Single Photon Imaging with the CLAS12 RICH Detector

M. Contalbrigo – INFN Ferrara – on behalf of the CLAS12 RICH group

DIRC2019 Workshop on fast Cherenkov Detectors 12th September 2019, Castle Rauischholzhausen, Germany

Jefferson Lab

Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

CLAS12 in Hall-B

Contalbrigo M.

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

CLAS12 RICH

INSTITUTIONSINFN (Italy)Bari, Ferrara, Genova, L.Frascati, Roma/ISSJefferson Lab (Newport News, USA)Argonne National Lab (Argonne, USA)Duquesne University (Pittsburgh, USA)George Washington University (USA)Glasgow University (Glasgow, UK)Kyungpook National University, (Daegu, Korea)University of Connecticut (Storrs, USA)

UTFSM (Valparaiso, Chile)

Goal kaon-pion separation up to 8 GeV/c (prototype results):

RICH Components

Aeronautic technology for structure

to maximize lightness and stiffness. Trapezoid of composite materials: CFRP inside acceptance, Aluminum outside

Carbon Fiber Mirrors (spherical)

to maximize lightness and stiffness. Consolidate technology (HERMES, AMS, LHCb) but ~ 30 % material budget reduction

RICH Components

Glass-Skin Mirrors (planar)

Innovative technology never used in nuclear experiments.1.5 mm outside, 0.7 mm inside acceptance~ 1/5 cost for squared meter vs CFRP

Large refractive index aerogel radiator Tiles up to 20x20x3 cm² at n=1.05.

Photon Sensor: MA-PMT

80 H8500 + 350 H12700

< 1 cm spatial resolution < 1 ns time resolution Compatible with the low torus fringe field

Average MA-PMT gain ~ 2.7 10⁶ Corresponds to SPE ~ 400 fC

- 64 6x6 mm² pixels cost effective device
- ✓ High sensitivity on VIS towards UV light
- Mature and reliable technology
- ✓ Large Area (5x5 cm²)
- High packing density (89 %)
- ✓ Fast response
- ✓ Expensive technology

RICH Readout Electronics

Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

SSP Fiber-Optic DAQ

Tile power dissipation ~ 3.5 W

RICH Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Linear response

Multiplexed readout Limited holding time delays

Used for calibrations

ADC Charge Measurement

Multiplexed readout up to 50 kHz

High resolution SPE spectrum

Viable for efficiency and gain monitors

In conjunction with timing, allows the study of PMT discharge and cross-talk

RICH Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Digital response Working in saturated regime 64 parallel channel readout

8 μs FIFO and delays 1 ns time resolution

TDC Digital Readout

During Acceptance tests

During Internal Pulser Calibration

Pedestal rms as seen by a test-point

As seen by **RICH** readout

Discrimination down to 20 fC, i.e. few % of SPE, allows sensor characterization

Optical and Electronic Cross-talk

Contalbrigo M.

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

Single-photon Discrimination

Contalbrigo M.

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

RICH Installation

Electronic Pedestals

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

Online Equalization

After equalization: distributions narrower and less sensitive to the common threshold saturate signals and cross-talk well separate

black: high threshold

red: intermediate threshold

green: low threshold

Single Photon Time Analysis

CLAS12 Reconstructed Time and Position: Photons are traced using information

from other CLAS12 detectors

RICH Measured Time and Position: Defined by the RICH DAQ

Good photons should match in time and space

Time analysis allows to separate spurious signals

Time Offsets

Contalbrigo M.

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

Single-photon Time Resolution

Single-photon time resolution better than the 1 ns specification

before time-walk correction

after time-walk correction

Time Calibration

Cherenkov Angle Reconstruction

Analytic solution for direct photons

"Exact" solution for the Cherenkov Angle

Ray traced solution for direct photons

Assume knowledge of aerogel ref index

Only direct photons

Any photon

GOAL: get a Cherenkov angle estimate for each photon for detailed PID optimization

RICH Hadron Separation

RGA data, direct photons No alignment of internal components Number of photons and single photon resolution close to TDR

Raw RICH alignment (not for internal components)

Contalbrigo M.

NFN

DIRCRICH Workshop, 12th September 2019, C. Rauischholzhausen - Germany

Hadron separation, direct photon, RGA data, raw alignment

DIRC @ GlueX

Application: Modular RICH @EIC

Compact and modular RICH indipendent elements

H13700 to reach the 3 mm spatial resolution

Application: SiPM Arrays

Test of SiPM with RICH electronics

Conclusions

CLAS12 RICH designed to provide hadron identification in the 3 to 8 GeV/c momentum range A hybrid-optic design has been adopted to minimize the instrumented area to about 1 m²

RICH has successfully taken data, performance moving towards specifications

The readout electronics is designed to offer
Discrimination down to few % of SPE Time resolution of 1 ns Negligible dead time at 30 KHz Trigger latency up to 8 μs
Featuring:
Compatibility with various sensors and applications Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Compact and tessellated geometry (common HV, LV and optical fiber) Flexible trigger logic (external, auto, self) Charge measurement (multiplexed ADC or time-over-threshold)

Multi purpose electronics: in use also for GlueX DIRC and EIC R&D