DIRC2019 Workshop September / 11-13 / 2019 Schloss Rauischholzhausen

RICH detector development for hadron identification at (JL)EIC

design, prototyping and reconstruction algorithm

E. Cisbani

Italian National Institute of Health and Istitute of Nuclear Physics

for the EIC/eRD14 - mRICH and dRICH groups

• EIC and impact of Hadron PID

- mRICH design and prototype tests
- dRICH design, expected performance, prototyping
- dRICH event reconstruction

EIC Physics, Specs and Needs

- Electron (and positron) and ion beams from proton to Pb/U
- Polarization (e, p, d, ³He) >70%, e-polarimetry precision down to 1% for e
- Luminosity up to $\approx 10^{34}/(\text{cm s})$ ($\approx 10^3$ HERA)
- CM energy large and variable (20-100 GeV)
- Reach very low $x \approx 10^{-4}$
- Inclusive, Seminclusive and Exclusive reactions
- Good Particle ID (for hadrons and leptons)
- Vertex Resolution down to 0.1 mm
- Momentum Resolution (down to ≈100 MeV ≈1%)

Current EIC project options

Three central spectrometer options: key aspects are basically very similar

Requirements for EIC - Detectors

_	Nomenclature			Tracking			Electrons		π/K/p PID		HCAL	Muons
4				Resolution	Allowed X/X ₀	Si-Vertex	Resolution σ₅/E	PID	p-Range (GeV/c)	Separation	Resolution σ _₽ /E	
-6.9 — -5.8	↓ p/A	Auxiliary Detectors	low-Q² tagger	δθ/θ < 1.5%; 10 ⁻⁶ < Q ² < 10 ⁻² GeV ²								
-4.54.0			Instrumentation to separate charged particles from photons									
-4.03.5												、
-3.53.0			Backwards Detectors	σ _p /p ~ 0.1%xp+2.0%	~5% or less	TBD	2%/√E					
-3.02.5									≤7 GeV/c		~50%/√E	
-2.52.0				σ _p /p ~ 0.05%xp+1.0%						≥3σ		
-2.01.5								π suppression — up to 1:104				
-1.51.0							7%/√E					
-1.00.5			Barrel	$\sigma_p/p\sim 0.05\% xp{+}0.5\%$		σ _{xyz} ~ 20 μm, d₀(z) ~ d₀(rφ) ~ 20/p⊤ GeV μm + 5 μm	(10-12)%/√E		≤5 GeV/c		TBD	твр
-0.5 - 0.0		Central Detector										
0.0 - 0.5												
0.5 - 1.0												
1.0 - 1.5			Forward Detectors	σ _p /p ~ 0.05%xp+1.0%		TBD			≤8 GeV/c	\setminus	~50%/√E	
1.5 - 2.0												
2.0 - 2.5												
2.5 - 3.0				σ _p /p ~ 0.1%×p+2.0%					≤ 20 GeV/c			
3.0 - 3.5		1							< 45 GeV/o			
3.5 - 4.0									S 45 Gev/c			/
4.0 - 4.5		Auxiliary Detectors	separate charged						<u>-η-ο</u>	0.5		
	te		particles from protons							~		
> 6.2			Proton Spectrometer	σ _{intrinsic} (1 <i>t</i> 1)/1t1 < 1%;				-1	1			
				Acceptance: 0.2 < p _T <			-	1.5	Barrel			
				1.2 069/6			-2.	0 - Ende	ton	Hadrottap	2.0	
DID detectors have to work in magnetic field $-50 - 4.0 - 3.0 - 10^{-3.0}$												
and	at ı	relativ	vely high ir	radiation co	onditio	ns	рия				e	
12/Sep/2019 -DIRC2019 E.Cisbani - RICH developments at (IL)EIC												4

Hadron-ID in JLEIC

Hadron ID beneficial for many physics cases, expecially in the high-momentum tails:

- SIDIS
- 3D tomography
- Diffraction
- Gluon saturation
- Open charm

ightarrow eRD14 offers an integrated PID program at EIC

eRD14 (PID) consortium in EIC

M. Alfred¹⁰, B. Azmoun³, F. Barbosa¹⁵, W. Brooks²¹, T. Cao²⁷, M. Chiu³, E. Cisbani^{13,14}, M. Contalbrigo¹²,

S. Danagoulian¹⁸, A. Datta²⁴, A. Del Dotto¹³, M. Demarteau², A. Denisov¹¹, J.M. Durham¹⁷, A. Durum¹¹,

R. Dzhygadlo⁹, C. Fanelli^{15,16}, D. Fields²⁴, Y. Furletova¹⁵, C. Gleason²⁵, M. Grosse-Perdekamp²³,

J. Harris²⁶⁾, M. Hattawy¹⁹⁾, X. He⁸⁾, H. van Hecke¹⁷⁾, T. Horn⁴⁾, J. Huang³⁾, C. Hyde¹⁹⁾, Y. Ilieva²⁵⁾, G. Kalicy⁴⁾,

- A. Kebede¹⁸, B. Kim⁵, E. Kistenev³, M. Liu¹⁷, R. Majka²⁶, J. McKisson¹⁵, R. Mendez²¹,
- I. Mostafanezhad²², P. Nadel-Turonski²⁰, K. Peters⁹, W. Roh⁸, R. Pisani³, P. Rossi¹⁵, M. Sarsour⁸,

C. Schwarz⁹, J. Schwiening⁹, C.L. da Silva¹⁶, N. Smirnov²⁶, J. Stevens⁶, A. Sukhanov³, X. Sun⁸, S. Syed⁸,

R. Towell¹, G. Varner²², R. Wagner², C. Woody³, C.-P. Wong⁸, J. Xie², Z.W. Zhao⁷, B. Zihlmann¹⁵,

C. Zorn¹⁵⁾.

- 1. Design and develop PID detectors covering the full phase space required in EIC
- 2. R&D on cost-effective sensor and electronics solutions

3. Maximize synergies and minimize costs of R&D

h-endcap: A RICH with two radiators (gas + aerogel) is needed for dRICH π/K separation up to ~50 GeV/c

e-endcap: A compact aerogel RICH which can be projective π/K separation up to ~10 GeV/c mRICH

barrel: A high-performance DIRC provides a compact and cost-effective way to cover the area. DIRC

 π/K separation up to ~6-7 GeV/c

12/Sep/2019 - DIRC2019

E.Cisbani - RICH develo

¹⁾ Abilene Christian University, Abilene, TX 79601 ²⁾ Argonne National Lab, Argonne, IL 60439 ³⁾ Brookhaven National Lab, Upton, NY 11973 ⁴⁾ Catholic University of America, Washington, DC 20064 ⁵⁾ City College of New York, New York, NY 10031 6) College of William & Mary, Williamsburg, VA 2318 ⁷⁾ Duke University, Durham, NC 27708 8) Georgia State University, Atlanta, GA 30303 ⁹⁾ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ¹⁰⁾ Howard University, Washington, DC 20059 ¹¹⁾ Institute for High Energy Physics, Protvino, Russia ¹²⁾ INFN, Sezione di Ferrara, 44100 Ferrara, Italy 13) INFN, Sezione di Roma, 00185 Rome, Italy 14) Istituto Superiore di Sanità, 00161 Rome, Italy ¹⁵⁾ Jefferson Lab, Newport News, VA 23606 ¹⁶⁾ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, M ¹⁷⁾ Los Alamos National Lab, Los Alamos, NM 87545 ¹⁸⁾ North Carolina A&T State University, Greensboro, NC 27411 ¹⁹⁾ Old Dominion University, Norfolk, VA 23529

- ²⁰⁾ Stony Brook University, Stony Brook, NY 11794
- ²¹⁾ Universidad Técnica Federico Santa María, Valparaíso, Chile
- ²²⁾ University of Hawaii, Honolulu, HI 96822
- 23) University of Illinois, Urbana-Champaign, IL 61801
- ²⁴⁾ University of New Mexico, Albuquerque, NM 87131
- ²⁵⁾ University of South Carolina, Columbia, SC 29208
- ²⁶⁾ Yale University, New Haven, CT 06520
- ²⁷⁾ University of New Hampshire, Durham, NH 03824
- ²⁷⁾ Indiana University, Bloomigton, IN 47405

Greg Kalicy talk

Modular, compact and flexible geometry, focusing optics by tiny Fresnel lens, sensor spatial resolution ≤3 mm

mRICH optics

9 GeV/c pions

12/Sep/2019 - DIRC2019

E.Cisbani - RICH developments at (JL)EIC

mRICH beam tests @ FERMILAB

Working principle proved in 2016/1st beam test

Beam Data Geant4 Simulation

PID performance evaluation in 2018/2nd beam test

2nd prototype main improvements:

- Longer focal length (6 inches)
- Smaller (3 mm) sensor pixel size
- Tested both MAPMT H13700 an SiPM sensors

(Readout electronics: MAROC based readout system from CLAS12/RICH)

Marco Contalbrigo talk

12/Sep/2019 - DIRC2019

E.Cisbani - RICH developments at (JL)EIC

Second prototype of mRICH

mRICH 2nd test: beam position scan

mRICH 2nd test: Offline analysis

Preliminary results (from MAPMTs configuration) give:

photoelectrons on ring (signal)# photoelectrons off ring (background)angular resolution (sigma_theta)

Likely affected by:

- sub-optimal internal alignment and positioning
- partial aerogel tiles characterization

Comparison with simulations in progress

Photosensors need to be radiation hardness and able to work in magnetic field with potentially different orientations and intensities; candidates: SiPM, PMT-MCP/LAPPD

dRICH in JLEIC h-endcap

- Radiators: Aerogel (4 cm, n_(400nm)~1.02) + 3 mm acrylic filter, Gas (1.6 m, n_{C2F6}~1.0008)
- 6 Identical Open Sectors (Petals):
 - Large Focusing Mirror with R \sim 2.9 m
 - Optical sensor elements: ~4500 cm²/sector, 3 mm pixel size, UV sensitive, out of charged particles acceptance

Advantages:

- Full momentum, continuous coverage
- Relatively simple geometry/optics
- Expected to be Cost Effective (respect to 2 x detectors solution)

dRICH baseline MC performance

- Montecarlo: GEMC (Geant4)
- Aerogel Optical properties from CLAS12 RICH data, scaled to 1.02
- Acrylic Filter (<300nm) after the aerogel to minimize Rayleigh
- Gas number of photons normalized by 0.7 factor respect to literature
- Include 3T central magnetic field
- Assumed PMT H12700 (200-500 nm)
- Mirrors reflectivity from CLAS12
- Cherenkov Angle reconstruction based on Inverse Ray Tracing

12/Sep/2019 - DIRC2019

E.Cisbani - RICH developments at (JL)EIC

dRICH: Angular resolution

All the main contributions to the Cherenkov angle resolution have been evaluated by MC

Largest effects from

- Aerogel chromatic (variation of refractive index with wavelength)
- Gas emission

 (unknow emission position
 of the photons and
 focusing optics)

dRICH demands for excellent and stable performance from aerogel (and gas) radiator(s)!

12/Sep/2019 - DIRC2019

E.Cisbani - RICH developments at (JL)EIC

Toward dRICH prototype

Goals:

- Validate main design choices
- **Consolidate the estimated performances**
- Identify potential technical issues that are hard to model
- Evaluate alternatives to reduce costs and risks

First phase (use «well known» MAPMTs):

- Measure realistic number of direct Cherenkov photons coming out from both radiators
- Evaluate quality of aerogel in terms of Cherenkov photons (e.g. chromatic dispersion of refractive index)
- Estimate other effects (e.g. impact of scintillation photons in Freon gases) Second phase:
- Test promising alternatives (e.g. SiPM vs MCP/LPPD, new electronics ...)
- Test implementation details (e.g. sensor-gas interface, mirror alternatives 12/Sep/2019 - DIRC2019 E.Cisbani - RICH developments at (JL)EIC 15

dRICH Prototype Consolidated Design

Driving items:

- 1. Reuse available sensors and electronics as in mRICH (but be flexible to allow new sensors in the future)
- Gas and Aerogel rings need to enter the same sensors configuration (-> different optics)
- 3. Isolate sensors and aerogel from «freon» gases
- 4. Minimize volumes

Retractable

«Aerogel» Mirror

1000 mm

«Gas»

Mirror

Service flanges not shown

212 mm

Aerogel, Optical Sensors and Electronics

400:00 mm

12/Sep/2019 - DIRC2019

Main choices:

- 1. Use standard vacuum technology to guarantee adequate gas tightness (avoid expensive and eco-unfriendly gas flowing)
- 2. Retractable aerogel mirror
- 3. Aerogel and sensor in the same small box -> use single transparent E. window (compatibles with) Fermilab test beam specificities) 16

dRICH Consolidate Prototype "Aerogel Mode"

Refractive index

12/Sep/2019 - DIRC2019

- Gas optics similar to dRICH model
- Aerogel optics is pretty different than in dRICH -> different contributions to σ_{ϑ}

Measurement of the aerogel chromatic dispersion and UV filter optimization feasible

dRICH Consolidated Prototype Expected Performance

1 p.e. Error (mrad)	Aerogel		C ₂ F ₆ Gas		
Chromatic error	3.2	(2.9)	0.51	(0.8)	
Emission	0.5	(0.5)	0.5	(1.2)	
Pixel	2.5	(0.5)	0.42	(0.5)	

Chormatic and pixel erros are comparable in prototype

12/Sep/2019 - DIRC2019

IRT Event Based Reconstruction

Nt : tracks (+ background «dummy track»)

Nh : photon hits (photoelectrons)

Nr : radiators (aerogel and gas)

Np : potential particle types (e,pi,K,p)

 ~40% of PYTHIA events have multiple tracks in dRICH
 ~50% of them overlapping rings;
 Simple track based IRT → π/K contamination>10%

Global naive «brute force» approach: explore all possible combinations of

Track ∈ Particle type hypothesis: Np^Nt Photon hits ∈ (Track ⊗ Radiator + Background) : **(Nt*Nr+1)^Nh** Each combination has an associated Likelihood; take the maximum

Our approach:

- Determine (by IRT) the potential emission angles corresponding to each photon hit
- Split the problem in two steps (for each event):
 - Sequential hits association to tracks/radiators using a first likelihood L1 (combinations drop to (Nt*Nr+1)*Nh)
 - Once all hits are associated, estimate a global Likelihood (L2) for each (track ∈ particle) combination; choose the combination with max L2

Example: event with 2 tracks and 15 hits

Brute Force:up to ~488 billion combinationsOur approach:1200 combinations

The PID capability fulfills the design goals

12/Sep/2019 - DIRC2019

Summary

- The EIC/eRD14 consortium is carring on several R&D activities to fulfill the demanding hadron PID requirements of EIC; amoung them, 2 very different RICHes are under development for the electron and hadron endcaps of (JL)EIC
 - mRICH: prototypes demonstrated working principle and first preliminary real performances; working on improving angular resolution and search for suitable sensor/electronics
 - dRICH: design and MC analysis deeply investigated (event based reconstruction method implemented); prototyping started to validate the MC analysis and improve design
 - Both detectors need (at different levels) photosensors development to stand magnetic field, irradiation levels and reduce costs
- EIC/eRD6 carring promising R&D on gas RICH with UV sensitive MPGD photocathode – combined to the mRICH may represent an alternative to the dRICH; but it is currently unable to cover the full range in RICH mode.

Support Slides

dRICH vs gas only RICH in ePHENIX

dRICH (From GEMC simulation)

- aerogel + C₂F₆
- outward reflecting mirrors
- six azimuthal sectors
- SiPM or LAPPD sensors

eRD6 RICH (From Fun4All simulation)

- CF₄ gas only
- · inward reflecting mirrors
- eight azimuthal sectors
- GEM photosensors (sensitive in the UV)

$$\begin{split} &Aerogerl(n=1.015) \mid e_{th}(GeV/c) = 0.0029 \mid \pi_{th}(GeV/c) = 0.80 \mid K_{th}(GeV/c) = 2.84 \mid p_{th}(GeV/c) = 5.40 \\ &C_2F_6(n=1.00082) \mid e_{th}(GeV/c) = 0.0123 \mid \pi_{th}(GeV/c) = 3.48 \mid K_{th}(GeV/c) = 12.3 \mid p_{th}(GeV/c) = 23.48 \\ & = 100082 \\ & =$$

CF₄ gas RICH (ePHENIX)

RICH alternatives in ePHENIX hadron endcap

- UV GEMs: chromatic dispersion in CF₄ gas dominates the resolution.
- mRICH + CF₄ gas do not provide continuous
 coverage in RICH mode for pi/K and not at all for K/p.
- Joint eRD14/eRD6 simulation and reconstruction effort.

- Outward-reflecting spherical mirror: errors important at small angles with flat sensor plane. Can be optimized.
- The dRICH provides continuous momentum coverage in RICH mode.
- Small scale prototype needed to validate simulation and other critical aspects.

dRICH: First preliminary prototype concept

- sensors/electronics)

1

0.9

dRICH: other Montecarlo predictions

Need prototyping to get more realistic results

12/Sep/2019 - DIRC2019

Based Global Reconstruction

Particle Type (p), Radiator (r), Track (t), Hit (h)

L1: Function of distance between estimated and expected ϑ_C normalized to σ_ϑ L2: $\sum_{(t,r)} Gaus(\langle \vartheta_C \rangle) \times Poisson(N_{pe})$ 12/Sep/2019 - DIRC2019 E.Cisbani - RICH developments at (JL)EIC