High-Performance DIRC Detector for the future EIC Detector

Greg Kalicy on behalf of PID@EIC Consortium

Outline:

- Electron Ion Collider Three detector concepts
- hpDIRC
 Design and performance
- Focusing system Validated in particle beam and lab

South Carolina

GSI: J. Schwiening, C. Schwartz, R. Dzhygadlo, A. Gerhardt, D. Lehmann ODU: C. Hyde, Thomas Hartlove SBU: P. Nadel-Turonski USC: Y. Ilieva BROOKHAVEN NATIONAL LABORATORY

Stony Brook

University

Electron Ion Collider

The EIC in the 2015 NSAC LRP and the recent NAS review

NSAC: "We recommend a high-energy highluminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB." NAS: "The committee unanimously finds that the science that can be addressed by an EIC is compelling, fundamental, and timely."

EIC Location

- Two competing locations: Jefferson Lab and Brookhaven
- CD0 and site decision expected soon
- Both concepts support 2 detectors

BNL EIC at RHIC

18 GeV e (10 GeV lumi max) on 275 GeV p

JLab EIC 12 GeV e (5 GeV lumi max) on 200 GeV p

EIC Central Detector

- **Two competing locations:** Jefferson Lab and Brookhaven
- Three central detector concepts: BeAST, ePHENIX, JLab central detector

BNL BeAST EIC detector

Δ

EIC PID Solutions

- h-endcap: A RICH with two radiators (gas + aerogel) is needed for π/K separation up to ~50 GeV/c
- e-endcap: A compact aerogel RICH which can be projective π/K separation up to ~10 GeV/c
- barrel: A high-performance DIRC provides a compact and costeffective way to cover the area. *π/K separation up to ~6 GeV/c*
- TOF (and/or dE/dx in TPC): can cover lower momenta
- Photosensors and electronics: makes use of latest developments

hpDIRC Performance Goal

Expected PID capability of hpDIRC:

π/K up to 6 GeV/c

September 19th, 2019

hpDIRC Performance Goal

Expected PID capability of hpDIRC:

- π/K up to 6 GeV/c
- e/π up to 1.8 GeV/c
- p/K up to 10 GeV/c

September 19th, 2019

Initial hpDIRC Design

- Concept fast focusing DIRC
- Components:
 - Radiator bars
 - 17 x 35 x 4200 mm
 - 11 bars per box
 - 16 bar boxes, 1m from IP
 - Spherical 3-layer lens
 - 14 x 35 x 50 mm
 - radiuses: 47 mm, 29 mm
 - Compact expansion volume
 - Prism with 38° opening angle
 - 285 x 390 x 300 mm
 - Fast pixelated sensors
 - 100k pixels, each 3 mm²

Geant4 simulation of hpDIRC detector

hpDIRC Simulated Performance

hpDIRC Simulated Performance

Critical hpDIRC Components

Geant4 simulation of hpDIRC detector

- Radiator bars (Major decision between radiator has to made)
- Imaging system:
 - Expansion volume (shape)
 - **Sensors** (small pixels, fast timing, operating in magnetic field)
 - Focusing system (new materials, custom design)

Magnet:

- superconducting solenoid
- max. field: 5.1 T at 82.8 A
- 12.7cm (5inch) diameter
 76.2cm (30inch) length bore:

Test Box:

- non-magnetic, light-tight
- allows for rotation of sensors
- LED light source (470nm)

Picosecond laser added for timing studies

Past year: focused on testing 10-µm Planacon XP85112 (6mm pixel size) tests

- At all voltages the ion rate is below 2%.
- Results suggest that ion-feedback is primarily driven by HV.
- Ion-feedback rate dependence on B-field magnitude is relatively weak.

September 19th, 2019

Past year: focused on testing 10-µm Planacon XP85112 (6mm pixel size) tests

- At all voltages the ion rate is below 2%.
- Results suggest that ion-feedback is primarily driven by HV.
- Ion-feedback rate dependence on B-field magnitude is relatively weak.

Next: XP85122-S (10-µm Planacon with 1.6mm pixel size)

- Evaluation of gain and timing-resolution
- Comprehensive gain, timing and ion feedback studies as a function of B, HV, and sensor orientation relative to field direction
- Studies with costumed HV settings

September 19th, 2019

Critical hpDIRC Components

Geant4 simulation of hpDIRC detector

- Radiator bars (Major decision between radiator has to made)
- Imaging system:
 - Expansion volume (shape)
 - Sensors (small pixels, operating in magnetic field)
 - Focusing system (new materials, custom design)

3-layer Lens

Limitations of standard plano-convex focusing lenses with air gap:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

September 19th, 2019

3-layer Lens

Limitations of standard plano-convex focusing lenses with air gap:

Significant photon yield loss around 90° particle track

3-layer lens High refractive Fused silica material **Fused silica**

Aberration for photons with steeper angles

Mapping focal plane of 3-layer lens:

 Lens holder designed to rotate in two planes for the 3D mapping of the focal plane and shifts of lens in horizontal plane.

Laser setup to map the focal plane Red laser

- Two prototype lenses characterized
- Stability and efficiency of setup has to be improved for new prototypes

- Two prototype lenses characterized •
- Stability and efficiency of setup has to be ٠ improved for new prototypes

Spherical 3-layer lens prototype

22

- Two radiation-hard 3-layer spherical prototype lenses currently in production, will be available fall 2019.
- Upgrade of setup will simplify the calibration and the exchange of lenses, and increase the precision and speed of the measurements!

Laser setup at ODU to map the focal plane Current setup:

Spherical and cylindrical 3-layer lens prototypes

 First lens prototypes used lanthanum crown glass (NLaK33) as the middle layer.

R. Dzhygadlo, T. Hartlove, G. Kalicy, J. Kierstead

⁶⁰Co irradiation setup at BNL

 Radiation damage quantified by measuring the transmission in the 190-800 nm range in a monochromator.

Co⁶⁰ Chamber

T. Hartlove, G. Kalicy, J. Kierstead

⁶⁰Co irradiation results

- Radiation damage quantified by measuring the transmission in the 190-800 nm range in a monochromator
- Transmission loss of both lanthanum crown glass materials (NLaK33 and S-YGH51) observed

<image>

S-YGH51 (NLaK33 equivalent)

Co⁶⁰ Chamber

September 19th, 2019

- First lens prototypes used lanthanum crown glass (NLaK33/S-YGH51) as the middle layer.
- Both Sapphire and PbF₂ are very challenging to process.
- Two vendors are building 3-layer lens with Sapphire and PbF₂.

Simulated π/K separation for charged pions and kaons with 6 GeV/c momentum and 30° polar angle, assuming a tracking resolution of 0.5 mrad.

- Seven materials studied
- Radiation hardness of sapphire and PbF₂ confirmed
- Luminescence studies started

Fused

Silica

0k

Sapphire

750k

8mm

750k

PbF₂ PbF₂

750k

September 19th, 2019

Lens

400k

Tested samples

4mm S-YGH51 S-YGH51 Fresne

100k

5k

hpDIRC Prototype

Full system PANDA barrel DIRC prototype

- Modular design modified and improved over 11 years
- Wide range measurements performed in GSI and CERN
- Several different focusing lenses were tested

(Pan)da

BARREL DIRC

September 19th, 2019

Test Beam Program

hpDIRC Prototype

Full system PANDA barrel DIRC prototype

- Modular design modified and improved over 11 years
- Wide range measurements performed in GSI and CERN
- Several different focusing lenses were tested

Ultimately hpDIRC Prototype with proper geometry is needed

- Radiator choice (narrow bars vs wide plates radiators)
- Fast timing, readout electronics
- Pixel size, sensor coverage

Summary

- High-Performance DIRC is being developed to fit all three concepts for the future EIC central detector.
- Initial design (narrow bar) based on 3-layer lens has potential to cover beyond 10 GeV/c for p/K, 6 GeV/c for π/K, and 1.8 GeV/c for e/π, pushing performance well beyond state-of-the-art.
- Optical properties of first spherical and cylindrical 3-layer lens prototypes were validated in the particle beam and on the test bench.
- Sapphire and PbF2 materials were investigated and confirmed in radiation hardness tests as alternative high refractive index material.
- The new radiation hard 3-layer lens prototypes are being finished.
- Next step: design optimization, particle beam tests

Backup

EIC PID Solutions

Hadron kinematic at EIC

- The maximum hadron momentum in the endcaps is close to the electron and ion beam energies, respectively.
- The momentum coverage need in the central barrel depends on the desired kinematic reach, in particular in Q² – important for QCD evolution, etc.
 - Weak dependence on beam energies

PID Semi-Inclusive DIS (SIDIS)

- Highly polarized electron collide with highly polarized nuclei (proton, deuteron, 3He ,etc)
- Detect scattered electron and pion at full angle and full momentum range

PID 3D structure of the proton

Efficiency

Relative gain (solid lines) and relative efficiency (dashed and dotted lines)

10-µm Planacon Ion Feedback

• *Rate* is evaluated over a range of A_{thr.} *Rate*(A_{thr}=Pedestal) is obtained from a linear fit to the high-A_{thr} tail. This is the best estimate of the true ion rate, i.e. as would be obtained if there were no noise on the waveform, but only signal(s).

10-µm Planacon Ion Feedback

Estimates of backscattering rate (normalized to number of signals)

- A_{thr}- Theshold amplitude, above it signals are counted
- At all voltages the ion rate is below 2%.
- Results suggest that ion-feedback is primarily driven by HV.
- Ion-feedback rate dependence on B-field magnitude is relatively weak.
- Method established; ion rate can be monitored in experiments using calibration data.

hpDIRC Design Decisions

- 16 section design with one prism in each as expansion volume
- Prism size has to be optimized to final detector design
- Major decision between radiator has to made

GEANT4 visualization of the designs:

hpDIRC Single Photon Resolution (SPR)

hpDIRC Single Photon Resolution (SPR)

EIC@JIab Siteplan

JLEIC Performance goals

Energy

 \sqrt{s} from **15** to **65** GeV Electrons **3-10** GeV, protons **20-100** GeV, ions **12-40** GeV/u

Ion species

Polarized light ions: **p**, **d**, ³**He**, and possibly **Li** Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Space for at least 2 detectors

<u>Full acceptance</u> is critical for the primary detector High luminosity for the second detector

Luminosity

10³³ to 10³⁴cm⁻²s⁻¹ per IP in a broad CM energy range

Polarization

At IP: longitudinal for both beams, transverse for ions only **All polarizations >70%**

Upgrade to higher energies and luminosity possible

20 GeV electron, 250 GeV proton, and 100 GeV/u ion

Design goals consistent with the White Paper requirements

High B field tests Gain measurements of photosensors

Measurement in 2015 of Photek sensor with special voltage divider:

- Independently change the voltages cathode-MCP, across MCPs, and MCP-anode and study gain dependence
- Confirmed that voltage across the MCPs affects the gain the most
- Data at other angles are under analysis

12th Stepter and the set of the