Status of the PANDA Barrel DIRC Project

Carsten Schwarz, 🖬 🖬 🖬

for the PANDA Cherenkov group (GSI, Uni Giessen, Uni Erlangen, and Uni Mainz)

FAIR & panda

- The Barrel DIRC design
- Experiments in test beams
- Finalizing the R&D and construction

Design: based on BABAR DIRC and SuperB FDIRC with key improvements

- Barrel radius ~48 cm; expansion volume depth: 30 cm.
- 48 narrow radiator bars, synthetic fused silica
 17 mm (T) x 53 mm (W) x 2400 mm (L).
- Compact photon detector: 30 cm fused silica expansion volume 8192 channels of MCP-PMTs in ~1T B field
- Focusing optics: spherical lens system
- Fast photon detection:

fast TDC plus TOT electronics,

 \rightarrow 100-200 ps timing

2008 – GSI 2009 – GSI 2011 - GSI, CERN 2012 – CERN 2013 – Mainz 2014 – GSI 2015 – CERN 2016 – CERN 2017 – CERN 2018 – CERN

Experiments in test beams,

Groups: GSI Darmstadt Uni Erlangen Uni Giessen Uni Mainz EIC groups JLAB/CUA

29 m TOF

C. Schwarz, GSI

8

Expected performance

Cherenkov track resolution: $\sigma_{c}^{\text{photon}}$ $\sigma_{\theta_{\rm C}}^{\rm track}$ $(\sigma^{\text{correlated}})^2$ (using spatial coordinates) tracking resolution 2-3 mrad 90 20 detected photons [#] SPR [mrad] Photon yield Single photon Cherenkov angle 80 18[- Geant simulation resolution (SPR) 16 70 3 bars per bar box 14⊦ 60 3-layer spherical lens 12F 50 10 30 20 10 0 0[±] 20 60 100 120 140 40 80 20 40 60 80 100 120 140 θ [deg] θ [deg]

Yield and SPR reach performance goal

Expected performance

Roman Dzhygadlo, GSI, Talk tomorrow

Time imaging reconstruction for the PANDA Barrel DIRC

DIRC2019, Rauischholzhausen

Electronics

To get rid of out long TRB 3 cables

Last: DiRICH Collaboration of PANDA CBM HADES

11

Michael Traxler, GSI, tomorrow The DiRICH Readout-System for MCP-/MAPMTs

C. Schwarz, GSI

DIRC2019, Rauischholzhausen

Focusing optics

Radiation map

Measurements at CUA for NLAK33A: 1% / Gy @420nm x-ray NLAK33A is sufficient radiation hard for PANDA.

Greg Kalicy, Catholic University of America, last talk in this session The hp DIRC Detector for the future EIC

C. Schwarz, GSI

DIRC2019, Rauischholzhausen

Focusing optics

... more realistic are rectangular shapes

Three lenses systems close to final design ordered from Befort, Wetzlar.

May be installed and used in PANDA.

Produced by RMI

Prototyping of optical elements

mm

Radiators produced with different technologies and materials

Precision measurement of internal reflection coefficient in optical laboratory at GSI,

external one measured by producer. DIRC2019, Rauischholzhausen

Photon detector

Requirements:

- few mm spatial resolution
- ~100 ps timing resolution

Bar-box:

8 MCP-PMT, 512 pixels (total 8 k readout channels) with **pixel size 6 x 6 mm**² work in **1T magnetic field** survive **10 years** of PANDA (aging)

Most sensors with ALD coated MCPs have lifetime > 5 C/cm²

Beam Test at CERN 2017-2018

Most of the data taken at 7 GeV/c (7 GeV/c π/p sep. ≈ 3.5 GeV/c π/K)

DIRC2019, Rauischholzhausen

Beam Test at CERN 2018

The status of the Barrel DIRC

Bars

ordered from Nikon Corporation

- MCP-PMTs call for tender procedure in an advanced stage
- Electronic readout characterization of DiRICH system ongoing
- Mechanical design validate materials

Longterm behaviour of materials

Can we replace aluminum/hex-cell bar boxes of BaBar/Belle II by carbon fiber boxes?

Long term study of the internal reflection coefficient of the DIRC bars as a function of quartz surface pollution

Possible Pollutants

- Carbon fiber laminate
- Glue for bar connections (Epotek 301-2)
- PEEK-screws/buttons
- Material for the silicone cookies

Longterm behaviour of materials

4 Stations

- One empty vessel: reference bar
- 3 filled with pollutants

Longterm behaviour of materials

Tests start soon Sheets of 0.3 mm with 2mm space in between Surface of several Bar boxes

Experiments with PANDA detectors and software at HADES, MAMI, and GlueX

Construction of Phase 1 systems

Two Phase 1 installation periods 1. Solenoid, dipole, supports

2. All Phase 1 detectors

Commissioning with cosmics and beam (protons / antiprotons)

Physics with antiprotons

Construction of Phase 2 systems

Installation period for remaining Phase 2 detectors

Physics with antiprotons

Summary

The Barrel DIRC design with narrow bars, 3-layer spherical lens, and compact prisms meets or exceeds the PANDA PID requirements.

The mass production has started.

The mechanical design, the R&D of electronic and optical elements will be finalized.

Outlook

- 2019: Finalize R&D and start construction phase.
- 2019-2021: Industrial fabrication of main components (sensors, bars, lenses, prisms), Production and QA of readout electronics
- 2019-2022: Industrial fabrication of bar boxes and mechanical support frame;

QA of all components; gluing of long bars, assembly of complete sectors

• 2023/2024: Installation in PANDA, commissioning

Thank you...