Performance of the most recent MCP-PMTs

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Merlin Böhm, A. Lehmann, D. Miehling, M. Pfaffinger, S. Krauss

NATURWISSENSCHAFTLICHE FAKULTÄT

MCP-PMTs for PANDA DIRCs

- MCP-PMTs are the only suitable sensors for PANDA
 - Compact and available as multi-anode devices
 - Single photon detection even in B-fields of >1 Tesla
 - Low dark count rates and good rate stability
 - Excellent time resolution <50 ps Peak (σ) (<120 ps RMS)
 - Meanwhile sufficient lifetime to survive PANDA (ALD and modified cathodes)
- Barrel DIRC
 - Photon rate: ~200 kHz/cm²
 - 10 years anode charge: ~5 C/cm²
 - Pixel size: ~ 6 x 6 mm²
- Endcap DIRC
 - Photon rate: up to 1 MHz/cm²
 - 10 years anode charge: >5 C/cm²
 - Pixel size: ~ 0.5 x 16 mm²

Measurement setups and measured parameters

- Surface scans: PILAS Laser with micro focus attached to a 3-axis stepper
- FPGA based DAQ: TRB, Padiwa
 - Padiwa FEE for discrimination
 - TRB for time and TOT measurement
 - Multihit capability
- TRB3 and Padiwa3:
 - Signal height distribution (important for setting the threshold)
 - Crosstalk, charge cloud width and recoil electron behavior
 - For each Pixel: time resolution, darkcount rate and afterpulse probability

Photodiode

MCP-PMT

Laser with ND-filter or diffusor

Measurement setups and measured parameters

- Oscilloscope: LeCroy WavePro 7300A
 - Time resolution and gain vs. voltage
- With a Keithley 6487 Picoampere Meter:
 - Rate stability
 - Surface scans of quantum efficiency (QE) and gain distribution
- QE vs. Wavelength measurements using a Xenon arc lamp and monochromator
- Lifetime measurements:
 - Aging of MCP-PMTs with a blue LED
 - Continuous monitoring of pulse heights and LED light intensity

Investigated MCP-PMTs in this talk (all with ALD)

	Hamamatsu	Photek	Photonis
Model	R13266-07-M64M	PMT253	XP85112
S/N	YH0250	A1171005	9002150
Pore size (µm)	10	15	10
Pixels	8x8	8x8	8x8
Active area mm ²	51x51	53x53	53x53
Total area mm²	61x61	59x59	59x59
Geom. Eff. (%)	70	81	81
Peak QE	28% @ 380 nm	12% at 340 nm	20% at 400nm
		"over-cooked" PC,	Modified backplane to
Comments	no film	metal housing	reduce crosstalk and ringing

Time resolution measurements with Oscilloscope

- Oscilloscope: LeCroy WavePro 7300A
- RMS between -0.5 ns and 2 ns around laser peak

	Hamamatsu	Photek	Photonis
	YH0250	A1171005	9002150
Time resolution RMS	131 ps	155 ps	171 ps
Peak time resolution (σ)	36 ps	40 ps	31 ps

TRB measurements – Time spectrum

Measured time delay between laser pulse and pixel response

Laserpeak for all channels shifted to 100 ns for easier analysis

Darkcount rate comparison using TRB DAQ

- Darkcount rate corrected for missing Channels in the DAQ
- Threshold set to 0.1-0.2 p.e., ~1e6 Gain

	Hamamatsu	Photek	Photonis
	YH0250	A1171005	9002150
Integrated DC rate	430 Hz	907 Hz	593 Hz
Average Pixel DC rate	7 Hz	14 Hz	9 Hz

Afterpulse probability comparison using TRB DAQ

- Afterpulse probability corrected for missing channels in the DAQ
- Threshold set to 0.1-0.2 p.e., ~1e6 Gain

QE surface scans

- 200V at cathode, current measured at MCP-In, calculated in reference to photo diode current (known QE for wavelength)
- Scanned with 372 nm (blue) in 0.5 mm steps across surface
- Latest Hamamatsu and Photonis tubes reach ≥ 30% peak QE

Gain measurements

- Measured with shortened anode current
- Scan data are folded with QE of the sensor
 - Have to be divided by QE
 - Scaled with point of known gain
- QE corrected gain shown in pictures below
- All tubes reach 1e6 gain, but the Photek tube needs much higher voltage

20

10

0.6

Gain of non-ALD and ALD tubes in B-field

- ALD tubes show faster gain drop in B-fields than non-ALD tubes!
- Photonis 9002108: gain drop at 1 Tesla, 0 deg: factor 2; 15 deg: factor 3
- Hamamatsu YH0250: gain drop at 1 Tesla, 0 deg: factor 4; 15 deg: factor 6

Problem: Signal Oscillations

- J. Vav'ra: "coherent excitations" in old (2005) Planacon tubes
- Recently tested with latest MCP-PMTs:
- ALD coating; 1e6 gain; diffuse illumination of full PC area

RICH 2016: J. Vav'ra. NIM A876 (2017) 185

pixel's read out

Photonis 9002108 and 9002150

- Tested Tubes: Photonis 9002108 and 2150, which has a new backplane
- Noticable less ringing, also on covered Pixels (yellow trace)
- Red (632 nm) PiLas, 10 kHz, illumination of full sensor
- ALD coating, 1e6 gain

64 Pixels * 7 Photons/Pulse = 450 Photons 64 Pixels * 7 Photons/Pulse = 450 Photons

x: 10ns/div

Crosstalk behavior using TRB DAQ

- Cover half of the MCP-PMT and read out only the 3 most left and right rows
- Look at the number of simultaneous hits in a 15 ns window around the laser peak on the covered and open side at different thresholds
- Adjust ND-Filter to get ~1 p.e./Pixel (\bar{n}_{pe}), adjust the voltage to get the same signal height distribution in both MCP-PMTs
- <u>Illuminated half</u>: ~12 hits expected [24 pixels * (1- $\exp(-\overline{n}_{pe})$ with $\overline{n}_{pe} \sim 0.7$] <u>Covered half</u>: only crosstalk ("fake") hits from oscillation should be seen

Crosstalk behavior using TRB DAQ

9002108: at low threshold crosstalk events with up to 18 Hits/Laser pulse can be observed 9002150: only up to 2 Hits/Laser pulse seen

p a n)d a

4000

3000

2000

1000

10²

10

Crosstalk signal height also 25% smaller on 2150 compared to 2108

Number of Hits/Event

10000

9000

8000

7000

5000

4000

3000

2000

1000

resholc

 Photonis PMT with new backplane reduces ringing and crosstalk

Num Hits/Event covered

Open half Covered half

ERLANGEN CENTRE FOR ASTROPARTICLE

Most recent Lifetime measurement results

- Requirements: > 5 C/cm² at 1e6 gain (50% duty cycle, 10 years)
- Lifetime of < 200mC/cm² for tubes without countermeasures
- Lifetime increased by a factor of 50-100 with ALD coating
- Both Hamamatsu and Photonis tubes have reached > 5 C/cm²
- We didn't measure the lifetime of any Photek tube until now

Idea of collection efficiency (CE) measurement

- Idea: $CE = N_{pe@anode@15kHz} / N_{pe@PC@15kHz}$
- N_{pe@anode}: Poisson statistics of charge spectrum (with a Picosecond Laser (PiLas) at 15 kHz and a nd-filter)
- $N_{pe@anode@15kHz} = -\ln(N_{Pedestal}/N_{all})$
- N_{pe@PC@15kHz} is difficult to determine
- Direct measurement via illumination of a certain area with a PiLas and current measurement at PC or first MCP (like quantum efficiency)
- $N_{pe@PC@15kHz} = \frac{I_{pe@PC@15kHz}}{e \cdot 15kHz}$ is really low (~fA)
- Increase laser frequency to 50 MHz,
 *I*_{pe@PC@50MHz} still low, but measureable (~10pA)
- Laser is not linear -> monitoring of light intensity needed

Idea of collection efficiency (CE) measurement

- Monitoring of light intensity with a photodiode
- Introduction of correction factor F to compensate non-linearity

• $F = \frac{I_{Diode@50MHz}}{I_{Diode}@15kHz} \frac{15kHz}{50MHz}$

- Use of QE-Setup (200V between PC and MCP and current measurement) with a beam splitter
- Beam to sensor goes through nd-filter (1-2 photoelectrons per pulse)
- Beam to diode is unattenuated

•
$$N_{pe@PC@15kHz} = \frac{I_{PC@50MHz}}{50MHz \cdot e} / F$$

• $CE = \frac{N_{pe@anode@15kHz} \cdot e \cdot 15kHz}{I_{PC@50MHz}} \frac{I_{Diode@50MHz}}{I_{Diode@15kHz}}$

Results of collection efficiency (CE) measurement

	Photonis XP85112 9001394	Photonis XP85112 9002108	Hamamatu R13266-07 JS0022	Photek MAPMT253 A1171005	Hamamatsu R10754X-07 KT0001
comments	non-ALD, no film	ALD, Hi-CE no film	ALD, film before MCP	no film	ALD, film between MCPs
CE	$(63\pm 6)\%$	(95 ± 9)%	$(39 \pm 4)\%$	(83 ± 8)%	$(76 \pm 8)\%$

- ~60% for Photonis 9001394 seems reasonable
- Photonis 9002108 is higher (Hi-CE), Hamamatsu JS0022 is lower (protection film through which electrons have to pass)
- errors are estimated to be at around 10% level
- -> high DQE (= CE * QE) (up to 30%) for Hi-CE tubes

Rate stability

- Measured with shortened anodes at ~1 * 10⁶ gain
- Fully illuminated sensor and photodiode in same light spot (diffuser)
- Monitor diode and shortened anode current for different laser frequencies
- In theory, when diode current doubles anode current should double too
- Normalize to first value taken: Anodecurr x , Anodecurr 1
- $y = \frac{1}{Diodecurr_x} / \frac{1}{Diodecurr_1}$

- Normalized gain should be 1 if sensor doesn't change its gain
- Higher rates were not accessible because of limitation of anode current

Gain recovery

- Antamanova et al. observed (2018 JINST 13 T09001)
 - After high illumination the gain is lower than before
 - Only in ALD tubes, but not in non-ALD tubes
- We can reproduce this effect
- This effect is under further investigation

Afterglow

Saturation and Afterglow

- After illuminating MCP-PMTs with high intensity light the darkcount rate is significantly increased
- The count rate decays within several seconds minutes
- This effect can also be observed during our rate stability measurements:

Afterglowing – further investigations with 9001393 with TRB

- Illuminating the full MCP-PMT PC several seconds with ~1 p.e./Pixel, then turn off the laser and measure the count rate for 300 s
- Higher illumination intensity (laser frequency) results in more afterglow
- Observed up to 10% afterglow events compared to the laser rate
- Longer illumination intensity results in more afterglow
- Turning off the HV during the decay has no effect on the number of afterglow events
- Amount of afterglow events depends on the voltage applied (gain) during the illumination

Merlin Böhm - DIRC 2019 - Rauischholzhausen - 9/11

Afterglowing - photons or electrons?

- Measured two facing MCP-PMTs, once with the illuminated MCP-PMT turned on and once turned off
- Observe the count rates of the control MCP-PMT
- Count rates of the control MCP-PMT are higher when the illuminated MCP-PMT has been turned on
- ->Afterglow effect must be based on Photons

Time [s]

Illuminated MCP

(1394)

Summary

- The investigated Hamamatsu, Photek and Photonis tubes have
 - Time resolution <50 ps Sigma and <200 ps RMS
 - Very low darkcount rate of <1kHz / MCP-PMT
 - Low afterpulse probability of <1%
 - Average gain and QE homogeneity
 - QE up to 30% for Hamamatsu and Photonis tubes with high CE -> DQE up to 30%
- All tubes show ringing, but new Photonis backplane reduces it significantly
- Lifetime of Hamamatsu and Photonis ALD-coated tubes > 5 C/cm² (best at 25 C/cm²), but no Photek tube measured yet
- ALD tubes show strange saturation, recovery and afterglow effects
 - Needs to be investigated further
- Latest MCP-PMTs suitable for PANDA DIRCs