

LHCD

Status of the **TORCH Project**

Neville Harnew

University of Oxford

On behalf of the TORCH Collaboration

DIRC 2019 Castle Rauischholzhausen 12 September 2019

CÈRN

Outline

- Introduction to TORCH
 TORCH principle
- Development of Microchannel Plate PMTs
- Beam test analysis
 - Time resolution and photon yield performance
- TORCH simulation and LHCb physics studies

Summary

General introduction to TORCH

- TORCH (Time Of internally Reflected CHerenkov light) is an R&D project to develop a large-area time-of-flight system
- π-K TOF difference = 35 ps over a ~10 m flight path. To achieve positive identification of kaons up to p ~ 10 GeV/c, need to aim for ~ 10-15 ps resolution per track
- The σ_{TOF} requirement dictates timing single photons to a precision of 70 ps for ~30 detected photons

The TORCH detector

- A charged track produces Cherenkov light in a plane of I cm thick quartz
- Cherenkov photons travel to the periphery of the detector by total internal reflection and focused → their position and arrival time is measured by Micro-Channel Plate PMTs (MCPs)
- The Cherenkov angle θ_c and path length L in the quartz are measured. The time of arrival is used to correct for the chromatic dispersion in the quartz.
- From simulation, ~I mrad precision is required on measurement of the angles in both planes to achieve the required intrinsic timing resolution

DIRC 2019

TORCH MCP-PMT development

- The Cherenkov photons are focused onto Micro-Channel Plate PMTs
- These have been developed by industrial partner Photek UK in a 3phase development programme See talk of J. Milnes
- Each detector has a granularity of 64 x 64 pixels over a 53 x 53 mm² active area. A readout PCB is connected via Anisotropic Conductive Film
- Charge sharing and channel grouping is used to achieve an effective granularity of 128 x 8 pixels, which is required for the 1 mrad precision
- The MCPs have ALD coating and are designed to withstand an integrated charge of 5 C/cm²
- I0 MCP-PMTs delivered from Photek are under test
- Two types of readout PCB for testbeam studies: 64 x 4 pixels and 64 x 8 (nominal).

TORCH readout electronics

- Custom readout electronics developed, based on the ALICE TOF system:
 NINO + HPTDC [F. Anghinolfi et al, Nucl. Instr. and Meth. A 533, (2004), 183, M.
 Despeisse et al., IEEE 58 (2011) 202]
- NINO-32 provides time-over-threshold information which is used to correct time walk & charge to width
 NINO Output
 measurement. Non-linearities of
 HPTDC time digitization (100 ps bins) are also corrected

128 channel NINO board developed

R. Gao et al., JINST 10 C02028 (2015)

The calibrations are challenging and work is still ongoing to optimize them

DIRC 2019

12 September 2019

Detector Simils

Threshold

TORCH prototypes

- TORCH prototypes have been tested in several beam tests between 2015 and 2018
- "Mini-TORCH" is a small scale module with a 12 cm x 35 cm x 1 cm quartz plate, instrumented with a single MCP-PMT

Presented at DIRC 2017 : N. Harnew et al 2017 JINST 12 C11026

- "Proto-TORCH" is a half-height, full-width LHCb module 66 cm x 125 cm x 1 cm, currently instrumented with 2 MCP-PMTs
 - Beam tests were performed in CERN PS with 5 and 8 GeV/c p/π beams

DIRC 2019

12 September 2019

Hadron track

TORCH beam test infrastructure in PS/T9

Mini-TORCH demonstrator

- Quartz radiator (12 × 35 × 1cm³) with matching focusing block (from Schott Germany)
- Early version of NINO board (64-channel)
- Results now finalized publication in preparation

Radiator plate: $35 \times 12 \times 1 \text{ cm}^3$

12 September 2019

A word on the pattern folding

- Cherenkov cone results in hyperbola-like patterns at the MCP plane
- Reflections off module sides result in folding of this pattern
- Chromatic dispersion spreads line into band

- The pattern shown above for a full TORCH module, however this pattern is only sampled with partially instrumented MCPs in the testbeam.
- The nominal test-beam configuration is chosen to give cleanly resolved patterns.

Ν

Mini-TORCH hit maps in MCP-PMT

- 4 x 64 and 8 x 64 MCP-PMTs used
- Clustering applied to get
 MCP centroid hit position
- Correct for non-linearity and time-walk in the TORCH electronics.
- Note: some dead channels in 8 x 64 MCP-PMT due to NINO bonding issues

DIRC 2019

Time resolution : mini-TORCH

- Shown here is typical data for the 8 × 64 MCP-PMT
- For each column of pixels, plot the time measured for each cluster relative to the timing station T2 versus the finelygranulated pixel number (y')
- Reflection bands clearly observed

DIRC 2019

Time resolution : mini-TORCH

- Plot residuals for reflections
 0 and 1'
- Subtract contribution from timing reference (~40 ps)
- We measure resolutions of typically 100 ps per photon
- The target resolution is 70 ps per photon: improvements are possible to achieve this :
 - Improved pulse-height to width calibration
 - Limit of 100 ps binning in HPTDC

12 September 2019

NEW : "Proto-TORCH" demonstrator

- A half-sized TORCH module : 125 x 66 x 1 cm³ tested last year
- Optical components from Nikon (radiator plate, focusing block)

Proto-TORCH preliminary analysis

Wavelength (nm)

15

Preliminary analysis

Time projection (for 1 MCP column)

Vertical Pixel

- Project the hits in the time-of-arrival axis to separate the different orders of side reflections
- The overlaid lines represent reconstructed predictions
- The spread in times for each order of reflection is measured to determine the single photon time resolution

Time resolution studies

- Plot residual distributions of single-photon time resolution for first order reflections versus MCP column number
- A simultaneous fit determines the spread in the time of arrival at each pixel $\sqrt{2}$ 140 group 140 grou

- We see some degradation of time resolution with height in the radiator
- Nevertheless, the time resolution is approaching or matches the design goal of 70 ps

Resolution studies

- Use charge sharing in the MCP to measure the cluster centroid of each photon hit
- Plot the time resolution for different sizes of clusters of hits

12 September 2019

N. Harnew

Resolution studies continued

- The time resolution can be parameterized into different contributions
- These individual sources are under study in laboratory tests

Photon yields vs vertical height

- Photon yields compared to simulation (which includes MCP quantum efficiency, collection efficiency, surface roughness etc)
- Discrepancies as a function of vertical position still being studied
- The current prototype only has 2 out of 11 MCPs
 - Photon yields would be ~5.5 times larger than shown here
- Final module expected to have improved quantum efficiency

Photon Count

TORCH for LHCb Upgrade IB

- The RICH system provides particle ID in LHCb
- But currently no positive kaon or proton ID below ~10 GeV/c
- Proposal to install TORCH in front of RICH2, possibly already in LS3 (for ~2026)

12 September 2019

Simulated performance at LHCb

- TORCH has been simulated in the framework of the Upgraded LHCb detector (GEANT4)
- The PID performance is determined for Upgrade IB conditions (Run 4)

 $\mathcal{L} = 2 \times 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

 Good separation expected between π/K/p in the 2 - 10 GeV/c range and beyond.

Summary and outlook

- The TORCH project is progressing well, with a successful series of beam tests
- The time resolution of the prototype is approaching the design goals : 70 - 100 ps timing resolutions per single photon achieved. With improvements in calibration hope to achieve consistently the desired 70 ps. Photon yield still under study.
- Further lab tests and electronics calibrations are ongoing
- TORCH has been simulated in the LHCb experiment. Studies have indicated significant improvements to the LHCb physics potential
- Future tests will involve the fully instrumented (II MCP) half-height TORCH module

DIRC 2019

12 September 2019

The TORCH project was funded by an ERC Advanced Grant under the Seventh Framework Programme (FP7), code ERC-2011-ADG proposal 299175.

European Research Council Established by the European Commission