Overview of PID options for experiments at the Super-Charm-Tau-Factory (SCFT)

A. Barnyakov FOR SCTF COLLABORATION

DIRC2019: Workshop on fast Cherenkov detectors, Schloss Rauischholzhausen (Germany)

12th of September 2019

- **1** Introduction: colliding beam experiments at BINP
- 2 Physics program for Super CTF project (short overview)
- **3** SCTF: collider key parameters
- 4 Detector concept
- **5** PID system options: FARICH, DIRC, ASHIPH, ToF+ToP
- Summary

Collider experiments at Budker INP

- CMD-3 and SND detectors
- C. m. energy range from 0.3 to 2 GeV
- Round beams
- In operation since 2009

- KEDR detector
- C. m. energy range from 2 to 10 GeV
- Precise energy measurement (res. dep. method)

2

• Physics program started in 2003

Since 1971 at list one collider is in operation at BINP!

The SUPER CHARM-TAU FACTORY IN NOVOSIBIRSK is the next collider experiment at BINP. A. Barnyakov PID options for SCTF, DIRC2019 12/09/2019

Energy region of SCTF

- The energy range, which cover all charm hadron pair production thresholds and almost untouched regions of Ξ_c and Ω_c could give a lot of physics results with new accuracies.
- Incredible luminosity (100 times better than BES-III has), the sufficient energy resolution (~1÷2 MeV) and longitudinal beam polarization will help in the searches of New physics!

Physics program

Expected integrated $L \approx 1000 \ fb^{-1}$

Energy, GeV	L, fb ⁻¹	
		J/ψ
		rare decays
3.096	300	light hadr. spectroscopy
		$e^+e^- o au^+ au^-$
3.554	50	(threshold)
		$\psi(2S)$
		J/ψ -spectroscopy
3.686	150	light hadr. spectroscopy
		ψ(3770)
3.770	300	(D-meson study)
		$\psi * 4160)$
4.170	100	(<i>D_s</i> -meson study)
		$e^+e^- ightarrow \Lambda_c^+ \Lambda_c^-$
4.650	100	(maximum)

- Threshold production.
- Well determined initial state.
- Quantum correlated production of neutral D meson pairs.
- Double tag technique.
- Low multiplicity (4-5).
- Longitudinal beam polarization.

• . . .

Sketch and key parameters

Collider rings

Configuration and parameters

All essential beam physics issues were considered (optics, nonlinear beam dynamics, longitudinal polarization, IBS, etc.). No showstoppers are revealed.

Beam dynamics and polarization

Detector concept and requirements

Physics requirements:

- Good $\frac{\sigma_P}{P}$ for charged particles.
- Good symmetry and hermeticity;
- Soft track detection;
 - Inner tracker to work with rate of charged tracks $\ge 10^4 \frac{\text{tracks}}{cm^2 \cdot s}$;
- Good $\mu/\pi/K$ -sep. up to 1.5 GeV/c;
 - Good $\frac{dE}{dx}$ resolution;
 - Specialized PID system for μ/π and π/K -separation;
- Good π^0/γ -separation and γ detection with E_y=10÷3000 MeV;
 - EM calorimeter with σ_E as close as possible to physics limit;
 - Fast calorimeter ($\sigma_t \leq 1$ ns and small shaping time) to suppress beam background and pileup noise;
- DAQ rate \sim 300 kHz at J/ψ -peak.

PID system: FARICH

Status & perspectives:

No any showstopers have been found yet, but there are several challenges:

- ! Mass-production of the multilayer focusing aerogel.
- ! 1.5 million of SiPMs and their radiation hardness.
- Big data flow in DAQ system.

FARICH system parameters:

- Focusing aerogel with n_{max}=1.05(1.07?), 4 layers, total thickness 35 mm
- Aerogel area: 14 m²
- Photon detectors (3×3 mm²):
 - Barrel SiPMs (16 m²)
 - Endcap MCP PMT (5 m²) LAPPD?
- $1 \div 2 \cdot 10^6$ channels (it depends on pitch)
- Load 0.5÷1.0 MHz/channel
- Cooling system (\leq -30°C) is needed
- R&D for read out electronics is required.

A. Barnyakov

2018: 3rd prototype generation

- Determine critical moments in focusing aerogel production;
- Define optimal photon detector type and producer for SCTF;
- Find solution for readout electronics.

Photon detectors plane

 $\label{eq:marginal} \begin{array}{l} \mathsf{MaPMTs} \ 8\times8 \ \mathsf{pixels} \ \Box 6 \ \mathsf{mm} \\ \mathsf{SiPM} \ \mathsf{arrays} \ 4\times4 \ \mathsf{pixels} \ \Box 3 \ \mathsf{mm}; \\ \mathsf{Tracker} \ \mathsf{based} \ \mathsf{on} \ \mathsf{GEMs} \ \sigma_x \sim 70 \mu \mathsf{m}; \\ \mathsf{Readout} \ \mathsf{electronics} \ \mathsf{based} \ \mathsf{on} \ \mathsf{PaDiWa} \\ \mathsf{(discriminator)} \ \mathsf{and} \ \mathsf{TRB3} \ \mathsf{(TDC)} \ \mathsf{from} \ \mathsf{GSI}. \end{array}$

- e⁻ with E=3 GeV;
- Only central tracks are selected (20×16 mm area);
- Time window \sim 25 ns;
- Cut on energy deposited in Nal is aplied;

A. Barnyakov

PID options for SCTF, DIRC2019

12/09/2019 11

2018: Results of test beam

Refractive index: measured and expected.

Main results:

- Measurements and MC simulation are in good agreements.
- Measured resolution: $\sigma_R^{1ph}(\Box 6)=2.9 \text{ mm} \rightarrow \sigma \Theta_{Ch}^{1ph} \sim 14.5 \text{ mrad};$ $\sigma_R^{1ph}(\emptyset 1)=1.9 \text{ mm} \rightarrow \sigma \Theta_{Ch}^{1ph} \sim 9.5 \text{ mrad};$
- Expected for ideal 4-layer aerogel: $\sigma_R(\Box 6)=2.0 \text{ mm} \rightarrow \sigma \Theta_{ch}^{1ph} \sim 10.0 \text{ mrad};$ $\sigma_R(\emptyset 1)=1.07 \text{ mm} \rightarrow \sigma \Theta_{ch}^{1ph} \sim 5.4 \text{ mrad}.$
- We need to improve aerogel to get better Cherenkov angle resolution

Cherenkov rings: $\Box 6 \text{ mm} (\uparrow) \text{ and } \emptyset 1 \text{ mm} (\downarrow)$.

PID options for SCTF, DIRC2019

Why we need to find alternatives to FARICH

- μ/π -separation below 400 MeV/c;
- $\bullet~$ The aerogel RICH with largest radiator area. $\rightarrow~$ Multilayer aerogel production is very challenge issue!
- 16 m^2 of SiPMs with 10⁶ pixels:
 - Radiation hardness and cooling system which lead to increase material budget before EMC is a complex engineering task;
 - Such amount of the SiPMs with appropriate parameters is a rather large batch for one manufacturer (Hamamatsu, FBK, KETEK, SensL?!).
- 5 m² of MCP-PMTs. The very good approach is to use LAPPD with $20 \times 20 \text{ cm}^2$ size, but readout system should be optimized for our task to obtain the spatial resolution $\leqslant 1$ mm in both directions.
- $\bullet\,$ The total estimated coast of the FARICH system $\approx\,$ EMC of the detector.

DIRC option

The detailed consideration will be presented in next topic of M.Schmidt!

Few comments to DIRC option

- Sufficient change of yoke geometry and calorimeter is needed.
- DIRC is very compact system in barrel part, therefore it is possible to increase DC or decrease the EMC volume.
- Good enough μ/π -separation is provided up to 700 MeV/c \rightarrow we need to use something else to separate μ and π up to 1.2 GeV/c.

Schematic location of the DIRCs.

ASHIPH systems at BINP

Aerogel Cherenkov ASHIPH counters

ASHIPH upgrade

ASHIPH with SiPM

MCP PMT → SiPM

Pros:

	MCP PMT	SiPM
PDE=QE*CE	25*0.6≈15%	30-45%
Magnetic field imm.	Axial	Any direction
Power supply	2÷4 kV	<100V

Cons:

- High level of noise \rightarrow New specific FEE \rightarrow Cooling system
- Radiation tolerance is still low.

It is possible to upgrade KEDR and SND ASHIPH systems right now. For Super Ct (B)- Factories SiPM radiation tolerance study is needed.

ASHIP with SiPM for μ/π -separation

ASHIPH with SiPM

- π/K -separation from 500 to 2000 MeV/c
- μ/π -separation from 400 to 900 MeV/c
- Preliminary design:
 - 6000 l of aerogel in three layers: n=1.03 (8 cm) and n=1.015 (8+8 cm)
 - 1400 counter with sizes \sim 18 $\times30{\times}8$ cm
 - Amount of material \sim 15%X_0
 - Light collection WLS(BBQ) and 28000 SiPMs $3 \times 3 \text{ mm}^2$

ToF + ToP

It is possible to use TOP information in addition to TOF.

- \bullet The record time resolution (~5 ps) was obtained with quartz radiator coupled to MCP PMT.
- The best accuracy of TOF measurement achieved in currently operating colliding beam experiment is about 80 ps (BESIII).
- The time resolution of about 30 ps is considered for future upgrade of the CMS detector.
- The time resolution of about 15 ps is the aim of TORCH project a time-of-flight detector.
- Recent progress in time-of-flight technique allows us to consider the TOF system with intrinsic time resolution better than 30 ps. Time resolution mainly is determined by:
 - refractive index dispersion
 - time of light collection
 - photon detector & electronics jitter

Time of Propagation (ToP) can improve the Time of Flight (ToF).

ToF+ToP option for SCTF barrel part

Different options for PID comparison

SUMMARY

- The SCTF project in Novosibirsk is going now:
 - Next round of Russian government consideration of this Mega-Science project is going to be held in fall of 2019;
 - Three international Workshops on the project were held during previous two years (2017–2018) and the next one will be held in Moscow 24–27 September 2019 (https://c-tau.ru/)
 - Financial support for detector R&D from CREMLIN+ PROJECT have been obtained for 2020-2024.
- PID system is a key system for successful realization of physics program. All the best approaches should be considered and compared with help of parametric simulation for several physics processes:
 - FARICH;
 - fDIRC (will be soon implemented in ParSim of SCTF);
 - ASHIPH based on SiPMs;
 - ToF and ToF+ToP;
 - Combination of the several approaches.

BACK UP

• The NP has not found at the extra large energy domain, precise tests of SM and NP search are very demanded today;

• Physics in the energy $W=2\div6$ GeV will complement the Belle-II and LHCb experiments;

• The NP has not found at the extra large energy domain, precise tests of SM and NP search are very demanded today;

- Physics in the energy W=2÷6 GeV will complement the Belle-II and LHCb experiments;
- A new project with incredible high luminosity in the field of energy, which is fruitful by physics processes, will be a good facility to grow a "new generation" of physicists!!!

A. Barnyakov

PID options for SCTF, DIRC2019

12/09/2019 23

• The NP has not found at the extra large energy domain, precise tests of SM and NP search are very demanded today;

- Physics in the energy W=2÷6 GeV will complement the Belle-II and LHCb experiments;
- A new project with incredible high luminosity in the field of energy, which is fruitful by physics processes, will be a good facility to grow a "new generation" of physicists!!!

A. Barnyakov

PID options for SCTF, DIRC2019

12/09/2019 23

Longitudinal beam polarization and some Physics cases

"New Physics" search

- CPV in $\tau \rightarrow$ hadrons decays. (sufficient decrease of systematic uncertainties is expected)
- Michel parameters measurements with τ -lepton decay. (~1.6 times better accuracy for ρ and η than Belle-II experiment expectation)
- Weinberg angle measurements by spin asymmetry in $e^+e^- \rightarrow J/\psi$ production. (only with polarized beams)
- LFV: search for $au
 ightarrow \mu \gamma$ decay. (some background suppression is expected)

Other polarized beam application at SCTF project

- All non-zero spin states can be studied with new systematic uncertainties.
- Baryon (Λ , Λ_c , Ω_c , Ξ_c , ...) FF measurements.

• ...

Quantitative analysis of the polarized beams advantages over non-polarized is now undergoing for these and other $cases^1$.

 $^1 The detailed discussion will be held at SCTF Workshop in Moscow 24-27/09/2019 (see https://c-tau.ru)$

Physics program

Beam polarization parameters

Dependence of polarization life-time on energy

Dependence of beam polarization degree on energy for different time of beam doping

Physics background

1 MeV equivalent neutron dose for silicon

First simulation of Physics background

Two major processes were taken into account:

- radiative BhaBha scattering ($\sigma \approx 1.7$ mb for 2E = 7 GeV and $\Theta \ge 5^{\circ}$);
- two photon e^+e^- production ($\sigma \approx 6.0$ mb for 2E = 7 GeV).

Implement beam background at IP:

- IBS? (touschek scattering);
- SR (synchrotron radiation).

A. Barnyakov

PID options for SCTF, DIRC2019