions ~1 mm with small pixels, reaching the requirements for EIC Cerenkov sub-systems.
= Potentially limited by track pointing resolution capability of MWPCs (1 mm pitch)
= 2x2 may be worse due to leakage of signals (poor containment since it is a smaller area)

Argonne &



SUMMARY

d Large area picosecond photodetector (LAPPD™) was successfully
commercialized with performance comparable to MCP-PMTs in market.

O R&D on optimization of LAPPD towards particle identification is on going,
focusing on design development:
- Magnetic field tolerance
- Timing resolution
- Pixel readout

0 MCP-PMT with smaller pore size and reduced spacing exhibits significantly
improved magnetic field tolerance and timing resolution.

O Angle dependence of MCP-PMT performance in magnetic field is an issue,
seeking for solutions.

O Fine pixel of 3x3 mm? with position resolution of ~ 1 mm was achieved with
Argonne MCP stack (glass anode) in Fermilab test beam.

Argonne &
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